
JVM-Hosted Languages:

They Talk the Talk,

but do they Walk the Walk?

Wing Hang Li, David R. White & Jeremy Singer

Background – the JVM

 One reason for Java’s success is the Java Virtual Machine

 The JVM provides:

 “Write once, run anywhere” capability

(WORA)

 Sandboxed execution environment

 Automatic memory management

 Adaptive optimisation

 New Trend – WOIALRA
 write once in any language run anywhere

Other JVM Programming Languages

 Clojure, JRuby, Jython and Scala are popular JVM

languages

 Language features:

 Clojure, JRuby and Jython are dynamically typed

 JRuby and Jython are scripting languages

 Clojure is a functional language

 Scala is multi-paradigm

Growing Popularity of JVM languages

 Top reasons are:

 Access new features

 Interoperability allows existing Java libraries to be used

 Use existing frameworks on the JVM (JRuby on Rails for

instance)

 Twitter uses Scala:

 Flexibility

 Concurrency

JVM Languages in the Real World

Clojure

JRuby

Jython

Scala

What’s the Catch?

 The JVM was designed to run Java code

 Other JVM languages have:

 Poor performance

 Use more memory

How much slower each language performs compared to the fastest time.

Figures from the Computer Languages Benchmark Game

Java Scala Clojure JRuby

1.92 2.30 4.10 50.23

Why are Non-Java Languages Slower?

 What are the differences between Java and the other JVM

languages?

 Work on improving performance has usually been on the

programming language side

 New INVOKEDYNAMIC instruction in JVM 1.7

Truffle/Graal Approach

 Oracle Labs

 Graal - plugin your own intermediate representations and

optimisations

 Truffle – produce an abstract syntax tree from source

code and run it using an interpreter

 “One VM to rule them all”

 Our approach is different because we examine the JVM

language behavior

Aim of our Study

 This study is the first stage of a project to improve the

performance of non-Java JVM languages.

 We do this by profiling benchmarks written in Java,

Clojure, JRuby, Jython and Scala.

 We found differences in their characteristics that may be

exploitable for optimisations.

Data Gathering and Analysis

Method Level

JVM

Garbage
Collection

Traces

Dynamic
Bytecode

Traces

Object Creation
and Deaths

Call/Ret Events

Instruction Mix

Instruction Level

Object Level

Object
Demographics

N-Gram
Models

Principal
Components

Analysis

Data Gathering Exploratory Data

Analysis

Benchmarks

Java

Clojure

JRuby

Jython

Scala

Profiling Tools

 JP21 profiler:

 Proportion of Java and non-Java bytecode

 Frequency of different instructions

 Method and basic block frequencies and sizes

 Produce N-grams from JP2 output

 Elephant Tracks2 heap profiler:

 Object allocations and deaths

 Object size

 Pointer updates

 Stack depth at method entry and exit for each thread

1 http://code.google.com/p/jp2/
2 http://www.cs.tufts.edu/research/redline/elephantTracks/

Benchmarks

 Obtained from the Computer Languages Benchmarks

Game1

 The same algorithm is implemented in each programming

language

 Well known problems like N-body, Mandelbrot and Meteor

puzzle

 Benchmarks available in Java, Clojure, JRuby, Python and Scala

1 http://shootout.alioth.debian.org/

Benchmarks

 Java

 DaCapo benchmark suite

 Clojure

 Noir – web application framework

 Leiningen – project automation

 Incanter – R like statistical calculation and graphs

 JRuby

 Ruby on Rails – web application framework

 Warbler – converts Ruby applications into a jar or war

 Lingo – automatic indexing of scientific texts

 Scala

 Scala Benchmark Suite

Problems Encountered

 Non-Java programming languages use Java

 Java library

 JRuby and Jython are implemented in Java

 Can be mitigated by filtering out methods and objects

using source file metadata

 We examine the amount of Java code in each non-Java

language library

Non-Java Code in JVM Language Libraries

 Static analysis of each non-Java language library

Language Classes Methods Instructions

Jython 68% 86% 96%

JRuby 65% 87% 98%

Clojure 24% 33% 24%

Scala 3% 1% 3%

Analysis tools

 Principal Component Analysis using MATLAB

 Can be used for dimension reduction

 Spot patterns or features when projected to fewer dimensions

 Object Demographics

 Memory behaviour of objects

 Size and lifetime of objects

 Exploratory Data Analysis1

 Spot patterns or features using various graphical techniques

 Principal component analysis and boxplots

1 Exploratory Data Analysis with MATLAB by W.L. Martinez, A. Martinez and J.

Solka.

Instruction Level Results

 Variety of n-grams used

Language Filtered 1-gram 2-gram 3-gram 4-gram

Java No 192 5772 31864 73033

Clojure
No 177 4002 19474 40165

Yes 118 1217 3930 7813

JRuby
No 179 4482 26373 64399

Yes 54 391 1212 2585

Jython
No 178 3427 14887 27852

Yes 48 422 1055 1964

Scala
No 187 3995 19515 45951

Yes 163 2624 11979 30164

Instruction Level Results

 N-grams not used by Java

Language Filtered 1-gram 2-gram 3-gram 4-gram

Clojure
No 2 348 (5%) 4578 (23%) 15824 (43%)

Yes 2 193 (11%) 1957 (46%) 6264 (77%)

JRuby
No 1 512 (1%) 7659 (8%) 30574 (26%)

Yes 1 44 (2%) 399 (14%) 1681 (42%)

Jython
No 1 161 (1%) 2413 (6%) 8628 (19%)

Yes 1 38 (7%) 412 (19%) 1491 (56%)

Scala
No 0 335 (2%) 4863 (23%) 21106 (59%)

Yes 0 288 (3%) 4168 (27%) 18676 (69%)

Instruction Level Results

 Principal components analysis (1-gram, filtered)

Instruction Level Results

 Principal components analysis (2-gram, filtered)

Instruction Level Results

 Principal components analysis (2-gram, filtered)

We observe that, after filtering,

JRuby and Jython use a different

mix of 1 and 2-grams compared to

the other JVM languages

Instruction Level Results

 Principal components analysis (1-gram, unfiltered)

Instruction Level Results

 Principal components analysis (2-gram, unfiltered)

Instruction Level Results

 Principal components analysis (2-gram, unfiltered)

Without filtering there is no distinct

clustering observed

Method Level Results - Java

 Results for the distribution of method sizes

Method Level Results - Scala

 Results for the distribution of method sizes (filtered)

Method Level Results - Scala

 Results for the distribution of method sizes (filtered)

We observe that Scala

methods are generally

smaller than Java

methods

Method Level Results - Java

 Results for the distribution of method stack depths

Method Level Results - Scala

 Results for the distribution of method stack depths

Method Level Results - Scala

 Results for the distribution of method stack depths

We observe that stack

depths are generally greater

for Scala applications

compared to Java

applications

Object Level Results - Java

 Object lifetime

Object Level Results - Scala

 Object lifetime (filtered)

Object Level Results - Scala

 Object lifetime (filtered)

We observed that more Scala

objects have a short lifetime

compared to Java

Object Sizes - Java

 Results for the distribution of object sizes (filtered)

Object Sizes - Clojure

 Results for the distribution of object sizes (filtered)

Object Sizes - Clojure

 Results for the distribution of object sizes (filtered)

We observed that Clojure generally

uses objects that are smaller than

Java objects

Other Results

 All benchmarks showed a high level of method and basic

block hotness. There were no significant differences

between JVM-hosted languages.

 Non-Java JVM languages are more likely to use boxed

primitives.

Future Work

 Examine the programming language characteristics to find

opportunities for:

 Tuning existing optimisations

 Proposing new optimisations

 Implement these in a JVM to see if performance has

improved

Conclusions

 Aim of study is to investigate the reasons for the poor

performance of JVM languages

 Benchmarks in 5 JVM languages were profiled

 JVM languages do have distinctive characteristics related

to their features

 Next step is to optimise performance using the observed

characteristics

Our research paper, experimental scripts and results are

available at: http://bit.ly/19JsrKf

Questions?

More Method Size Graphs - Clojure

 Results for the distribution of method sizes (filtered)

More Method Size Graphs - JRuby

 Results for the distribution of method sizes (unfiltered)

More Method Stack Depth Results - Clojure

More Method Stack Depth Results - JRuby

More Object Lifetime Graphs - JRuby

More Object Lifetime Graphs - Jython

More Object Size Graphs - Scala

 Results for the distribution of object sizes (filtered)

More Object Size Graphs - JRuby

 Results for the distribution of object sizes (unfiltered)

