Make files are a technique by which
disparate software tools may be marshalled
to work on the construction of a single
software project.

ubuntu

Command line

Make files work using command line utilities
so that it will be necessary to learn how to
compile programs using the command line
rather than using and IDE such as Eclipse.

ubuntu

Compiling

* SYNOPSIS
javac [options] [sourcefiles] [@ardfiles]

* PARAMETERS

Arguments may be in any order.

options Command line options.

sourcefiles One or more source files to be
compiled (such as MyClass.java).

ubuntu

Dependencies In javac

Suppose | type
javac Gamma.java
and class Gamma uses or extends classes Alpha and Beta

 Search produces a class file but no source file: javac uses
the class file.

 Search produces a source file but no class file: javac
compiles the source file and uses the resulting class file.

* Search produces both a source file and a class file: javac
determines whether the class file is out of date. If the class
file is out of date, javac recompiles the source file and uses
the updated class file. Otherwise, javac just uses the
class file.

ubuntu

Dependencies not caught

* Suppose both class Alpha and class Delta
were declared in file Delta.java

* In this case javac will not detect that
Delta.java has to be compiled to produce
file Alpha.class

* This iIs an example of the sort of
dependency that Makefiles are useful for.

ubuntu

Compiler options

Options are all preceded by a - sign
-classpath dirlist

Sets the user class path, overriding the user
class path in the CLASSPATH environment variable. If
neither CLASSPATH or -classpath is specified, the user
class path consists of the current directory.

-d directory

Sets the destination directory for class files. The
destination directory must already exist; javac will not
create the destination directory. If a class is part of a
package, javac puts the class file in a subdirectory
reflecting the package name, creating directories as

needed.
ubuntu

Running java programs

 java [options] class [argument ...]

* java [options] -jar file.jar [argument ...]
PARAMETERS

options Command-line options.
class Name of the class to be invoked.
file.jar Name of the jar file to be invoked. Used only

with the -jar option.

argument Argument passed to the main function.

ubuntu

program to run

By default, the first non-option argument is the name of the class to
be invoked. A fully-qualified class name should be used. If the -jar
option is specified, the first non-option argument is the name of a JAR
archive containing class and resource files for the application, with
the startup class indicated by the Main-Class manifest header.

Examples
java Alpha.class

Runs class Alpha in the current directory
java uk.ac.gla.dcs.mscit.Alpha.class

Runs file uk/ac/gla/dcs/mscit/Alpha.class relative to the current classpath

ubuntu

. -classpath classpath
. -cp classpath

Specifies a list of directories, JAR archives, and ZIP

archives to search for class files. Class path entries are
separated by colons (:). Specifying -classpath or -cp
overrides any setting of the CLASSPATH environment
variable

Example
java -cp foo.jar:fi.jar:fo.jar:fum.jar beanstalk.Jack.class
Search for beanstalk/Jack.class in the jar files specified

ubuntu

More options

-verbose:class
Displays information about each class loaded.
. -verbose:gc
Reports on each garbage collection event.
. -version
Displays version information and exit.
: -showversion
Displays version information and continues.

-help Displays usage information and exit.

ubuntu

Controlling Virtual Memory space

- -Xmxn
Specifies the maximum size, in bytes, of the memory allocation
pool. This value must be a multiple of 1024 greater than 2 MB.
Append the letter k or K to indicate kilobytes or the letter m
or M to indicate megabytes. The default value is 64MB.

Examples:
. -Xmx83886080
. -Xmx81920k
. -Xmx80m

On Linux platforms, the upper limit is approximately 2000m

minus overhead amounts. On windows 1000m - overhead.

ubuntu

using jar

 Create jar file

jar c[vOMIf jarfile [-C dir] inputfiles [-Joption]

jar c[vO]mf manifest jarfile [-C dir] inputfiles [-Joption]
* Extract jar file

jar x[vIf jarfile [inputfiles 1 [-Joption]

ubuntu

manifest

. Pre-existing manifest file whose name: value pairs
are to be included in MANIFEST.MF in the jar file. The
m option and filename manifest are a pair -- if either is
present, they must both appear. The letters m and f
must appear in the same order that manifest and
jarfile appear.

Example of a manifest file

e $ cat *.mf

Manifest-Version: 1.0

Main-Class: ilcg.Pascal.PascalCompiler

ubuntu

using make

to use make simply type
make

on the command line.

make then looks for a file called “makefile”
which tells it what to do

ubuntu

dependencies

The following is the generic target entry form:

comment

(note: the <tab> in the command line is necessary
for make to work)

target: dependencyl dependency?

<tab> command

ubuntu

#*

target entry to build program executable from program and
mylib

object files using the gcc compiler
#
program: program.o mylib.o

gcc -0 program program.o mylib.o

ubuntu

Example makefile

define a makefile variable for the java compiler
JCC = javac

typing 'make' will invoke the first target entry in the
makefile

(the default one in this case)
default: Average.class Convert.class Volume.class
Convert.class: Convert. java
$(JCC) S (JFLAGS) Convert.java
Volume.class: Volume. java
$(JCC) S (JFLAGS) Volume. java
To start over from scratch, type 'make clean'.
Removes all .class files, so that the next make rebuilds them

clean:

rm *.class UbUﬂtU

another dependency

this target entry builds the Average class

the Average.class file is dependent on the Average.java file

and the rule associated with this entry gives the command to
create it

I
e Average.class: Average.java

- $(JCC) $(JFLAGS) Average.java

ubuntu

type dependencies

* There exist systematic dependencies
* for example

 .class files are always produced from
Java files

.0 files are usually produced from .c files

* You can tell make about systematic
dependencies

ubuntu

dependencies between file types

JC = javac
.SUFFIXES: .java .class
Java.class:
$(JC) $*.java
CLASSES =\
Foo.class \
Blah.class \

Library.class

Main.class: Main.java $(CLASSES)
vbuntu

