
Prob lem decompos i t i on

How to solve a complex problem

Prob lem decompos i t i on

● You have been given an exercise and
your first thought is

● Oh my God! How on earth am I to do
that?

Prob lem decompos i t i on

● Don't worry this is a common enough first
reaction.

● But to be come competent at
programming you have to get over the
shock and start breaking the problem
down into simple steps.

Your example p rob lem

Break it down from the top into component
problems

➔ How do I build a dictionary
➔ How do I encode a file
➔ How do I decode a file

Break up your so f tware

● Break your software up into smaller tasks
corresponding to the problems you see.

● These smaller tasks can be handled
either by
– separate programs you write
– methods you write
– separate classes you write
– build in classes of java
– operating system commands

Example decompost ion

How to build a dictionary
● Decide on your input data – a training file

of words
● Decide on your output data – we will

discuss this next slide
● Invent a mapping between input and

output

Occams razor

KISS principle – Keep It Simple Stupid!
● More classically

– entia non sunt multiplicanda praeter
necessitatem,

– entities should not be multiplied without
cause

● So what is the simplest file format for a
dictionary?

A s imp le d i c t i onary

● Here is the start of
a dictionary (trained
using The Origin of the
Species, and the
Communist Manifesto)

● It is just a list of
entries one to a
line

● Most frequent first

\n
,
the
of
and
in
to
a
that
;
is
as
have
be
by
which
on
or
are
species
with

Trans fo rmat ion

We know what our
output is to be

We now need to break
the transformation of
input to output into
further steps

1)Split the input into
tokens

2)Sort tokens by
frequency of
occurrence

3)Print out in order most
frequent first

Sp l i t the input i n to tokens

● Again we apply the
same rules
– determine the

inputs,
– determine the

outputs,
– devise a

transformation

● Input is a text file
● What should the

output be?
● By the KISS

principle lets make
it a file of tokens
one per line

Trans fo rm : sp l i t i n tokens

● How do we do the
transform

● We read tokens in one at
a time and print them to
the output stream one
per line

How do we read a
token?

● Input <- a stream
● Output <- a string

Do we write this or
use a library?

We could do either but I
will assume we use a
library

What l i b ra ry /c lass to use

String tokenizer?
● Requires us first to

read in the lines

Stream tokenizer?
● Directly uses an

input stream
● This is simpler,

– apply KISS
principle

Program out l i ne

class Tokens{

public static void main(String[] args)

{

 if (args.length>=1)try{

– run the program

 else

 System.err.println("No filename provided");

}

}

● Program outline
simply checks if we
have a filename
supplied

● Now lets look at
the guts of the
program

I n i t i a l i sa t ion

● Set up the stream tokenizer

FileInputStream f= new FileInputStream(new File(args[0]));
StreamTokenizer s=new StreamTokenizer(f);
s.ordinaryChar('\n');

We tell it not to ignore new lines since we
do not want to loose them

F ie lds o f a S t ream Tokenzer

● double nval
 If the current token is a number, this field contains the value of

that number.
● String sval
 If the current token is a word token, this field contains a string

giving the characters of the word token.
● static int TT_EOF
 A constant indicating that the end of the stream has been read.
● static int TT_EOL
 A constant indicating that the end of the line has been read.
● static int TT_NUMBER
 A constant indicating that a number token has been read.
● static int TT_WORD
 A constant indicating that a word token has been read.
● int ttype
 After a call to the nextToken method, this field contains the

type of the token just read.

I nner l oop

● This has to loop through all tokens till we reach
the end of file

while((i=s.nextToken())!=s.TT_EOF){

String t;

– get one token as a string in t
● work this out for yourselves

System.out.println(t);

}

Use makef i l e to pa tch p rograms
together

#makefile line for getting tokens

tokens: Tokens.class $(DATA)

java Tokens $(DATA) >tokens

Next p rob lem

● Finding the
frequency of
unique words

● Input <- stream of
words one per line

● Output <- ???
– see right panel

00000004temporarily

00000010reactionary

00000001progressively

00000001flax

00000001thicknesses

00000013flat

00000003mimicked

00000002meeting

00000001persevering

00000004birthplace

●

Freq Output fo rmat

Why have I chosen this

It lists

1.the number of times a word occurs

2.the word itself

The frequency is in fixed format

Watch this.....

Use o f OS u t i l i t i es

● I can use the sort command to help me
here

Frequency count ing l oop

● Let br be a buffered reader
● let h be a hash table

while((s=br.readLine())!=null){

 if (h.get(s)==null){int [] count={1};h.put(s,count);}

 else{(h.get(s))[0]++;}

}

This is similar to what I showed you for a visitor class in the last
lecture

Format ted p r in t ing

● Let p be a printstream
● Let freq be the frequency of occurrence of a

word
● Let w be the word

– then

p.format("%1$08d%2$s\n",freq,w);

will print the frequency to 8 digits followed by
the word

Look up the PrintStream class for this but I
think you have already had formatted io

