Problem decomposition

How to solve a complex problem

Problem decomposition

* You have been given an exercise and
your first thought is

* Oh my God! How on earth am | to do
that?

Problem decomposition

* Don't worry this is a common enough first
reaction.

* But to be come competent at
programming you have to get over the
shock and start breaking the problem
down into simple steps.

Your example problem

Break it down from the top into component
problems

> How do | build a dictionary
> How do | encode a file
> How do | decode a file

Break up your software

* Break your software up into smaller tasks
corresponding to the problems you see.

* These smaller tasks can be handled
either by

- separate programs you write
- methods you write

- separate classes you write

- build Iin classes of java

- operating system commands

Example decompostion

How to build a dictionary

* Decide on your input data - a training file
of words

* Decide on your output data — we will
discuss this next slide

* Invent a mapping between input and
output

Occams razor

KISS principle - Keep It Simple Stupid!
* More classically

- entia non sunt multiplicanda praeter
necessitatem,

- entities should not be multiplied without
cause

* SO0 what is the simplest file format for a
dictionary?

A simple dictionary

* Here is the start of

a dictionary (trained the
of

using The Origin of the and

Species, and the in
Communist Manifesto) 0
- Itisjustalistof ™
entries one to a o
Ilne have
be

. b
» Most frequent first whicn
ar
are
species
with

Transformation

We know what our 1)Split the input into
output is to be tokens
We now need to break 2)Sort tokens by
the transformation of frequency of
input to output into occurrence
further steps 3)Print out in order most

frequent first

Split the input into tokens

* Again we apply the - Inputis a text file

same rules . What should the

- determine the output be?
inputs, .

- determine the By the KISS

principle lets make
it a file of tokens

- devisea one per line
transformation

outputs,

Transform : split in tokens

* How do we do the How do we read a
transform token?

 We read tokens in one at
a time and printthemto * INnput <- a stream

the output stream one .
per Iinep * Qutput <- a string
Do we write this or

use a library?

We could do either but |
will assume we use a

library

What library/class to use

String tokenizer? Stream tokenizer?

* Requires us first to e« Directly uses an
read in the lines input stream

* This Is simpler,

- apply KISS
principle

Program outline

class Tokenst * Program outline
public static void main(String[] args) . .
{ simply checks if we
if (args.length>=1)try{ have a fllename

- run the program Supp IEd

System.err.printin("No filename provided"); y NOW EtS IOOk at
} the guts of the
} program

else

Initialisation

* Set up the stream tokenizer

FileInputStream f= new FilelnputStream(new File(args[0]));
StreamTokenizer s=new StreamTokenizer(f);
s.ordinaryChar('\n');

We tell it not to ignore new lines since we
do not want to loose them

Fields of a Stream Tokenzer

double nval

If the current token is a number, this field contains the value of
that number.

String sval

If the current token is a word token, this field contains a string
giving the characters of the word token.

static int TT_EOF

A constant indicating that the end of the stream has been read.
static int TT_EOL

A constant indicating that the end of the line has been read.
static int TT_NUMBER

A constant indicating that a number token has been read.
static int TT_WORD

A constant indicating that a word token has been read.
int ttype

After a call to the nextToken method, this field contains the
type of the token just read.

Inner loop

 This has to loop through all tokens till we reach
the end of file

while((i=s.nextToken())!=s.TT_EOF){
String t;
- get one token as a string in t

* work this out for yourselves
System.out.printin(t);

}

Use makefile to patch programs

together

#makefile line for getting tokens

tokens: Tokens.class $(DATA)
Java Tokens $(DATA) >tokens

Next problem

* Finding the
frequency of
unigue words

* Input <- stream of
words one per line

* Output <- 777
- see right panel

00000004temporarily
00000010reactionary
00000001progressively
00000001flax
00000001thicknesses
00000013flat
00000003mimicked
00000002meeting
00000001persevering
00000004birthplace

Freqg Output format

Why have | chosen this

It lists

1.the number of times a word occurs
2.the word itself

The frequency is in fixed format
Watch this.....

Use of OS utilities

* | can use the sort command to help me
here

Freguency counting loop

 Let br be a buffered reader
 |let h be a hash table

while((s=br.readLine())!=null){

if (h.get(s)==null){int [] count={1};h.put(s,count);}
else{(h.get(s))[0]++;}

}

This is similar to what | showed you for a visitor class in the last
lecture

Formatted printing

* Let p be a printstream

* Let freq be the frequency of occurrence of a
word

e Let w be the word

- then
p.format("%1$08d%2%$s\n",freq,w);

will print the frequency to 8 digits followed by
the word

Look up the PrintStream class for this but |
think you have already had formatted io

