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Chapter 0

Problematizing labour

0.1 Watt on work

Prior to the eighteenth century, muscles—whether of humans, horses or oxen—remained the fundamental
energy source for production. Not coincidentally, the concepts of work, power, energy and labour did not
exist in anything like their modern form. People were, of course, familiar with machinery prior to the modern
age. The Archimedean machines and their derivatives—levers, inclined planes, screws, wheels, pulleys—had
been around for millennia to amplify or concentrate muscular effort. Water-power had been in use since at
least the first century A.D.,1 initially as a means of grinding grain; during the middle ages it was applied to
a wide variety of industrial processes. But water-power, and its sister wind-power, were still special-purpose
technologies, not universal energy sources. Limited by location and specialized use they did not problematize
effort as such.

A note on terminology is in order here. The (admittedly not very elegant) verb ‘to problematize’ derives
from the work of the philosopher Louis Althusser. Althusser coined the term problématique (problematic) to
refer to the field of problems or questions that define an area of scientific enquiry. The term is fairly closely
related to Thomas Kuhn’s idea of a scientific ‘paradigm’. So, to problematize a domain is to transform it into
a scientific problem-area, to construct new concepts which permit the posing of precise scientific questions.
In the pre-modern era engineers and sea captains would know from experience how many men or horses
must be employed, using pulleys and windlasses, to raise a mast or obelisk. Millers knew that the grinding
capacity of water mills varied with the available flow in the mill lade. But there was no systematic equation
or measure to relate muscular work to water’s work, no scientific problematic of effort. That had to wait for
James Watt, after whom we name our modern measure of the ability to work.

Watt, the best-known pioneer of steam, did not actually invent the steam engine, but he improved its
efficiency. As Mathematical Instrument Maker to the University of Glasgow he was called in to repair a
model steam engine used by the department of Natural Philosophy (we would now call it Physics). The
machine was a small scale version of the Newcomen engine that was already in widespread use for pumping
in mines.

The Newcomen engine was an ‘atmospheric engine’. It had a single cylinder, the top half of which was
open to the atmosphere (Figure 1). The lower half of the cylinder was connected via two valves to a boiler
and a water reservoir. The piston was connected to a rocking beam the other end of which supported the
heavy plunger of a mine pump. The resting condition of the engine was with the piston pulled up by the
counter-weight of the pump plunger.

To operate the machine, the boiler valve was opened first, filling the cylinder with steam. This valve was
then closed and the water-reservoir valve opened, spraying cold water into the piston. This condensed the
steam, resulting in a partial vacuum. Atmospheric pressure on the upper surface of the piston then drove it
down, providing the power-stroke. The two phase cycle could then be repeated to obtain regular pumping.

Watt observed that the model engine could only carry out a few strokes before the boiler ran out of
steam and it had to rest to ‘catch its breath’. He ascertained that this was caused by the incoming steam
immediately condensing on the walls of the cylinder, still cool from the previous water spray. His solution was
to provide a separate condenser, permanently water cooled, and intermittently connected to the cylinder by
a valve mechanism. The cylinder, meanwhile, was provided with a steam-filled outer jacket to keep its inner

1See Strandh (1979), Ste. Croix (1981, p. 38).
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6 Chapter 0. Problematizing labour

Figure 1: The Newcomen engine built by Smeaton (reproduced from Thurston)
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Figure 2: Watt’s steam engine with separate condenser (reproduced from Thurston)

lining above condensation temperature (Figure 0.1). His 1769 patent was for “A New Method of Lessening
the Consumption of Steam and Fuel in Fire Engines”.

Watt’s later business success was based directly on this gain in thermal efficiency. His engines were not
sold outright to users, but were leased. The rental paid was equal to one-third the cost of coal saved through
using a Watt engine rather than a Newcomen engine (Tann, 1981). This pricing system worked so long as
the Newcomen engine provided a basis for comparison, but as Watt’s engines became the predominant type,
and as they came to be used to power an ever-widening range of machines, some system of rating the working
capacity of the engines was needed. Watt needed a standardized scale by which he could rate the power,
and thus the rental cost, of different engines. His standardized measure was of course the horsepower: users
were charged £5 per horsepower year.

Watt’s horse was not a real horse of course, but the abstraction of a horse, a standardized horse. The
abstraction is multiple: at once an abstraction from particular horses, an abstraction from the difference
between flesh and blood horses and iron ones, and an abstraction from the particular work done. The work
done had to be defined in the most abstract terms, as the overcoming of resistance in its canonical form,
namely raising weights. One horsepower is 550 ft lb/sec, the ability to raise a load of 1 ton by 15 feet in a
minute.

While few real horses could sustain this kind of work, its connection to the task performed by Watt’s
original engines is clear. The steam engine was a direct replacement for horse-operated pumps in the raising of
water from mines. But with the development of mechanisms like Watt’s sun and planet gear, which converted
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linear to rotary motion, steam engines became a general purpose power source. They could replace water
wheels in mills, drive factory machines by systems of axles and pulleys, pull loads on tracks. Engine capacity
measured in horsepower abstracted from the concrete work that was being performed, transforming it all to
work in general. Horsepower was the capacity to perform a given amount of work each second. By defining
power as work done per second, work in general was itself implicitly defined. All work was equated to lifting.
Work in general was defined as the product of resistance overcome, measured in pounds of force, by the
distance through which it was overcome.

Mechanical power seemed to hold the prospect of abolishing human drudgery and labour. As Matthew
Boulton proudly announced to George II: “Your Majesty, I have at my disposal what the whole world
demands; something which will uplift civilization more than ever by relieving man of undignified drudgery.
I have steam power.”2 To a world in which human muscle was a prime mover, this equation of work in the
engineering sense with human labour was exact. Work on ships, in mines, at the harvest, was work in the
most basic physical sense. Men toiled at windlasses to raise anchors, teams pulled on ropes to set sails and
hauled loads on their backs to unload cargo. Children dragged coal in carts from drift mines, women carried
it up shafts in baskets on their backs. The ‘navigators’ who built canals did it with no mechanical aid more
sophisticated than the wheelbarrow (a combination of lever and wheel, two Archimedean devices).

As horsepower per head of population multiplied, so too did industrial productivity. The power of steam
was harnessed, first to raise weights, then to rotate machinery, then to power water-craft, next to trains—and
eventually, through the mediation of the electricity grid, to tasks in every shop and home—while human
work shrank as a proportion of the total work performed. More and more work was done by artificial energy,
yet the need for people to work remained. A steam locomotive might draw a hundred-ton train, but it
needed a driver to control it. Human work became increasingly a matter of supervision, control and feeding
of machines. Thus the identification of work with the overcoming of physical resistance in the abstract, and
of human labour-power with power in Watt’s sense, contained both truth and falsehood. Its truth is shown
by the manifest gains flowing from the augmentation of human energy. Its falsity is exposed by the residuum
of human activity that expresses itself in the control, minding and direction of machinery.

Indeed, the introduction of powered machinery had the effect of lengthening the working day while making
work more intense and remorseless. The cost of powered machinery was such that only men with substantial
wealth could afford it. Cheap hand-powered spindles and looms could not compete with steam-powered
ones. Domestic spinners and hand-loom weavers had to give up their independence and work for the owners
of the new steam powered ‘mules’ and looms. Steam power brought no increase in leisure for weavers or
spinners. The drive to recoup the capital cost of the new machinery brought instead longer working hours
and shift-work, to a rhythm dictated by the tireless engine. The fact that the machinery was not owned by
those who worked it, meant that it enslaved rather than liberated.

A particular pattern of ownership was the social cause of machine-enforced wage slavery, but that is
only half the story. We may ask why the new machine economy needed human labour at all. Why did
‘self acting’—or as we would put it now, ‘automatic’—machines not displace human labour altogether? A
century ago, millions of horses toiled in harness to draw our loads. Where are they now? A remnant of their
former race survives as toys of the rich; the rest went early to the knackers. Why has a similar fate not
befallen human workers? Why has the race of workers not been killed off, to leave a leisured rich attended
by their machines?

Watt’s horsepower killed the horse, but the worker survived. There must be some real difference between
work as defined by Watt, and work in the sense of human labour.

0.2 Marx: The Architect and the Bee

Karl Marx proposed an argument which seems at first sight to get to the essence of what distinguishes human
labour from the work of an animal or a machine, namely purpose.

2Compare Antipater of Thessalonika’s eulogy on the introduction of the water mill:

Stop grinding, ye women who toil at the mill
Sleep on, though the crowing cocks announce the break of day
Demeter has commanded the water nymphs
to do the work of your hands
Jumping one wheel they turn the axle
Which drives the gears and the heavy millstones
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An immeasurable interval of time separates the state of things in which a man brings his labour-power
to the market for sale as a commodity, from that state at which human labour was still in its first
instinctive stage. We pre-suppose labour in a form which stamps it as exclusively human. A spider
conducts operations that resemble those of a weaver, and a bee puts to shame many an architect in
the construction of her cells. But what distinguishes the worst of architects from the best of bees is
this, that the architect raises his structure in the imagination before he erects it in reality. At the end
of every labour process we get a result that already existed in the imagination of the labourer at its
commencement. He not only effects a change of form in the material on which he works, but he also
realises a purpose of his own that gives the law to his modus operandi, and to which he must subordinate
his will. (Marx, 1970, pp. 177–8)

This suggests that animals, lacking purpose, can be replaced by machines, but that humans are always
required, in the end, to give purpose to the machine. We cite Marx’s statement because it articulates what
is probably a rather widely held view, yet it has several interesting problems. This is an issue where it is
difficult to go straight for the ‘right answer’. It may be profitable to beat the bushes first, to scare up (and
shoot down) various prejudices that can block the road to a scientific understanding.

First, are animals really lacking in purpose? The spider may be so small, and her brain so tiny, that it
seems plausible that blind instinct, rather than the conscious prospect of flies, drives her to spin. But it is
doubtful that the same applies to mammals. The horse at the plough may not envisage in advance the corn
he helps to produce, but then he is a slave, bent to the purpose of the ploughman. Reduced to a source of
mechanical power, overcoming the dumb resistance of the soil, he is readily replaced by a John Deere. The
same cannot be said of animals in the wild. Does the wolf stalking its prey not intend to eat it? It plans its
approach with cunning. Who are we to say that the result—fresh caribou meat—did not “already exist in
the imagination” of the wolf at its commencement? We have no basis other than anthropocentric prejudice
on which to deny her imagination and foresight.

Turn to Marx’s human example, an architect, and his argument looks even shakier. For do architects ever
build things themselves? They may occasionally build their own homes, but in general what gives them the
status of architects is that they don’t get their hands dirty with anything worse than India Ink. Architects
draw up plans. Builders build. (In eliding this distinction Marx showed an uncharacteristic blindness to
class reality).

An office block, stadium or station has, it is true, some sort of prior existence, but as a plan on paper
rather than in the mind of the builders. If by collective labour civilized humans can put up structures more
complex than bees, it is because they can read, write and draw. A plan—whether on paper or, as in earlier
epochs, scribed on stone—coordinates the individual efforts of many humans into a collective effort.

For building work then, Marx is partially right, the structure is raised on paper before it is raised in stone.
But he is wrong in saying that it is built in the imagination first, and in implying that the structure is put
up by the architect. What is really unique to humans here is, first, the social division of labour between the
labour of conception by the architects and the work of execution by the builders, and second, the existence
of materialized plans: configurations of matter that can control and direct the labour of groups of humans.

While insect societies may have a division of labour between ‘castes’, for example between worker and
soldier termites, they do not have a comparable division between conception and execution, between issuers
and followers of orders. Nor do insects have technologies of record and writing. They can communicate with
each other. Dancing bees describe to others the whereabouts of flowers. Walking ants leave scent trails for
their companions. These messages, like human speech, coordinate labour. Like our tales, they vanish in the
telling. But, not restricted to telling tales, we can can make records that persist, communicated over space
and time.

Our tales are richer too. The set of messages that can be expressed in our languages is exponentially
greater than in the language of bees. Each works by the sequential combination of symbols—words for us,
wiggles for bees—but we have many more symbols and can understand much longer sequences. The number
of distinct messages that can be communicated by a language is proportional to vm where v is the number
of distinct symbols that can be recognized in the language and m is the maximum message length. If bees
have a repertoire of six types of wiggles and can understand ‘sentences’ of three wiggles in succession then
they can send 63 = 216 different messages. A human language with a vocabulary of 3000 words and a max-
imum sentence length of 20 words could convey about 3.486784401× 1069 = 348, 678, 440, 100, 000, 000, 000,
000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000 distinct sentences. Of course, not
all of these would be grammatically correct, and a rather small proportion of those would make any sense,
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but the number of messages is still astronomically greater than what insects can manage. And we can keep
piling on the sentences until the listener loses track.

All this leaves open another interpretation of what Marx had to say. True enough, architects may not
build theatres themselves, any more than Hadrian built his wall3 or Diocletian his baths. But Hadrian caused
the wall to be built and Diocletian’s architect caused the baths to be built to a specific design. (This use of
the word ‘built’ is of course common in class societies, where real builders get no credit for their creations.
Their labour contributes instead to the fame of a ruler or architect.) If the architect creates only a paper
version of a theatre, can we say, at any rate, that he creates this drawing in his mind before setting it down
on paper? This interpretation of Marx’s story of the architect and the bee seems to make sense, but it’s not
clear that it’s a true description of what an architect actually does.

Emergent buildings

Some individuals, autistic infant prodigies or ‘idiot savants’, do seem to have the ability to hold in their
minds almost photographically detailed images of buildings they have seen. Working from memory they
are able to draw buildings in astonishing and accurate detail.4 But it is questionable whether professional
architects work this way. Some may, but for others the process of developing a design is intimately tied up
with actually drawing it. They start with the broad outlines of a design in their minds. As this is transferred
to paper, they get the contexts within ¡¡¡¡¡¡¡ bee.tex which the mind can work to elaborate and fill in details.
The details were not in the mind prior to starting work, they emerge through the ======= which the
mind can work to elaborate and fill in details. The details were not in the mind prior to starting work, they
emerge through the ¿¿¿¿¿¿¿ 1.6 interaction of mind, pen and paper. Pencils and paper don’t just record
ideas that exist fully formed, they are part of a production process that generates ideas in the first place.

At any one time our consciousness can focus on only a limited number of items. On the basis of what it
is currently conscious of, its context, it can produce responses related to this context. In reverie the context
is internal to the brain and the responses are new ideas related to this context. In an activity like drawing
a plan or engineering diagram, the context has two parts

(1) an internal state of mind; and

(2) that part of the diagram upon which visual attention is fixated,

and the response is both internal—a new state of mind—and external—a movement of the pencil on the
paper.5 Where in reverie the response, the new idea, slipped all too easily from grasp, paper remembers.6

Architecture exchanges for the fallibility and limited compass of memory the durability of an effectively
infinite supply of A0. One might say that complex architecture rests on paper foundations.

If the idea of the architect as creating buildings spontaneously out of the imagination is dismissed as an
almost religious myth, redolent of the Masonic characterization of the deity as the Great Architect, what
then remains of the antithesis between architect and bee? Well, how do the bees shape their hive? We can
be sure there are no drawings of hexagons, made by the ‘queen’,7 and executed by her worker daughters.
We are talking here of apis mellifera not the solitary bumble bee. The labour of the honey bees is collective,
like that of workers on a building site, yet although they have no written plans to work from they create a
geometrically precise, optimal and elegant structure.

Apian efficiency

Consider the problem to which the honeycomb is the answer: to come up with a structure that is inter-
changeably capable of storing honey or sheltering bee larvae, is waterproof, is structurally stiff, provides a
platform to walk on and which uses the minimum material. Given this design brief it is unlikely that a
human engineer could come up with a better structure.

The structure has to be organized as a series of planes to provide access. Within the planes, the combs,
the space has to be divided into approximately bee-sized cubicles. These could be triangular, square, or
hexagonal (the only three regular tessellations of the plane). Our architects have a predilection for the
rectilinear, but the hexagonal form is superior.

3It was of course the rank and file legionnaires who built the wall; see Davies (1989).
4It may be worth seeing if we could reproduce some images by such autistic artists
5The reader may notice that this argument is a thinly disguised version of Alan Turing’s famous argument of 1937.
6Cite the passage in Tacitus, I think it is in the Annals, where he says that civilization depends upon Papyrus.
7The breeding female is no more an architect or Caesar than the Pope is the genetic father of his followers. Monarchy

and patriarchy project dominance relations onto genetic relations and vice versa. Apian Mother becomes queen, the Vatican
monarch, Holy Father.
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Figure 3: Tessellation of the plane using hexagons

A tessellation of unit squares has a wall length of 2 per unit area, since a single unit square has four sides
of unit length, each shared 50 percent with its neighbours. A tessellation of hexagons of unit area has a wall
length of 2√

3
per unit area, a reduction by a factor of

√
3 (see Figure 4). The honeycomb structure used by

bees is thus more efficient in its use of wax than a rectilinear arrangement would be.
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Figure 4: Apian efficiency

(1) A hexagon of unit side is made up of 6 identical equilateral triangles, thus its area is 6T where T is the
area of an equilateral triangle of unit side.

(2) The area of an equilateral triangle of unit side is 1
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(4) The hexagon’s six sides are each shared 50% with a neighbour.

(5) Wall per unit area for a hexagonal tessellation is then 3/ 3
√

3

2
= 2/

√
3 which is better than the wall to area

ratio for squares.

The fact that hexagonal lattices minimize boundary lengths per unit area means that they can arise
spontaneously, for example in columnar basalts.8 Here the tension induced in rocks as they cool encourages
cracking, preferentially giving rise to six sided columns. We might suspect that the beehive too, gained its
structure from a process of spontaneous pattern formation analogous to columnar basalts or packed arrays
of soap bubbles. But this doesn’t tally with the way the cells are built up, or with the uniformity of their
dimensions. In a partially constructed honeycomb the cells are of a constant diameter; those in the middle
of the comb are all of uniform height while towards the edge the depth of the cells falls. The bees build the
cells up from the base, laying wax down on the upper margins of the cell walls, just as bricks are added to the
upper margin of a wall by a bricklayer. The construction process takes advantage of the inherent stability of
a hexagonal lattice, allowing the growing cells to form their own scaffolding. But the process also demands

8Should we have a photo of the rocks around Fingal’s Cave?
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that the bees can deposit wax accurately on the growing cell walls, and that they stop building when the
cells have reached the right height. That is, it depends on purposeful activity on the part of the bees.

Figure 5: Nature is the architect of the hexagonal columns of Fingal’s cave (Photo by Andrew Kerr)

A similar process takes place in the human construction of geodesic domes, hexagonal lattices curved
through a third dimension. These have an inherent stability that becomes more and more evident as you
add struts to them. You build them up in a ring starting at ground level. The structure initially has a fair
bit of play in it, but the closer the structure comes to a sphere the more rigid it is. Human dome builders,
like bees, exploit the inherent structural properties of hexagonal lattices, but they still need to cut struts to
the right length and put them in the correct place. The bees likewise must select the right height for their
cell walls and place wax appropriately.

Spontaneous self-assembly of hexagonal structures similar to geodesic domes does occur in nature. The
Fullerenes are a family of carbon molecules named after Buckminster Fuller, the inventor of the geodesic
dome. The first of these to be discovered, C60, has the form of a perfect icosahedron (see Figure 6).
Condensed out of the hellish heat of a carbon arc, it depends on thermal vibrations to curve the familiar
planar hexagonal lattice of graphite onto itself to form a three dimensional structure. No architect or bee is
required. Atomic properties of carbon select the strut length. Thermal motion searches the space of possible

Figure 6: C60 a spontaneously formed dome structure
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configurations; a small fraction of the molecules settle into the local energy minima represented by C60 and
its sisters.

If the bees can’t rely upon spontaneous self-assembly to build their hives, must they have a plan in mind
before they start? Since they can’t draw, the mind would have to be where they held any plans. While we
can’t rule this out, it seems unlikely. The requirement is that they can execute a program of work. A bee
arriving on the construction site with a load of wax must, in the darkness, find an appropriate place to put
it, for which they need a set of rules:

If the cell is high enough to crawl into, put no more wax on it,
otherwise if the cell has well formed walls add to their height,
otherwise if it is a cell base smaller than your own body diameter, expand it,
otherwise start building the wall up from the base. . .

No internal representation of a completed comb need be present in the bee’s mind. The same rules,
simultaneously present in each of a hive full of identical cloned sisters, along with the structural properties
of beeswax, produce the comb as an emergent complex structure. The key here is the interaction between
behavioral rules and an immediate environment that is changed as the result of the behaviour. The envi-
ronment, the moulded wax, records the results of past behaviour and conditions future behaviour. But for
rules to be converted into behaviours by the bees, the bees must have internal ‘states of mind’, and be able
to change their state of mind in response to what their senses are telling them. A bee that is busy laying
down wax is in a different state of mind from one foraging for pollen and their behavioral repertoire differs
as a result.

As we have argued above, what an architect does is not so different. Architects produce drawings, not
buildings or hives, but producing a drawing is an interactive process in which the architect’s internal state
of mind, his knowledge of the rules and stylistic conventions of the epoch, produces behaviour that modifies
the immediate environment—the paper. The change to the paper creates a new environment, modifying his
state of mind and calling into action other learned rules and skills. The drawing is an emergent property
of the process, not something that pre-existed as a complete internal representation before the architect put
pencil to paper.

0.3 The Demonic challenge

Purposeful labour depends upon the ability to form and follow goals. A goal is a representation of a state
of affairs that does not exist plus a motivation to achieve it. Although bees do not have the goal processing
capabilities of the human mind, they nonetheless follow simple goals. Goal processing, from simple, reactive
programs hard-wired in the neural circuitry of insects, to the much more adaptive and sophisticated rational
planning capabilities of humans, is the mechanism that distinguishes the constructive activity of humans
and bees from the blind efforts of Watt’s engines. An engine transforms energy in one form to another, but
it does not act to achieve states of affairs, unlike bees that build or humans that labour.

There is a hidden connection between purposeful labour and work in the engineering sense. Any pur-
poseful activity overcomes physical resistance and involves work, measured in watts, for which we must be
fueled by calories in our food; the hidden connection comes from the realization that, at least in principle,
purposeful labour could itself be a source of fuel.

Recall that Watt’s key invention was the separate condenser for steam engines, which saved fuel by
preventing wasteful condensation of steam within the cylinder of the engine. In the years after Watt’s
invention, it came to be realized that the thermal efficiency of steam engines could be improved by maximizing
the pressure drop between the boiler and the condenser. A series of inventions followed to take advantage
of this principle: Trevithick’s high pressure engine, the double and then the triple expansion engine. These
had the effect of increasing the amount of effective work that could be extracted from a given amount of
heat. But successive gains in efficiency proved harder to come by. The amount of work obtained per calorie
of heat could be increased, but not without limit.

It was understood that work could be converted into heat, for instance through friction, and heat could
be converted back into work, for instance by a steam engine. But if you convert work into heat, and heat
back into work, you always end up with less work than you put in. In converting work into heat, the number
of calories of heat obtained per kilowatt hour of work is constant—conversion of work into heat can be done
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with 100 percent efficiency. The reverse is not true. Heat can never be fully converted into useful work.9

The practical imperative of improving steam engines gave rise to the theoretical study of the laws governing
heat, the laws of thermodynamics.

One of the first formulations of the second law of thermodynamics was that heat will never spontaneously
flow from somewhere cold to somewhere hot.10 This implied that, for instance, there was no chance of
transferring the heat wasted in the condenser of a steam engine back to the boiler where it would boil more
water. Thermodynamics ruled out perpetual motion machines.

But James Clerk Maxwell, one of the early researchers in thermodynamics, came up with an interesting
paradox.

One of the best established facts of thermodynamics is that it is impossible in a system enclosed in an
envelope which permits neither change of volume nor passage of heat, and in which temperature and
pressure are everywhere the same, to produce any inequality of temperature or of pressure without the
expenditure of work. This is the second law of thermodynamics, and it is undoubtedly true as long as we
can deal with bodies only in mass, and have no power of perceiving or handling the separate molecules of
which they are made up. But if we can conceive of a being whose faculties are so sharpened that he can
follow every molecule in its course, such a being would be able to do that which is presently impossible
to us. For we have seen that the molecules in a vessel full of air at a uniform temperature are moving
with velocities by no means uniform, though the mean velocity of any great number of them, arbitrarily
selected, is almost exactly uniform. Now let us suppose that such a vessel is divided into two portions, A
and B, by a division in which there is a small hole, and that a being, who can see individual molecules,
opens and closes this hole, so as to allow only the swifter molecules to pass from A to B, and only the
slower ones to pass from B to A. He will thus, without the expenditure of work, raise the temperature
of B and lower that of A, in contradiction to the second law of thermodynamics. (James Clerk Maxwell,
1875, pp. 328–329)

The configuration of the thought experiment is shown in Figure 7. As the experiment runs the gas on one
side heats up while that on the other side cools down. The end result is a preponderance of slow molecules
in cavity A, fast ones in cavity B. Since heat is nothing more than molecular motion, this means that A has
cooled down while B has warmed up. No net heat has been added, it has just re-distributed itself into a
form that becomes useful to us. Since B is hotter than A, the temperature differential can be used to power
a machine. We can connect B to a boiler and A to a condenser and obtain mechanical effort. An exercise
of purposeful labour by the demon outwits the laws of thermodynamics. (Norbert Wiener coined the term
‘Maxwell demon’ for the tiny ‘being’ envisaged in the thought experiment.) It seems that the second law of
thermodynamics expresses the coarseness of our senses rather than the intractability of nature.

0.4 Entropy

One perspective on the devilment worked by Maxwell’s demon is that it has reduced the entropy of a closed
system. The idea of entropy was introduced by Clausius in 1865 (see Harrison, 1975) with the equation

∆S = ∆Q/T (1)

where ∆S is the change in entropy of a system consequent upon the addition of a quantity of heat ∆Q at
absolute temperature T .11 According to Clausius’s equation adding heat to a system always increases its
entropy (and subtracting heat always lowers entropy) but the magnitude of the change in entropy is inversely
related to the initial temperature of the system. Thus if a certain amount of heat is transferred from a hotter
to a cooler region the increase in entropy in the cooler region will be greater than the reduction in entropy
in the hotter, and overall entropy rises. Conversely, if heat is transferred from a colder to a hotter region
entropy falls. Clausius’s concept of entropy as an abstract quantity allowed him to give the second law of
thermodynamics its canonical form: the entropy of any closed system tends to increase over time.

Using (1) we can readily see that Maxwell’s demon violates the second law of thermodynamics. Suppose
the demon has been hard at work for some time, so that B is hotter than A, specifically B is at 300◦ Kelvin
and A is at 280◦ Kelvin. He then transfers ∆Q =1 joule of heat from A to B. In doing so he reduces the

9Carnot was able to show that the efficiency of heat engines depended on the temperature difference between heat source,
for example the boiler, and the heat sink, for example a steam engine’s condenser.

10This formulation was due to Clausius in 1850; see Porter (1946, pp. 8–9).
11At this stage the concept of entropy remains firmly linked to the sort of practical considerations, namely steam engine

design, that gave rise to thermodynamics. Later, as we shall see, it becomes generalized.
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A B

before

after

Figure 7: Gas initially in equilibrium. Demon opens door only for fast molecules to go from A to B, or slow
ones from B to A. Result Slow molecules in A, fast in B. Thus B hotter than A, and can be used to power
a machine.

entropy of A by 1

280
joules per degree and increases the entropy of B by 1

300
joules per degree giving rise to

∆S = 1

300
− 1

280
= − 1

4200
, a net reduction in entropy, contrary to the second law.

Clausius’s formulation of entropy did not depend in any way upon the atomic theory of matter. Maxwell’s
proposed counter-example to the second law was explicitly based on atomism. With Boltzmann, entropy is
placed on an explicitly atomistic foundation, in terms of an integral over molecular phase space.

S = −k

∫

f(v) log f(v)dv (2)

where v denotes volume in six-dimensional phase space, f(v) is the function that counts the number of
molecules present in that volume, and k is Boltzmann’s constant.

The concept of phase space is a generalization of our normal concept of three-dimensional space to
incorporate the notion of motion as well as position. In a three-dimensional coordinate system the position
of each molecule can be described by three numbers, measurements along three axes at right angles to one
another. We usually label these numbers x, y, z to denote measurements in the horizontal, vertical and
depth directions. However each molecule is simultaneously in motion. Its motion can likewise be broken into
components of horizontal, vertical and depth-wise motion which we can write as mx, my, mz, representing
motion to the left, up and back respectively. This means that a set of six coordinates can fully describe both
the position and motion of a particle.

In Boltzmann’s formula, the letter v denotes a range of possible values of these co-ordinates. For example,
a volume 1mm cubed on the spatial axes and 1mm per second on the motion axes. The function f(v) would
then specify how many molecules there were in that cubic millimeter with a range of velocities within 1 mm
per second in each direction. Boltzmann’s formula relates the entropy of a gas, for instance steam in a piston,
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to the evenness of its distribution in this six dimensional space: the less even the distribution the lower the
entropy. This point is illustrated in simplified manner in Table 1. Suppose we have just two cells in phase
space, and eight atoms that can be in one cell or the other. The table shows how the entropy depends on the
location of the atoms, lowest when all 8 are in one cell, and highest when they are evenly divided between
the cells. (Note that the minus sign in Boltzmann’s formula is needed to make entropy increase with the
evenness of the distribution, consistent with Clausius’s earlier formulation.)

Contents Entropy,
of cells 1, 2 f(1) log f(1) + f(2) log f(2) S

8, 0 8(2.079) + 0= 16.636 −16.636k
7, 1 7(1.946) + 1(0)= 13.621 −13.621k
6, 2 6(1.792) + 2(0.693)= 12.137 −12.137k
5, 3 5(1.609) + 3(1.099)= 11.343 −11.343k
4, 4 4(1.386) + 4(1.386)= 11.090 −11.090k

Table 1: Boltzmann’s entropy: Illustration

Boltzmann also showed that it is possible to reformulate the idea of entropy using the concept of the
‘thermodynamic weight’ of a state:

S = k log W (3)

The thermodynamic weight W is the number of physically distinct microscopic states of the system consistent
with a given ‘macro’ state, described by temperature, pressure and volume. This concept is the key to
understanding the second law. Recall that the entropy of closed systems tends to increase, that is they move
into macro-states of progressively higher thermodynamic weight until they reach equilibrium. States with
higher weight are more probable. So the second law of thermodynamics basically says that systems evolve
into their most probable state.

A simple analogy may be helpful here. Suppose a ‘fair’ coin is flipped ten times. What is the most likely
ratio of heads to tails in the sequence of flips? The obvious answer, 5/5, is correct. Now, what is the most
likely specific sequence of heads and tails? Trick question! There are 210 = 1024 such sequences and they
are all equally likely. The sequence featuring 10 heads has probability 1

1024
; so does the sequence with 5

heads followed by 5 tails; so does the sequence of strictly alternating heads and tails, and so on. The reason
why a 5/5 ratio of heads to tails is most likely is that there are more specific sequences corresponding to this
ratio that there are sequences corresponding to 10/0, or 7/3, or any other ratio. It’s easy to see there is only
one sequence corresponding to all heads, and one corresponding to all tails. To count the sequences that
give a 5/5 ratio, imagine placing the 5 heads into 10 slots. Head number 1 can go into any of the ten slots;
head number 2 can go into any of the remaining 9 slots, and so on, giving 10 × 9 × 8 × 7 × 6 possibilities.
But this is an over-statement, because we have treated each head as if it were distinct and identifiable. To
get the right answer we have to divide by the number of ways 5 items can be assigned to 5 slots, namely
5 × 4 × 3 × 2 × 1. This gives 252 possibilities. Thus the ‘macro’ result, equal numbers of heads and tails,
corresponds to 252 out of the 1024 equally likely specific sequences, and has probability 252

1024
. By the same

reasoning we can figure that a 6/4 ratio corresponds to 210 possible sequences, a lower ‘weight’ than the 5/5
ratio.

The number of possible states of a real gas in six-dimensional phase space is hard to visualize, so to
explicate the matter further we’ll examine a simpler system, namely a two-dimensional lattice gas (Frisch et
al, 1986). The ‘molecules’ in such a stylized gas move with constant speed, one step along the lattice per
unit time (see Figure 8). Where the lines of the lattice meet, molecules can collide according to the rules of
Newtonian dynamics, so that matter, energy and momentum are conserved in each collision. The different
ways in which collisions occur can be summarized by two simple rules:

(1) If a molecule arrives at an intersection and no molecule is arriving on the diagonally opposite path,
then the molecule continues unimpeded.

(2) If two molecules collide head on they bounce off in opposite directions, as shown in Figure 9.

Lattice gases are a drastic simplification of real gases, but they are useful tools in analysing real situations.
The simple rules governing the behaviour of lattice gases make them ideal models for simulation in computer
software or special purpose hardware (Shaw et al, 1996).
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Figure 8: The molecules in a lattice gas move along the lines of a triangular grid with fixed velocities

T0 T1

Figure 9: Collisions in a lattice gas: ‘Molecules’ colliding head on bounce off at 60◦ angles (above). In other
cases the collision is indistinguishable from a miss (below). In all cases Newtonian momentum and energy
are conserved.

Since the velocity of the molecules in a lattice gas is fixed, the temperature of the gas can’t change (this
would involve a rise or fall in the molecules’ speed). So Maxwell’s original example of a being with precise
senses, able to sort molecules by speed, is inappropriate. But we can invent another demon to guard the
trapdoor. Instead of letting only fast molecules through from A to B, this being will keep the door open
unless a molecule approaches it from side B. Thus molecules approaching from side A are able to pass into
B, but those in B are trapped. The net effect is to raise the pressure on side B relative to A while leaving
temperature unchanged.

A lattice gas has only a finite number of lattice links on which molecules can be found, and since the
molecules move with a constant velocity, Boltzmann’s formula (3) simplifies to:

S = −kn
∑

i

pi log pi (4)

where pi is the probability of the node being in state i and n is the number of nodes. The weighted summation
over the possible states has the effect of giving us the mean value of log p. Suppose we have a very small
pair of chambers, A and B, each of which initially has n nodes, and each containing 3n randomly distributed
molecules. Then each of the six incoming paths to a node will have a 50 percent chance of having a molecule
on it. We have 6n incoming paths to our nodes, and each of these has two equally likely states: a particle
is or is not arriving at each instant. Each incoming path contributes k log 2 = 0.693k. The total entropy of
the chamber is then six time this or:

Entropy of A in equilibrium = 4.158kn.

Now suppose that our demon has been operating for some time, letting n particles pass from A to B, so that
A now contains 2n particles and B contains 4n particles. In A, the probability of a molecule coming down
any one of the paths is now only 1

3
. We can calculate the current entropy contribution of each incoming

path as follows:
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Number of probability, entropy,
particles pi log pi −kpi log pi

0 2

3
−0.405 0.27k

1 1

3
−1.098 0.366k

total 0.636k

The entropy of A after n particles have been transferred by the demon is 3.816kn which is less than
before he got to work. By symmetry of complementary probabilities the entropy of chamber B will be the
same,12 thus the whole closed system has undergone a reduction in entropy.

This establishes that when an initially dispersed population of particles—the gas molecules in our case—is
concentrated, entropy falls.13 This is because there are a greater number of possible microstates compatible
with dispersion than with concentration, and entropy is just the log of the number of microstates.

Consider in this light the work of the bees building their hive. There are two aspects to the work:

(1) The bees first have to gather wax and nectar from flowers dispersed over a wide area and bring it to
the hive.

(2) They must then form the wax into cells and place the concentrated nectar in these as honey.

Both processes are entropy-reducing with respect to the wax and the sugar. The number of possible con-
figurations that can be taken on by wax within the few litres volume of a hive is enormously less than the
number of possible configurations of the same wax, dispersed among plants growing over tens of thousands
of square meters of ground. Similarly the chance that the wax, if randomly thrown together within the hive,
should assume the beautifully regular structure of a comb, is vanishingly small. That the wax should be in
the hive in the first place, is, in the absence of bees, highly improbable; that it should be in the form of
regular hexagons even more so.

The second law of thermodynamics specifies that the total entropy in a closed system tends to increase,
but the bees and their wax are not a closed system. The bees consume chemical energy in food to move the
wax. If we include the entropy increase due to food consumed, the second law is preserved.

Men and horses

Let us return to the question we asked in section 0.1: Why did the introduction of the steam engine, which
made redundant the equine workers of the pre-industrial age, not also replace the human workers? We
can make a rough analogy between the work done by horses in past human economies and the work done
by the bees in transporting wax and nectar from flower to hive. This is in the main sheer effort, work in
Watt’s sense. Horses bringing bricks to a building site or bees transporting wax are doing similar tasks.
What remains, the construction of the hive after the work of transportation is done or the building of the
house once the bricks are delivered, is something no horse can do. Construction involves a complex program
of actions deploying grasping organs, hands, mandibles, beaks etc., in which the sequence of operations is
conditioned by the development of the product being made. Human construction differs from that of a bee
or a bird in:

(1) the way in which the program of action comes into being;

(2) the way in which it is transmitted between individuals of the species; and

(3) the form in which it is materialized.

In the social insects the programs of action largely come into being through the evolutionary process of
natural selection. They are transmitted between parents and their offspring genetically encoded in DNA,
and they are materialized in the form of relatively fixed interactions between components of the nervous
system and general physiology. In humans the programs of action are themselves products that can have a
representation external to the organism, in speech or some form of notation. Speech and notation act both
as a means of transmission between individuals, and as a possible form of materialization of work programs
while the work is being carried out—as for example, when one cooks from a recipe or follows a knitting

12This will not generally be the case; we have chosen the particle densities so as to ensure this.
13This is true on the assumption that the potential, gravitational or electrostatic, of the particles is unchanged by the process

of concentration as in our example.
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pattern. The ability to make and distribute new work programs distinguishes human labour from that of
bees and is the key to cultural evolution.

But even the work of transport requires a program of action, requires guidance if it is to reduce entropy.
Transport is not diffusion. It moves concentrated masses of material between particular locations, it does
not spread them about willy nilly. Without guidance there is no entropy reduction. A horse, blessed with
eyes and a brain as well as big muscles, will partially steer itself, or at least will do better than a bicycle or
car in this respect. But teams still needed teamsters, if only to read signposts.

The steam railway locomotive revolutionized land transport in the nineteenth century, quickly replacing
horse traction for long overland journeys. Guidance by steel track made steam power the great concentrator,
bringing grain across prairies to the metropolis. Railway networks are action programs frozen in steel, their
degrees of freedom discrete and finite, encoded in points. Point settings, signaled by telegraph, coordinate
the orderly movement of millions of tons according to precise published timetables. Human work did not all
lend itself so readily to mechanization.
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Chapter 1

Problematizing information

We have suggested that doing purposeful productive labour typically reduces entropy. Such entropy-reducing
work requires information in two forms, an action plan or capacity for behaviour, and information coming
in from the senses to monitor the implementation of the action plan. Productive labour also involves work
in Watt’s sense of overcoming physical resistance. As such it consumes energy and produces an entropy
increase in the environment that more than compensates for the entropy reduction effected in the object of
labour. We have also seen how Maxwell postulated that it should be possible to reduce the entropy of a gas
if there existed a being small enough to sort molecules. In this case the being would be using information
from its senses, and in its action plan, to produce an entropy reduction in the gas with no corresponding
increase elsewhere. Up to now we have not rigorously defined what we mean by information. Once this is
done, we shall see the deeply hidden flaw in Maxwell’s argument.

1.1 The Shannon–Weaver concept of information

The philosopher Gaston Bachelard argues that the formation of a science is characterized by what he calls
an ‘epistemological break’, which demarcates the language and ideas of the science from the pre-scientific
discourses that appeared to deal with the same subject matter. Appeared to deal with the same subject, but
did not really do so. For one of the characteristics of an epistemological break is a change in the problematic,
which means roughly, the set of questions to which the science provides answers. With the establishment of
a science the conceptual terrain shifts both in terms of the answers given and, more importantly, in terms
of the questions that researchers regard as relevant.

The epistemological break that established information theory as a science occurred in the middle of the
last century and is closely associated with the name of Claude Shannon. We saw how Watt, seeking to improve
the efficiency of steam pumps, contributed not only to an industrial revolution, but to a scientific revolution
when he asked questions about the relationship between work and heat. From this problematic were born
both a convenient source of power, and our understanding of the laws of thermodynamics. Shannon’s
revolution also came from asking new questions, and asking them in a very practical engineering context.
Shannon was a telephone engineer working for Bell Laboratories and he was concerned with determining the
capacity of a telephone or telegraph line to transmit information. Watt formalized the concepts of power
and work in an attempt to measure the efficiency of engines. Shannon formalized the concept of information
through trying to measure the efficiency of communications equipment. Practice and its problems lead to
some of the most interesting truths.

To measure the transmission of information over a telephone line, some definite unit of measurement is
needed, otherwise the capacity of lines of different quality cannot be meaningfully compared. According to
Shannon the information content of a message is a function of how surprised we are by it. The less probable
a message the more information it contains. Suppose that each morning the radio news told us “We are glad
to announce that the Prime Minister is fit and well.” We would soon get fed up. Who would call this news?
It conveys almost no information. “Reports are just reaching us of the assassination of the Prime Minister.”
That is news. That is information. That is surprising.

A daily bulletin telling us whether or not the Prime Minister was alive would usually tell us nothing,
then on one day only would give us some useful information. Leaving aside the circumstances of his death,
if an announcement were to be made each morning, there would two possible messages

0 ‘The P.M. lives’

21
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Binary Code Length Meaning Probability

0 1 False, False 4

9

10 2 False, True 2

9

110 3 True, False 2

9

111 3 True, True 1

9

Table 1.1: A possible code for transmitting messages that are true 1

3
of the time

1 ‘The P.M. is dead’

If such messages were being sent over the sort of telegraph system that Shannon was concerned with, one
could encode them as the presence or absence of a short electrical pulse, as a binary digit or ‘bit’ in the
widely understood sense of the word. Shannon defines a bit more formally as the amount of information
required for the receiver of the message to decide between two equally probable outcomes. For example, a
sequence of tosses of a fair coin can be encoded in 1 bit per toss, such that heads are 1 and tails 0.

What Shannon says is that if we are sending a stream of 0 or 1 messages affirming or denying some
proposition, then unless the truth and falsity of the proposition are equally likely these 0s and 1s contain less
than one bit of information each. In that case there will be a more economical way of sending the messages.
The trick is not to send a message of equal length regardless of its content, but to devise a system where the
more probable message-content gets a shorter code.

For example, suppose the messages are the answer to a question which we know a priori will be true one
time in every three messages. Since the two possibilities are not equally likely Shannon says there will be a
more efficient way of encoding the stream of messages than simply sending a 0 if the answer is false and a 1
if the answer is true. Consider the code shown in Table 1.1. Instead of sending each message individually we
package the messages into pairs, and use between one and three binary digits to encode the 4 possible pairs
of messages. Note that the shortest code goes to the most probable message, namely the sequence of two
‘False’ answers with probability 2

3
× 2

3
= 4

9
. The codes are set up in such a way that they can be uniquely

decoded at the receiving end. For instance, suppose the sequence ‘110100’ is received: checking the Table,
we can see that this can only be parsed as 110, 10, 0, or True, False, False, True, False, False.

To find the mean number of digits required to encode two messages we multiply the length of the codes
for the message-pairs by their respective probabilities:

4

9
+ 2 ×

2

9
+ 3×

2

9
+ 3 ×

1

9
= 1

8

9
≈ 1.889 (1.1)

which is less than two digits.
Shannon came up with a formula which gives the shortest possible encoding for a stream of distinct

messages, given the probabilities of their individual occurrences.

H = −

n
∑

i=1

pi log2 pi (1.2)

The mean information content of an ensemble of messages is obtained by weighting the log of the probability
of each message by the probability of that message. He showed that no encoding of messages in 1s and 0s
could be shorter than this. The formula gave him an irreducible minimum of the number of bits needed to
transmit a message stream: this minimum was, he said, the real information content of the stream. Using
Shannon’s formula we can calculate the information content of the data stream encoded in the example
above.

−
4

9
× log2

4

9
−

2

9
× log2

2

9
−

2

9
× log2

2

9
−

1

9
× log2

1

9
≈ 1.837 (1.3)

Since our code used 1 8

9
≈ 1.889 bits for each pair of messages, we see that in principle a better code may

exist.
In his 1948 article Shannon notes:

Quantities of the form H = −

∑

n

i=1
pi log pi play a central role in information theory as measures of

information, choice and uncertainty. The form of H will be recognized as that of entropy as defined
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in certain formulations of statistical mechanics where pi is the probability of a system being in cell i

of its phase space. H is then, for example the H in Boltzmann’s famous H theorem. We shall call
H = −

∑

pi log pi the entropy of the set of probabilities p1, ..., pn.

Shannon thus discovers that his measure of information is the same as Boltzmann’s measure of entropy
and decides that entropy and information are the same thing. Armed with this realization we can go back
to the problem left to us by Maxwell. Could a sufficiently tiny entity violate the laws of thermodynamics by
systematically sorting molecules?

Physicists have concluded that it is not possible. Leo Szilard, for example, pointed out that to decide
which molecules to let through, the demon must measure their speed. He showed that these measure-
ments (which would entail bouncing photons off the molecules) would use up more energy than was gained.
Maxwell’s demon, to vary the theological metaphor, was a deus ex machina (like Newton’s God), able to
know by immaterial means; Szilard’s advance was to emphasize that knowledge or information is physical
and can only come about by physical means. Leon Brillouin (1951) extended Szilard’s analysis by pointing
out that at a uniform temperature, black body radiation in the cavity would be uniform in all directions,
preventing the demon from seeing molecules unless he had an additional source of light (and hence energy
input).

It is possible, however, to build an automaton that acts as a Maxwell demon for a lattice gas. As we said
before such gases can be simulated in software, or in hardware (see Figure 1.1), with each gas cell represented
by a rectangular area of silicon and the paths taken by the molecules represented by wires. In such a system
the demon himself is an automaton, a logic circuit, as in Figure 1.2. A circuit like this really does work: it
transfers virtual gas molecules from chamber A to chamber B. Why does this work in apparent conflict with
the laws of thermodynamics?

gas cell gas cell gas cell

gas cell gas cell gas cell gas cell

gas cell gas cell gas cell

Figure 1.1: A lattice gas can be built in electronic hardware: each gas cell is represented by a rectangular
area of silicon and the paths taken by the molecules are represented by wires.

A
N

D

OR

particle arriving from B

particle arriving from A

particle entering A

particle entering B

Demon Cell

Chamber A Chamber B

Figure 1.2: In a lattice gas, Maxwell’s demon can be implemented with this logic circuit.

The behaviour of the demon is summarized in Table 1.2. Notice that while there are 4 possible combina-
tions of input conditions, there are only 3 combinations of output conditions. This implies that we are moving



24 Chapter 1. Problematizing information

input from output to Comment
A B A B

No No No No No molecules involved
No Yes No Yes Door shut, molecule bounces back to B
Yes No No Yes Molecule goes from A to B
Yes Yes Yes Yes Molecules bounce off one another

Table 1.2: The action plan of the demon

x y x AND y x OR y
false false false false
false true false true
true false false true
true true true true

Table 1.3: Tabulation of the functions x AND y, x OR y

from a system with a higher thermodynamic weight to one with a lower weight, which is what we would
expect for an entropy-reducing machine. Just how much it reduces entropy depends on the probabilities of
occurrence of incoming particles from each side.

Suppose that the system is in equilibrium and that the probability of occurrence of a particle on the
incoming paths on each side is 50 percent in each time interval. In that case each of the 4 possible input
configurations in Table 1.2 is equiprobable and has an entropy of 2 bits= log2 4. Applying Shannon’s formula
(1.2) to the output configurations we get

1

4
log2 4 +

1

2
log2 2

1

4
log2 4 =

1

4
× 2 +

1

2
× 1 +

1

4
× 2 = 1

1

2
(1.4)

an entropy reduction of half a bit per time step. The key to how this can happen lies in the nature of the
components used, logic gates for the functions AND and OR.

Rolf Landauer (1961) pointed out that any irreversible logic gate must destroy encoded information and
in the process must dissipate heat. An irreversible logic gate is one whose inputs can’t be determined from
an examination of their outputs. Consider gates with two inputs and one output, such as the AND and
OR gates whose truth functions are tabulated in Table 1.3. Roughly speaking they take two bits in and
generate one bit out, thus destroying information within the system defined by the lines connecting the gates.
Landauer argues that the lost information, i.e., the entropy reduction within the logic circuit, results in an
increase in the entropy of the environment. Each time a logic circuit of this type operates, the lost internal
entropy shows up as waste heat. By applying Shannon’s formula (1.2) to the output of the AND gate we
get the following:

Output pi −pi log2 pi

false 3

4
≈ 0.311

true 1

4
0.5

1 0.811

The output has an entropy of less than one bit. Given that 2 bits of information went into the gate, a total
of 1.189 bits are lost in processing the inputs. Since the probability structure of OR gates is the same, a
similar information loss occurs going through these.

Information engines as heat engines

Boltzmann’s constant (see equation 2) has the dimension joules per log-state degree Kelvin. Landauer saw
that one can use this constant to convert entropy in Shannon’s form, measured in log-states, to energy. The
equation he established is

e = ln(2)ktb (1.5)
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e represents the energy-equivalent, t is temperature in degrees Kelvin, b is the number of bits, and k is
Boltzmann’s constant, which has a value of about 1.38 × 10−23 joules per degree Kelvin. The remaining
term in the conversion is the natural log (ln) of 2, to get us from the natural logarithms used by Boltzmann
to the base-2 logarithms used in Shannon’s information theory.

Using Landauer’s equation we can calculate the heat energy, eAND, generated by a single operation of an
AND gate, in which 1.189 bits are lost:

eAND = 1.189 ln(2)kt

At room temperature, or roughly 300◦ Kelvin, this is 3.4× 10−21 joules each time the gate switches. This is
a very, very small quantity of energy which is at present mainly of theoretical interest. What it represents
is the theoretical minimal energy cost of operating a two-input irreversible logic gate.

Now look again at the demon cell in Figure 1.2, which has a pair of input logic gates. The process
of deciding whether to open or close the trapdoor must consume certain minimum Landauer-energy. The
energy consumed by the logical decision to open or close the barrier makes the demon ineffective as a power
source.

Watt started out investigating how to convert heat into work efficiently; he was concerned with mini-
mizing the heat wasted from his engines. Since Landauer we have known that information processing, too,
must dissipate heat, and that information processing engines are ultimately constrained by the same laws
of thermodynamics as steam engines. We can calculate the thermodynamic efficiency of an information
processing machine just as we calculate the efficiency of a steam engine. If a processor chip of the year 2000
had roughly 6 million gates and was clocked at 600Mhz, its dissipation of Landauer energy would then be
(600 × 106) × (6 × 106) × (3.4 × 10−21) = 16.3µw, or 16 millionths of a watt. This is insignificant relative
to the electrical power consumption of the chip, which would be of the order of 20 watts. It implies a
thermodynamic efficiency of only around 0.0001%. As a point of comparison, steam engines prior to Watt
had an efficiency of about 0.5%. The steam turbines in modern power stations convert around 40% of the
heat used into useful work. Two centuries of development raised the efficiency of steam power by a factor of
about 100.

In thermodynamic terms a Pentium processor looks pretty poor compared to an 18th century steam
engine: the steam engine was 500 times more efficient! But if compare a Pentium with the Manchester Mk1,
the first electronic stored program computer (Lavington, 1980), we get a different perspective. The Pentium
has at least a thousand times as many logic gates, has a switching speed a thousand times greater and
uses about one hundredth as much electrical power as the venerable valve-based Mk1. In terms of thermal
efficiency, this represents an improvement factor of 100,000,000 in fifty years. If improvements in heat engine
design from Watt to Parsons powered the first two industrial revolutions, the third has benefited from an
exponential growth in efficiency that was sixteen times as rapid.1

We know from Carnot’s theory that there is little further room for improvement in heat engines. Most
of the feasible gains in their efficiency came easily to pioneers like Watt and Trevithick. We’re now left with
marginal improvements, such as the ceramic rotor blades that allow turbine operating temperatures to creep
up. In the case of computers too, efficiency gains will eventually become harder to attain. There is still, to
quote Feynman, “plenty of room at the bottom”. That is, there is mileage yet in miniaturization. We have
room for about a million-fold improvement before computers get to where turbines now are. However, as we
take into account the growing speed and complexity of computers, the thermodynamic constraint on data
processing will come to be of significance. On the one hand, if the efficiency of switching devices continues to
grow at its current rate, they will be at close to 100% in about 30 years. On the other hand, as computers get
smaller and faster the job of getting rid of the Landauer-energy, thrown out as waste heat, will get harder.
In the 27 years following the invention of the microprocessor the number of gates per chip rose by a factor
of some 3000. Processor speeds increased about 600-fold over the same period. Table 1.4 projects this rate
of growth into the next century.

From being insignificant now, Landauer heat dissipation becomes prohibitive in about 30 years. A
microprocessor putting out several kilowatts, as much as several electric heaters, is not a practical proposition.
There is a time limit on the current exponential growth in computing power.

That is not to say that computer technology will stagnate in 40 years. Landauer’s equation (1.5) has
a free variable in temperature. If the computer is super-cooled, its heat dissipation falls. But once we’re

1Heat engine efficiency improved about ten-fold per century. Information engines have been improving at a factor of about
1016 per century.
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year gates clockspeed landauer watts

2000 8 × 106 600Mhz 16.3µw
2005 3.4 × 107 1.9Ghz 230µw
2010 1.5 × 108 6.4Ghz 3.24mw
2015 6.4 × 108 21Ghz 45.7mw
2020 2.8 × 109 68Ghz 643mw
2025 1.2 × 1010 224Ghz 9.06w
2030 5.1 × 1010 733Ghz 128w
2035 2.2 × 1011 2.4Thz 1.80Kw
2040 9.5 × 1011 7.8Thz 25.4Kw

Table 1.4: Projected Landauer heat dissipation in 21st century computers operating at 300◦ Kelvin.

in that game the rate of improvement in computer performance comes to be limited by improvements in
refrigeration technology, and these are unlikely to be so dramatic.

1.2 Entropy reductions in action programs

Maxwell’s demon cannot exist for real gases, but it can for lattice gases. If the demon really existed, he would
reduce the laws of thermodynamics to the status of an anthropocentric projection onto reality. Lattice-gas
devils, on the other hand, are not a threat to physics. They reduce the entropy of the gas, but only because
they use logic gates with an external source of power. Nonetheless, their structure suggests something
important. The demon reduces the entropy of the gas thanks to an action program which has four possible
input states and only three possible output states.

We would suggest that this is not accidental: it would seem that all production processes that produce

local reductions in entropy are guided by an entropy-reducing action program. Consider the bee once again,
this time in its capacity as forager. In Maxwell’s original proposal, the demon used its refined perception
to extract energy from chaos. In reality a bee uses its eyes to enable it to extract energy from flowers.
Were bees unable to see or smell flowers, their energy would be expended in aimless wandering followed by
starvation. The bee uses information from its senses to achieve what, from its local viewpoint, is a reduction
in entropy—the maintenance of homeostasis—albeit at a cost to the rest of the universe. To achieve this
it requires a nervous system that performs entropy reduction on the input data coming into its visual
receptors. At any given instant the bee’s compound eyes are receiving stimuli from the environment. The
number of possible different combinations of such stimuli is vastly greater than the number of instantaneous
behavioural responses that it has while in flight—the modulation of the beat strength of a small number of
thoracic muscles. In selecting one appropriate behavioural response out of a small repertoire, in response to
a relatively large quantity of information arriving at its eyes, the bee’s nervous system functions in the same
sort of way as the AND gate in the demon-automaton of Figure 1.2. Having fewer possible outputs than
inputs, it discards information and reduces entropy.

1.3 Alternative views of information

We have come across two approaches to the idea of entropy so far, deriving from classical thermodynamics
and Shannon’s communication theory respectively. From the 1960s onwards a third version has developed:
that of computational complexity. Where classical concepts of entropy derived from mechanical engineering,
and Shannon’s concept from telecommunications engineering, the latest comes from computer science. The
key concepts appear to have been independently developed by Chaitin in the US and Kolmogorov in Russia.
Their presentation, while not contradicting what Shannon taught, gives new insights that are particularly
helpful when we come to consider the role that information flows play in mass production industries.

The Chaitin–Kolmogorov concept of information

Chaitin’s algorithmic information theory defines the information content of a number to be the length of the
shortest computer program capable of generating it. This introduction of numbers is a slight shift of terrain.
Shannon talked about the information content of messages. Whereas numbers as such are not messages, all
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Figure 1.3: The Mandelbrot set, a complex image generated from a tiny amount of information.

coded messages are numbers. Consider an electronically transmitted message. It will typically be sent as a
series of bits, ones and zeros, which can be considered as a binary number. An information theory defined in
terms of numbers no longer needs the support of a priori probabilities. Whereas Shannon’s theory depended
upon the a priori probability of messages, Chaitin dispenses with this support.

As an example of the algorithmic approach consider the Mandelbrot set picture in Figure 1.3. This image
is created by a very simple computer program.2 Although the image file for the picture is large, about 6
million bits, a program to generate it can be written in a few thousand bits. If one wanted to send the picture
to someone who had a computer, it would take fewer bits to send the program than to send the picture itself.
This only works if both sender and receiver have computers capable of understanding the same program.
Chaitin’s definition of information has the disadvantage of seeming to make it dependent upon particular
brand of computer used. One could not assume that the length of a program to generate the picture would
be the same on an Apple as on an IBM.

In principle one could chose any particular computer and fix on it as the standard of measure. Alter-
natively one could use an abstract computer, much as Watt used an abstract horse. Chaitin follows Watt,
using a gedankenapparat, the Universal Turing Machine, as his canonical computer. Thus he defines the
information content of a sequence S as the shortest Turing machine tape that would cause the machine to
halt with the sequence S on its output tape.3

Randomness and pi

An unsettling result from information theory is that random sequences of digits contain more information
than anything else. According to common sense, information is the very opposite of randomness. We feel
that information should be associated with order, but Shannon’s identification of information and entropy
amounts to equating information with disorder. To illustrate this let’s compare a long random number with

2In fact it uses the formula z = z
2 + c where z is a complex number.

3There is, in principle, no algorithm for determining the shortest Turing Machine tape for a sequence. 3 ÷ 7 is a rule
of arithmetic, an algorithm that generates the sequence 0.428571428571. So this sequence is presumably less random than
0.328571428771 (we changed two digits). But we can never be sure. This is a consequence of Gödel’s theorem, which showed
we cannot prove completeness of a consistent set of arithmetic axioms. There will be true statements that cannot be proven.
If there existed a general procedure to derive the minimal Turing machine program for any sequence, then we would have a
procedure to derive any true proposition from a smaller set of axioms, contra Gödel.
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π. We know from Shannon that 1 million tosses of a fair coin generates 1 million bits of information. On
the other hand, from Chaitin we know that π to a precision of a million bits contains much less than 1
million bits, since the program to compute π can be encoded using much fewer bits. Thus π must contain
less information than a random sequence of the same length.

But what do we mean by random? And how can we tell if a number is random? The answer now
generally accepted was provided by Andrei Kolmogorov, who defined a random number as a number for

which there exists no formula shorter than itself. By Chaitin’s definition of information a random number is
thus incompressible: a random number of n bits must contain n bits of real information.

A fully compressed data sequence is indistinguishable from a random sequence of 0s and 1s. This not
only follows directly from Kolmogorov and Chaitin’s results but also from Shannon, from whom we have the
result that for each bit of the stream to have maximal information it must mimic the tossing of a fair coin:
be unpredictable, random.

We have a paradox: one million digits of π are more valuable and more useful than one million random
bits. But they contain less information. They are more valuable because they are harder to come by. They
are more useful because a host of other formulae use π. They contain less information because each and
every digit of π was determined, before we started calculating it, by π’s formula. Thus in a sense the entire
expansion of π is redundant if we have its formula. Valuable objects are generally redundant. We thus have
three concepts that we must distinguish with respect to sequences: their information content, their value,
and their utility.

Concept Meaning

Information Length of program to compute the sequence.
Value Cycles it takes to compute the sequence.
Utility The uses to which the sequence can be put.

The value of a sequence is measured by how hard we must work to get it. π is valuable because it is so
costly to calculate. We can measure the cost by the number of machine cycles a computer would have to
go through to generate it.4 As with information content, this definition is dependent upon what we take as
our standard computer. A more advanced computer can perform a given calculation in fewer clock cycles
than a more primitive one. For theoretical purposes any Universal computer will do. Information theorists
typically use machine cycles of the Universal Turing Machine (UTM) for their standard of work. We will
follow them in defining the information content of a sequence in terms of the length of the UTM program
that generates it, and the value of a sequence in terms of the UTM cycles to compute it.

Now the UTM is an imaginary machine, a thought experiment, living in the platonist ideal world of
the mathematician. Its toils are imaginary, consuming neither seconds nor ergs; its effort is measured in
abstract cycles. But any physical computer existing in our material world runs in real time, and needs a
power supply. Valuable numbers—tomorrow’s temperature for example—whose computation requires large
number of cycles on the Met Office super computers, take real time and energy to produce. The time depends
on clock speed, and the energy depends on the computer’s thermodynamic efficiency.5 If we abstract from
changes in computer technology, information value in UTM cycles is an indication of the thermodynamic
cost of producing information. It measures how much the entropy of the rest of the universe must rise to
produce the information.6

Having traced the conceptual thread of entropy from Boltzmann through Shannon to Chaitin, it is worth
taking stock and asking ourselves if Chaitin’s definition of entropy still makes sense in terms of Boltzmann’s
definition. To do this we need to move from numbers to their physical representation. A material system
can represent a range of numbers if it has sufficient well-defined states to encode the range. Will a physical
system in a state whose number has, according to Chaitin, a low entropy, have a low entropy according to
classical statistical mechanics?7

What we will give is not a proof, but at least a plausible argument that this will be true. As a gedanken

experiment we will consider a picture of the Mandelbrot set rendered on digital paper. Digital paper is a

4We are identifying the value of a sequence with what Bennett calls its logical depth. The homology with Adam Smith’s
definition of value should be evident.

5The UTM plays, for computational complexity theory, the role of Marx’s “labour of average skill and intensity” in the
economic theory of value. Improvements in computer technology are analogous to changes in the skill of the worker.

6This is what Norretranders calls exformation.
7We need this step if we are to apply Chaitin’s theory to labour processes that produce real physical commodities. We need

an epicurean not a platonist theory.
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low entropy

higher entropy

Figure 1.4: Configurations of parallel poles are unstable and tend to evolve towards the anti-parallel config-
uration.

proposed display medium made of thin films of white plastic. In the upper layer of the plastic there is a mass
of small bubbles of oil, in the middle of each of which floats a tiny ball. One side of the ball is white and the
other black. Embedded within the ball is a magnetized ferrite crystal with its North pole pointing towards
the black end.8 If the paper is embedded in an appropriate magnetic field all of the balls can be forced to
rotate to have their white half uppermost, making the paper appear white. Applying a South magnetic pole
to a spot on the paper will leave a black mark where the balls have rotated to expose their dark half. When
it is passed through an appropriate magnetic printer, patterns can be drawn. A sheet of digital paper with
a Mandelbrot set image on it nicely straddles the boundary between an industrial product and a number or
information structure.

According to algorithmic information theory, the Mandelbrot set image represents a relatively low entropy
state, since the length of the program to compute it contains fewer bits than the image. Does it also represent
a low entropy state in statistical mechanics?

The second law of thermodynamics states that the entropy of a closed system is non-decreasing. So we
would expect that a picture of the Mandelbrot state drawn on digital paper would tend to change into some
other picture whose state would represent a higher entropy level. In fact there are good physical reasons
why this will take place. If a local area is all white or all black, the magnetic poles are aligned as shown in
the top of Figure 1.4. In this configuration the like poles tend to repel one another, and over time some of
the poles will tend to flip to the configuration shown in the bottom half of the diagram.

The rate at which this occurs depends upon the temperature, the viscosity of the fluid in which the balls
are suspended, and so on, but in the long run entropy will take hold. The image will gradually degrade to
a higher entropy state, both in thermodynamic terms and in algorithmic terms. The program necessary to
produce the degraded picture is bound to be longer than the program that produced the pristine one. Hence
thermodynamic and algorithmic entropy measure the same scale.

The example we have given is stylized but the thermodynamic degradation of digital information is not
hypothetical. Magnetic tape libraries have a finite life because of just this sort of flipping of the magnetized
domains on which the information is stored.

1.4 Randomness and compressibility

You may find at this point that reason in you rebels at the idea that information content and randomness are
equivalent. But this is what information theory teaches us, so it is worth considering and trying to resolve
several apparent paradoxes that arise from information theory.

Kolmogorov identifies the randomness of a number with its incompressibility (via his “no shorter formula”
proposition). There seems to be a contradiction—or at least a strong tension—between this conception of
randomness as a property of a number and the “ordinary” conception of randomness as a property of a
mechanism for generating numbers. (As in the statisticians’ talk of a “random variable” as a variable whose
values are determined by the outcome of a “random experiment”.)

Random numbers contain non-random ones

To expose the tension, consider a random number generator (RNG). Suppose it’s a true quantum RNG, set
to produce a series of uniformly distributed ten-digit numbers. The standard definition of randomness would
be that every ten-digit number is produced with equal probability (and the drawings are independent, so the

8We are giving a somewhat stylized account of digital paper for the purposes of this argument.
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equal probability condition holds not only in terms of marginal probability but regardless of conditioning
information). Thus if we leave our RNG running for a while, it’s bound to produce numbers such as
1111111111 and 0123456789. But these are not “random numbers” on the Kolmogorov definition. The
paradox is then that the output of a random number generator (i.e. a device that generates numbers at
random) is bound to include nonrandom numbers.

In these examples we have non-random sub-sequences of the output of the RNG. This is not a valid
objection, as we have to take the entire output of the RNG up to some large number of digits, in order
to obtain these sub sequences that appear non-random. So these short subsequences are not produced by
the random number generator, but, strictly speaking, by a Turing machine program that is a prefix to
the random number generator, and which searches for patterns like 1111111111111 in the output of the
RNG. The Algorithmic Information Theory approach to this would be to add the information content of the
program which generated the sequence to the program which selected for the “non-random” sub sequences.

Randomness of a number as opposed to of a generator.

In standard statistical parlance it doesn’t really make sense to talk of a random number as such, as opposed to
a random variable or a random number generator (where the adjective “random” attaches to the generator,
i.e. it’s a random generator of numbers rather than a generator of random numbers). Kolmogorov defines
“random number”, in a way that seems to conflict with the standard view.

But this is just a divergence between what we commonly understand as a number in statistics and how
a number is defined in computational complexity theory. By number the Algorithmic Information Theory
just means a sequence of digits. Since any sub-sequence of digits is also a number, formalisations in terms
of numbers also provide for formalisation in terms of finite sequences of numbers. Thus a sufficiently large
number can be treated as a generator of smaller numbers.

1.5 Information and randomness

To get at the second paradox we will report a little experiment. We have an ASCII file of the first eleven
chapters of Ricardo’s Principles : it’s 262899 bytes. We ran the bzip2 compressor on it and the resulting
file was 61193 bytes, a bit less than quarter of the size. Suppose for the sake of argument that bzip29 is
a perfect byte-stream compressor: in that case the 61193 bytes represent the incompressible content of the
Ricardo chapters. They measure the true information content of the larger file, which contains a good deal
of redundancy. That idea seems fair enough.

The second part of the experiment was to generate another file of 262899 bytes of printable ASCII
characters (the same length as Ricardo), this time using a random number generator10, and running bzip2
on the resulting file produced a compression to slightly over 80 percent of the original size.

The first question is why we get any compression at all on the “random” ASCII files?
Our bytes are printable characters. These are drawn from a subset of the possible byte values11, and as

such all, the possible byte values are not equiprobable. Thus the stream is compressible.
The next question concerns the information content of the various files. Suppose we have already accepted

the idea that the 61193 bytes of bzipped Ricardo represent the irreducible information content of the original
Ricardo file. Then by the same token it seems the 218200 (or so) bytes of bzipped rubbish from the random
number generator represent the true information content of the (pseudo-)random byte stream. The rubbish
contains almost four times as much information as the Ricardo. This is very hard to swallow.

The point here is that standard data compression programs use certain fixed algorithms to compress
files. In this case an algorithm known as Lempel-Ziv12 is used. Lempel-Ziv does not know how to obtain
the maximum compression of the stream—which would be an encoding of the random number generating
program. One can not make a general purpose compressor that will obtain the maximum possible compression
of a stream. One can only produce programs that do a good job on a large variety of cases.

We make the distinction between information as such and utility, and in those terms it’s clear that the
Ricardo is of much greater utility than the rubbish. Even so, intuition rebels at the idea that the rubbish
carries any information. We have a conception of “useless information” alright, but it seems doubtful that a
random byte stream satisfies the ordinary definition of useless information. In ordinary language information

9A publicly available data compression program.
10the rand() function in the GNU C library
11There are 256= 28 possible values for 8 bit bytes.
12Ziv 78.
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has to be about something; and it’s useless if it’s about something that is of no interest. For me, the weekly
guide to Cable TV programming may contain useless information. It’s of no more interest to me than a
random byte stream. Nonetheless, I recognize that it does contain (quite a lot of) information; it is certainly
about something.

In classical political economy use-value is neither the measure nor the determinant of value, but nonethe-
less it’s a necessary condition of value. If a product has no use-value for anyone then it has no value either,
regardless of how much labour time was required for its production. Can we say that the utility of a message
is not the measure of its information content, but if a “message” is of no potential use to anyone (is not
about anything) then it carries no information, regardless of its incompressible length?

No. Information exists even if it is not useful. Take the case of hieroglyphs prior to the discovery of
the Rosetta stone.13 They were meaningless until that was discovered, useless in other words. Once it was
discovered they became useful historical documents. Their information content was not created ex-nihilo

by Champollion, but must have been there all along. Similarly, the works of Ricardo in Chinese contain no
information to me, are of no use to me, but they still contain information.

In the end, whether information is useful to us concerns our selfish thermodynamic concerns. Does it
enable us to change the world in a way that saves us work or produces us energy. This is an anthropospective
projection. It is not a property of the information it is a property of the user of the information, which is
cast back onto the information itself. Information theory in its epistemological break, had to divest itself of
anthropospective views, just as astronomy and biology had to.

The “digital paper” example suggests one further paradox on the issue here. Let’s go back to the ASCII
Ricardo. Its incompressible length was (according to bzip2) 61193 bytes. Now suppose the hard drive is
exposed to radiation that results in random bit-flipping, which changes some of the bytes in the Ricardo file.
At some later point we try compressing the file again. We find that it won’t compress as well as before. Its
information content has increased due to the random mutation of bytes! Meanwhile, of course, its value as
representation of what Ricardo said is eroding. Is it possible to make any sense of this?

Yes. The degraded work contains more information since to reconstruct it one would need to know the
trajectories of the cosmic rays which degraded the stored copy, plus the original copy. We may not be
interested in the paths of these cosmic rays,14 but it is additional information, provided to us courtesy of
the Second Law.
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