Useful x86_64 instructions

This is a very small subset of the available in-
structions but should be enough for your pur-
POSES.

General-Purpose 64-Bit Media and 1

Registers (GPRs) Floating-Point Registers
RAX MMX0/FPRO
RBX MMX1/FPRI
RCX MMX2/FPR2
RDX MMX3/FPR3
RBP MMX4/FPR4
RS MMX5/FPRS
RDI MMX6/FPR6
RSP MMX7/FPR7
R8 &3 i
R9
R10 Flags Register
M o Jeracs] reuacs
R12
RI3 63 H
R14 Instruction Pointer
R15 EIP RIP
63 H 63 0 127
|:| Legacy xBE registers, supported i all mades Application-programmung regesters also induc
128-bit media control-and-status register and
|:| Register extensions, supparted in 64-bit mode %87 tag-word, controt-word, and status-word o

Figure 1-1. Application-Programming Reg

Data movement

mov mem, reg/lit

example

mov 12(%rbp) ,%rax
movd $12, 4(Yrsi)

means

store the right operand in the memory location
on the left

if the length of the value being moved is am-
biguous the mov instruction must be converted
to movb, movw, movd, movl etc.

mov mem/reg/lit,reg

example

mov 1,%ebx
mov O(Y%rsi,’%rbp), %r9

mov Y,eax,ebx

means

load the left operand into the register on the
right

Floating point

The AMDG64 architecture provides three floating-
point instruction subsets, using three distinct
register sets:

e 128-Bit Media Instructions support 32-Dbit
single-precision and 64-bit double-precision
floating- point operations, in addition to
integer operations. Operations on both
vector data and scalar data are supported,
with a dedicated floating-point exception-
reporting mechanism. These floating- point
operations comply with the IEEE-754 stan-
dard.

e 64-Bit Media Instructions (the subset of
3DNow! technology instructions) support
single- precision floating-point operations.
Operations on both vector data and scalar
data are supported, but these instructions
do not support floating-point exception re-
porting.

e X87 Floating-Point Instructions support single-
precision, double-precision, and 80-bit extended-
precision floating-point operations. Only
scalar data are supported, with a dedicated
floating-point exception-reporting mecha-
nism. The x87 floating-point instructions
contain special instructions for performing
trigonometric and logarithmic transcenden-
tal operations. The single-precision and
double-precision floating-point operations
comply with the IEEE-754 standard.

Maximum floating-point performance can be
achieved using the 128-bit media instructions.
One of these vector instructions can support

up to four single-precision (or two double-precision)
operations in parallel.

movss mem, reg

example

movss 12(%rbp) ,%xmmO

means

store the left operand in right. The right operand
IS the bottom 32 bits of an xmm register.

movss reg, mem/reg

example

movss J/xmml,0(Y%rsi,’%rbx)

movss 7xmml,xxm2

means

load the left operand into the right, the left
operand is the lower 32 bits of a xmm register
and the data should be a 32 bit float

movups mem, regd

example

movss 12(%rbp) , %xmmO

means

copy the leftt operand to the right operatnd.
The right operand is a 128 bit xmm register.

MOVSS reg, mem

example

movups /%xmml,0(%rsi,’%rdi)

means

store the leftt operand in the register in the
rightt, the left operand is a 128 bit xmm reg-
ister

push mem/reg/lit

example

pushq $10
pushq 40 (%rsi)

push ’rcx

means

push the operand on stack, pre-decrementing
the esp register by 8

10

pop mem/reg

example

popq 32(Yrsi)
pop Arcx

means

the operand is assigned the value on the top
of stack and the stack pointer is then incre-
mented by 8

11

fld<len> mem

example

flds 40(%rsi)

means

the operand which is pushed on the fpu stack
<len> takes on the value s for single precision
and 1 for double precision, the number must
be in 32 bit or 64 bit floating point

12

fild mem

example

fild 40(%rsi)

means

the 32bit integer operand is pushed on the fpu
stack as a floating point number

13

fstp<len> mem

example

fstps 40(%rsi)

means

the operand is assignhed the 32bit floating point
value on the fpu stack the fpu stack is then

popped

14

fistp<len> mem

example

fistpd 40(%rsi)

means

the 32bit floating point value on the fpu stack
IS converted to an integer and stored in the
operand, the fpu stack is then popped.

15

Arithmetic

Integer arithmetic instructions can be divided
into 3 classes

1. Add, subtract, and, or, xor. T hese are treated
absolutely regularly as two operand instruc-
tions as shown below in section .

2. Multiply, this comesin both 2 and 3 operand
forms.

3. Divide and Modulus, these are irregular and
make use of specific registers

16

Regular integer arithmetic

These take the form

operation src,dest

and mean dest:= dest operation src

the following operation codes are allowed

add, sub, and, or, xor

17

The table shows the allowed combinations of
destination and source

Operand combinations for regular arithmetic

dest Src

register | register
register | constant

register | memory

memory | register

memory | constant

Examples

add $5,%rsp

sub %eax, %ebx
and 12(Y%rax),%rdi
addq $1,0(%rsi)
add %esi,0(%rdi)

18

Multiply
imul reg/mem,reg

This is functionally the same as the regular 2
operand integer arithmetic instructions.

Example

imuld 26 (%rbp),%rdx
rdx * mem(26+rbp) —rdx

imul const,reg,reg

This three operand form is particularly useful
for computing array offsets.

Example

imul $16,%rbx,%rax

16 * rbx —rax

19

Divide/modulus

A single instruction is used for both division
and modulus.

idiv reg

The 128 bit value in rdx:rax is divided by the
operand, the quotient is placed in rax, and the
remainder is placed in rdx.

Example

idiv Y%ri1l

20

Floating point arithmetic

The floating point stack can be used to per-
form arithmetic in a postfix manner. The fol-
lowing fpu opcodes operate on the top two
items on the fpu stack:

faddp st1
fsubp stl
fdivp stil
fmulp sti

These perfrom an operation between the top
of the fpu stack (st0) and stl1, store the result
in stl, then pop the stack so that stl becomes
the new top of stack. Bear in mind that the
maximum depth of the fpu stack is 8. Opera-
tions are performed using 80bit internal float-
ing point representation.

21

Vector arithmetic

It is possible to perform parallel operations on
vectors of 32 bit floats using the xmm regis-
ters. These instructions have the general for-
mat

operationPS xmmreg,xmmreg

For example

mulps %xmm5,%xmmO

the suffix PS stands for Packed Single precison
floats. In this case the 4 floats in XxmmO are
multiplied by the corresponding floats in xmm5
and the result stored in xmmO.

22

The other useful vector arithmetic instructions
in this context are:

addps, subps, divps

These instructions also exist in a memory to
register form but for these to be used you have
to guarantee that the operands are aligned on
16 byte memory boundaries. Since this is com-
plicated to ensure, I suggest that you restrict
yourself to the register to register forms of
these instructions.

23

Scalar arithmetic

It is also possible to perform scalar arithmetic
in the low order 32 bit words of the xmm regis-
ters. For instance, you can do all of the vector
operations by using the subscript SS standing
for Scalar Single precision after the operation
thus:

addss %xmmO, %xmm2

would add the bottom 32 bit float in xmmO to
the bottom float in xmm2 and leave the result
in xmm?2.

24

Conversion instructions

operation dest Src

cvtsi2ss Xmm register | general register

cvtss2si | general register | xmm register

If you are going to use these scalar instruc-
tions it is worth taking note of the conversion
instructions cvtsi2ss and cvtss2si which con-
vert signed doubleword integers to single pre-
cision floats and vice versa.

Examples

cvtss2si Yxmm4, Jebx

cvtsi2ss Yeax,xmm3

25

Integer comparisons

Comparison instructions exist which will place
the results of comparison in the flags. The cmp
instruction compares two integers.

Examples

cmp 12,%rax

cmp %rax, ArcCX

26

Set

The result of the comparison is written to the
flags and can be used either by a SET instruc-
tion or by a conditional jump instruction.

For instance to test if the eax register was less
then 10 we could write

cmp %4rbx,%rax
setl %al #al:= rax< rbx

At the end of this the al register will contain
a boolean value of 1 if rax had been less than
rbx and O if it had been greater than rbx. The
suffixes used by the SET instruction indicate
which comparison is being tested. The suffixes
that are most likely to be of use to you are L,
G and E standing for Less than, Greater than,
and Equal.

27

Branches

Branches can be unconditional and direct:

jmp lab

or uncoditional and indirect:

jmp dword[ebp+10]

or conditional on a condition code and direct:

jl labl
jg lab3
je lab4d

Calls

Calls can be direct:

call lab

or indirect:

call 10(%rbp)

in either case the current value of the rip reg-
ister is pushed on the stack and the rip reg-
ister loaded from the operand. Returns are
perfomed using the ret instruction which pops
the top of stack into the rip register.

28

