
Useful x86 64 instrutionsThis is a very small subset of the available in-strutions but should be enough for your pur-poses.

Data movementmov mem, reg/litexample
mov 12(%rbp),%raxmovd $12, 4(%rsi)

meansstore the right operand in the memory loationon the leftif the length of the value being moved is am-biguous the mov instrution must be onvertedto movb, movw, movd, movl et.
1

mov mem/reg/lit,regexample
mov 1,%ebxmov 0(%rsi,%rbp), %r9mov %eax,%ebx

meansload the left operand into the register on theright
2

Floating pointThe AMD64 arhiteture provides three �oating-point instrution subsets, using three distintregister sets:
• 128-Bit Media Instrutions support 32-bitsingle-preision and 64-bit double-preision�oating- point operations, in addition tointeger operations. Operations on bothvetor data and salar data are supported,with a dediated �oating-point exeption-reporting mehanism. These �oating- pointoperations omply with the IEEE-754 stan-dard.

3

• 64-Bit Media Instrutions (the subset of3DNow! tehnology instrutions) supportsingle- preision �oating-point operations.Operations on both vetor data and salardata are supported, but these instrutionsdo not support �oating-point exeption re-porting.

4

• x87 Floating-Point Instrutions support single-preision, double-preision, and 80-bit extended-preision �oating-point operations. Onlysalar data are supported, with a dediated�oating-point exeption-reporting meha-nism. The x87 �oating-point instrutionsontain speial instrutions for performingtrigonometri and logarithmi transenden-tal operations. The single-preision anddouble-preision �oating-point operationsomply with the IEEE-754 standard.
Maximum �oating-point performane an beahieved using the 128-bit media instrutions.One of these vetor instrutions an supportup to four single-preision (or two double-preision)operations in parallel.

5

movss mem, regexample
movss 12(%rbp),%xmm0

meansstore the left operand in right. The right operandis the bottom 32 bits of an xmm register.
6

movss reg, mem/regexample
movss %xmm1,0(%rsi,%rbx)movss %xmm1,xxm2

meansload the left operand into the right, the leftoperand is the lower 32 bits of a xmm registerand the data should be a 32 bit �oat
7

movups mem, regexample
movss 12(%rbp),%xmm0

meansopy the leftt operand to the right operatnd.The right operand is a 128 bit xmm register.
8

movss reg, memexample
movups %xmm1,0(%rsi,%rdi)

meansstore the leftt operand in the register in therightt, the left operand is a 128 bit xmm reg-ister
9

push mem/reg/litexample
pushq $10pushq 40(%rsi)push %rx

meanspush the operand on stak, pre-derementingthe esp register by 8
10

pop mem/regexample
popq 32(%rsi)pop %rx

meansthe operand is assigned the value on the topof stak and the stak pointer is then inre-mented by 8
11

�d<len> memexample
flds 40(%rsi)

meansthe operand whih is pushed on the fpu stak<len> takes on the value s for single preisionand l for double preision, the number mustbe in 32 bit or 64 bit �oating point
12

�ld memexample
fild 40(%rsi)

meansthe 32bit integer operand is pushed on the fpustak as a �oating point number

13

fstp<len> memexample
fstps 40(%rsi)

meansthe operand is assigned the 32bit �oating pointvalue on the fpu stak the fpu stak is thenpopped
14

�stp<len> memexample
fistpd 40(%rsi)

meansthe 32bit �oating point value on the fpu stakis onverted to an integer and stored in theoperand, the fpu stak is then popped.
15

ArithmetiInteger arithmeti instrutions an be dividedinto 3 lasses
1. Add, subtrat, and, or, xor.These are treatedabsolutely regularly as two operand instru-tions as shown below in setion .
2. Multiply, this omes in both 2 and 3 operandforms.
3. Divide and Modulus, these are irregular andmake use of spei� registers

16

Regular integer arithmetiThese take the formoperation sr,destand mean dest:= dest operation srthe following operation odes are allowed
add, sub, and, or, xor

17

The table shows the allowed ombinations ofdestination and soureOperand ombinations for regular arithmetidest srregister registerregister onstantregister memorymemory registermemory onstantExamples
add $5,%rspsub %eax, %ebxand 12(%rax),%rdiaddq $1,0(%rsi)add %esi,0(%rdi)

18

Multiplyimul reg/mem,regThis is funtionally the same as the regular 2operand integer arithmeti instrutions.Example
imuld 26(%rbp),%rdxrdx * mem(26+rbp) →rdx

imul onst,reg,regThis three operand form is partiularly usefulfor omputing array o�sets.Example
imul $16,%rbx,%rax16 * rbx →rax 19

Divide/modulusA single instrution is used for both divisionand modulus.idiv regThe 128 bit value in rdx:rax is divided by theoperand, the quotient is plaed in rax, and theremainder is plaed in rdx.Example
idiv %r11

20

Floating point arithmetiThe �oating point stak an be used to per-form arithmeti in a post�x manner. The fol-lowing fpu opodes operate on the top twoitems on the fpu stak:
faddp st1fsubp st1fdivp st1fmulp st1

These perfrom an operation between the topof the fpu stak (st0) and st1, store the resultin st1, then pop the stak so that st1 beomesthe new top of stak. Bear in mind that themaximum depth of the fpu stak is 8. Opera-tions are performed using 80bit internal �oat-ing point representation. 21

Vetor arithmetiIt is possible to perform parallel operations onvetors of 32 bit �oats using the xmm regis-ters. These instrutions have the general for-matoperationPS xmmreg,xmmregFor example
mulps %xmm5,%xmm0

the su�x PS stands for Paked Single preison�oats. In this ase the 4 �oats in xmm0 aremultiplied by the orresponding �oats in xmm5and the result stored in xmm0.
22

The other useful vetor arithmeti instrutionsin this ontext are:
addps, subps, divps

These instrutions also exist in a memory toregister form but for these to be used you haveto guarantee that the operands are aligned on16 byte memory boundaries. Sine this is om-pliated to ensure, I suggest that you restrityourself to the register to register forms ofthese instrutions.
23

Salar arithmetiIt is also possible to perform salar arithmetiin the low order 32 bit words of the xmm regis-ters. For instane, you an do all of the vetoroperations by using the subsript SS standingfor Salar Single preision after the operationthus:
addss %xmm0,%xmm2

would add the bottom 32 bit �oat in xmm0 tothe bottom �oat in xmm2 and leave the resultin xmm2.
24

Conversion instrutionsoperation dest srvtsi2ss xmm register general registervtss2si general register xmm registerIf you are going to use these salar instru-tions it is worth taking note of the onversioninstrutions vtsi2ss and vtss2si whih on-vert signed doubleword integers to single pre-ision �oats and vie versa.Examples
vtss2si %xmm4, %ebxvtsi2ss %eax,%xmm3

25

Integer omparisonsComparison instrutions exist whih will plaethe results of omparison in the �ags. The mpinstrution ompares two integers.Examples
mp 12,%raxmp %rax, %rx

26

SetThe result of the omparison is written to the�ags and an be used either by a SET instru-tion or by a onditional jump instrution.For instane to test if the eax register was lessthen 10 we ould write
mp %rbx,%raxsetl %al #al:= rax< rbx

At the end of this the al register will ontaina boolean value of 1 if rax had been less thanrbx and 0 if it had been greater than rbx. Thesu�xes used by the SET instrution indiatewhih omparison is being tested. The su�xesthat are most likely to be of use to you are L,G and E standing for Less than, Greater than,and Equal. 27

BranhesBranhes an be unonditional and diret:
jmp lab

or unoditional and indiret:
jmp dword[ebp+10℄

or onditional on a ondition ode and diret:
jl lab1jg lab3je lab4

CallsCalls an be diret:
all lab

or indiret:
all 10(%rbp)

in either ase the urrent value of the rip reg-ister is pushed on the stak and the rip reg-ister loaded from the operand. Returns areperfomed using the ret instrution whih popsthe top of stak into the rip register.
28

