
Useful x86 64 instru
tionsThis is a very small subset of the available in-stru
tions but should be enough for your pur-poses.

Data movementmov mem, reg/litexample
mov 12(%rbp),%raxmovd $12, 4(%rsi)

meansstore the right operand in the memory lo
ationon the leftif the length of the value being moved is am-biguous the mov instru
tion must be
onvertedto movb, movw, movd, movl et
.
1

mov mem/reg/lit,regexample
mov 1,%ebxmov 0(%rsi,%rbp), %r9mov %eax,%ebx

meansload the left operand into the register on theright
2

Floating pointThe AMD64 ar
hite
ture provides three �oating-point instru
tion subsets, using three distin
tregister sets:
• 128-Bit Media Instru
tions support 32-bitsingle-pre
ision and 64-bit double-pre
ision�oating- point operations, in addition tointeger operations. Operations on bothve
tor data and s
alar data are supported,with a dedi
ated �oating-point ex
eption-reporting me
hanism. These �oating- pointoperations
omply with the IEEE-754 stan-dard.

3

• 64-Bit Media Instru
tions (the subset of3DNow! te
hnology instru
tions) supportsingle- pre
ision �oating-point operations.Operations on both ve
tor data and s
alardata are supported, but these instru
tionsdo not support �oating-point ex
eption re-porting.

4

• x87 Floating-Point Instru
tions support single-pre
ision, double-pre
ision, and 80-bit extended-pre
ision �oating-point operations. Onlys
alar data are supported, with a dedi
ated�oating-point ex
eption-reporting me
ha-nism. The x87 �oating-point instru
tions
ontain spe
ial instru
tions for performingtrigonometri
 and logarithmi
 trans
enden-tal operations. The single-pre
ision anddouble-pre
ision �oating-point operations
omply with the IEEE-754 standard.
Maximum �oating-point performan
e
an bea
hieved using the 128-bit media instru
tions.One of these ve
tor instru
tions
an supportup to four single-pre
ision (or two double-pre
ision)operations in parallel.

5

movss mem, regexample
movss 12(%rbp),%xmm0

meansstore the left operand in right. The right operandis the bottom 32 bits of an xmm register.
6

movss reg, mem/regexample
movss %xmm1,0(%rsi,%rbx)movss %xmm1,xxm2

meansload the left operand into the right, the leftoperand is the lower 32 bits of a xmm registerand the data should be a 32 bit �oat
7

movups mem, regexample
movss 12(%rbp),%xmm0

means
opy the leftt operand to the right operatnd.The right operand is a 128 bit xmm register.
8

movss reg, memexample
movups %xmm1,0(%rsi,%rdi)

meansstore the leftt operand in the register in therightt, the left operand is a 128 bit xmm reg-ister
9

push mem/reg/litexample
pushq $10pushq 40(%rsi)push %r
x

meanspush the operand on sta
k, pre-de
rementingthe esp register by 8
10

pop mem/regexample
popq 32(%rsi)pop %r
x

meansthe operand is assigned the value on the topof sta
k and the sta
k pointer is then in
re-mented by 8
11

�d<len> memexample
flds 40(%rsi)

meansthe operand whi
h is pushed on the fpu sta
k<len> takes on the value s for single pre
isionand l for double pre
ision, the number mustbe in 32 bit or 64 bit �oating point
12

�ld memexample
fild 40(%rsi)

meansthe 32bit integer operand is pushed on the fpusta
k as a �oating point number

13

fstp<len> memexample
fstps 40(%rsi)

meansthe operand is assigned the 32bit �oating pointvalue on the fpu sta
k the fpu sta
k is thenpopped
14

�stp<len> memexample
fistpd 40(%rsi)

meansthe 32bit �oating point value on the fpu sta
kis
onverted to an integer and stored in theoperand, the fpu sta
k is then popped.
15

Arithmeti
Integer arithmeti
 instru
tions
an be dividedinto 3
lasses
1. Add, subtra
t, and, or, xor.These are treatedabsolutely regularly as two operand instru
-tions as shown below in se
tion .
2. Multiply, this
omes in both 2 and 3 operandforms.
3. Divide and Modulus, these are irregular andmake use of spe
i�
 registers

16

Regular integer arithmeti
These take the formoperation sr
,destand mean dest:= dest operation sr
the following operation
odes are allowed
add, sub, and, or, xor

17

The table shows the allowed
ombinations ofdestination and sour
eOperand
ombinations for regular arithmeti
dest sr
register registerregister
onstantregister memorymemory registermemory
onstantExamples
add $5,%rspsub %eax, %ebxand 12(%rax),%rdiaddq $1,0(%rsi)add %esi,0(%rdi)

18

Multiplyimul reg/mem,regThis is fun
tionally the same as the regular 2operand integer arithmeti
 instru
tions.Example
imuld 26(%rbp),%rdxrdx * mem(26+rbp) →rdx

imul
onst,reg,regThis three operand form is parti
ularly usefulfor
omputing array o�sets.Example
imul $16,%rbx,%rax16 * rbx →rax 19

Divide/modulusA single instru
tion is used for both divisionand modulus.idiv regThe 128 bit value in rdx:rax is divided by theoperand, the quotient is pla
ed in rax, and theremainder is pla
ed in rdx.Example
idiv %r11

20

Floating point arithmeti
The �oating point sta
k
an be used to per-form arithmeti
 in a post�x manner. The fol-lowing fpu op
odes operate on the top twoitems on the fpu sta
k:
faddp st1fsubp st1fdivp st1fmulp st1

These perfrom an operation between the topof the fpu sta
k (st0) and st1, store the resultin st1, then pop the sta
k so that st1 be
omesthe new top of sta
k. Bear in mind that themaximum depth of the fpu sta
k is 8. Opera-tions are performed using 80bit internal �oat-ing point representation. 21

Ve
tor arithmeti
It is possible to perform parallel operations onve
tors of 32 bit �oats using the xmm regis-ters. These instru
tions have the general for-matoperationPS xmmreg,xmmregFor example
mulps %xmm5,%xmm0

the su�x PS stands for Pa
ked Single pre
ison�oats. In this
ase the 4 �oats in xmm0 aremultiplied by the
orresponding �oats in xmm5and the result stored in xmm0.
22

The other useful ve
tor arithmeti
 instru
tionsin this
ontext are:
addps, subps, divps

These instru
tions also exist in a memory toregister form but for these to be used you haveto guarantee that the operands are aligned on16 byte memory boundaries. Sin
e this is
om-pli
ated to ensure, I suggest that you restri
tyourself to the register to register forms ofthese instru
tions.
23

S
alar arithmeti
It is also possible to perform s
alar arithmeti
in the low order 32 bit words of the xmm regis-ters. For instan
e, you
an do all of the ve
toroperations by using the subs
ript SS standingfor S
alar Single pre
ision after the operationthus:
addss %xmm0,%xmm2

would add the bottom 32 bit �oat in xmm0 tothe bottom �oat in xmm2 and leave the resultin xmm2.
24

Conversion instru
tionsoperation dest sr

vtsi2ss xmm register general register
vtss2si general register xmm registerIf you are going to use these s
alar instru
-tions it is worth taking note of the
onversioninstru
tions
vtsi2ss and
vtss2si whi
h
on-vert signed doubleword integers to single pre-
ision �oats and vi
e versa.Examples

vtss2si %xmm4, %ebx
vtsi2ss %eax,%xmm3

25

Integer
omparisonsComparison instru
tions exist whi
h will pla
ethe results of
omparison in the �ags. The
mpinstru
tion
ompares two integers.Examples

mp 12,%rax
mp %rax, %r
x

26

SetThe result of the
omparison is written to the�ags and
an be used either by a SET instru
-tion or by a
onditional jump instru
tion.For instan
e to test if the eax register was lessthen 10 we
ould write

mp %rbx,%raxsetl %al #al:= rax< rbx

At the end of this the al register will
ontaina boolean value of 1 if rax had been less thanrbx and 0 if it had been greater than rbx. Thesu�xes used by the SET instru
tion indi
atewhi
h
omparison is being tested. The su�xesthat are most likely to be of use to you are L,G and E standing for Less than, Greater than,and Equal. 27

Bran
hesBran
hes
an be un
onditional and dire
t:
jmp lab

or un
oditional and indire
t:
jmp dword[ebp+10℄

or
onditional on a
ondition
ode and dire
t:
jl lab1jg lab3je lab4

CallsCalls
an be dire
t:

all lab

or indire
t:

all 10(%rbp)

in either
ase the
urrent value of the rip reg-ister is pushed on the sta
k and the rip reg-ister loaded from the operand. Returns areperfomed using the ret instru
tion whi
h popsthe top of sta
k into the rip register.
28

