Gnu Assembler

The Gnu assembler(Gas) is an open source As-
sembler. The assembler is included as stan-
dard in the gcc distribution and is available for
download to run under Windows. It provides
support for the instructionset of the host CPU.
Cross assembler versions are also available.

The assembler is invoked by the command as.

as provides support for the object module for-
mat used in whichever gcc distribution it comes
with. If you are programming in assembler,
Gas provides a more complete range of instruc-
tions, in association with better portability be-
tween operating systems than competing as-
semblers.

It is beyond the scope of this course to provide
a complete guide to assembler programming
1

for the Intel processor family. Readers wanting
a general background in assembler program-
ming should consult appropriate text books []
in conjunction with the processor reference man-
uals published by Intel[?][?] and AMD [7].

General instruction syntax

Assembler programs take the form of a se-
quence of lines with one machine instruction
per line. The instructions themselves take the
form of an optional |label, an operation code
name conditionally followed by up to three comma
separated operands. For example:

11: cltq # 0 operand instz
pop %rax # 1 operand instz
mov %rax,sr9 # 2 operand instz
imulq $3,%r9,%r10 # 3 operand instr

As shown above, a comment can be placed
on an assembler line, with the comment dis-
tinguished from the instruction by a leading #

The label, if present is separated from the
operation code name by a colon.

In the as assembler, unlike in the original Intel
assembler, the direction of assignment in an
instruction is always from left to right*, so that

mov Y,rax,,rcx

means

Yrax — JYrcx

and

addss %xmmO, %xmm3

means

(%xmm0 + %xmm3) — %xmm3

*This is a result of as having originated as a Motorola as-

sembler that was converted to recognise Intel opcodes.
Motorola follow a left to right assignment convention.

3

Operand forms

Operands to instructions can be constants, reg-
ister names or memory locations.

Constants

Constants are values known at assembly time,
and take the form of numbers, labels, charac-
ters or arithmetic expressions whose compo-
nents are themselves constants.

The most important constant values are num-
bers. A constant must be prefixed by a $

mov $7,%rax # load 7 into register rax

Only integer constants can occur in instruc-
tions. Floating point constants can occur in
data declarations but not in instructions.

4

Floating point constants are also supported
as operands to store allocation directives (see
section ?7):

.double 3.14156
.float 9.2e3

It is important to realise that due to limitations
of the AMD and Intel instruction-sets, floating
point constants can not be directly used as
operands to instructions. Any floating point
constants used in an algorithm have to be as-
sembled into a distinct area of memory and
loaded into registers from there.

LLabels

Constants can also take the form of labels.
As the assembler program is processed, the
assembler allocates an integer value to each
label.

We can load a register with the address ref-
ered to by a label by including the label as a
constant operand:

mov $ sourcebuf,’rsi

You must not confuse this with

mov sourcebuf,’rsi

which loads the register with the word in mem-
ory labeled by sourcebuf.

Constant expressions

Suppose there exists a data-structures for which
one has a base address label, it is often con-
venient to be able to refer to fields within this
structure in terms of their offset from the start
of the structure. Consider the example of a
vector of 4 single precision floating point val-
ues at a location with label myvec. The actual
address at which myvec will be placed is deter-
mined by Gas, we do not know it. We may
know that we want the address of the 3rd el-
ement of the vector:

mov $ myvec + $3 *$4, Jesi

will place the address of this word into the esi
register.

Constant expressions

Gas allows one to place arithmetic expressions
whose sub-expressions are constants wherever
a constant can occur. The arithmetic opera-
tors are written C style as shown below.

operator means operator means
| bitwise or + add
- bitwise xor - subtract
& bitwise and * multiply
<< shift left / signed division
> > shift right
% remainder

Registers

Operands can be register names. The avail-
able register names are shown in table ?7. In
the binary operation codes interpreted by the
CPU, regqgisters are identified using 3-bit inte-
gers. Depending on the operation code, these
3 bit fields are interpreted as the different cat-
egories of register shown in table ?7.

Register names should be preceeded by % in
the assembler syntax to distinguish them from
label hames.

You should be aware that in the Intel architec-
ture a number of registers are aliased to the
same state vectors, thus for example the eax,
ax, al, ah registers all share bits. More in-
sidiously the floating point registers STO..ST7
not only share state with the MMX registers,

9

but their mapping to these registers is dynamic
and variable.

The first 8 registers have names which they
inherit from the Pentium processors, the AMD
opteron added additional registers to the gen-
eral register set and simd set.

general registers fpu mmx SIMD
8 16 32 04 80 04 128
reg reg reg reg stack reg reg
Aliased Aliased
0 al ax eax rax st0 mmO xmmO
1 cl bx ecx rcx st1 mm1 xmm1
2 dl cx edx rdx st2 mm?2 Xmm2
3 bl bx ebx rbx st3 mm3 xmm3
4 ah sp esp rsp st4 mm4 xmm4
5 ch bp ebp rbp stb mmb xmmb
§) dh si esi rsi st6 mm6 Xmm6
4 bh di edi rdi st7 mm7 xmm7
8..15 r8..r15 xmm8. .xmm15

Memory Locations

Memory locations are syntactically represented
by labels, addresses or locations pointed to by
registers: 100 , myvec , 0(%rsi) all represent
memory locations.

The address expressions, unlike constant ex-
pressions, can contain components whose val-
ues are not known until program execution.
The final example above refers to the mem-
ory location addressed by the value in the Jrsi
register, and as such, depends on the history
of prior computations affecting that register.

10

Here are the register addressing forms

e n(reg) address reg+n ,

— eg 8(Yrdx)

e n(reg,m) address n4+regl*m

— eg 16(Yrax,2) , m must be 2,4,8

e n(regl,reg?2) address n+regl—+reg?2,

— eg 20(Yrax,rsi)

e n(regl,reg2,m) address n+regl4reg2*m

— eg 100(rbx,%r10,8) , m must be 2,4
or 8

11

Sectioning

Programs running under Linux have their mem-
ory divided into 4 sections:

text IS the section of memory contain-
ing operation codes to be executed.
It is typically mapped as read only
by the paging system.

data IS the section of memory contain-
ing initialised global variables, which
can be altered following the start
of the program.

bss IS the section containing uninitialsed
global variables.

12

stack IS the section in which dynamically
allocated local variables of subrou-
tines are located.

The .section directive is used by assembler pro-
gramers to specify into which section of mem-
ory they want subsequent lines of code to be
assembled. For example in the listing shown in
algorithm 1 we divide the program into three
sections: a text section containing myfunc, a
bss section containing 64 undefined bytes and
a data section containing a vector of 4 inte-
gers.

T he label myfuncbase can be used with negative
offsets to access locations within the bss, wilst
the label myfuncglobal can be used with posi-
tive offsets to access elements of the vector in
the data section.

Algorithm 1 Examples of the use of section

and data reservation directives
.section .text

.global myfunc
myfunc:enter $128,%0
body of function goes here
leave
ret $0
.section .bss
.align 16
.space 64 # reserve 64 bytes
myfuncBase:
.section .data
myfuncglobal: # reserve 4 by 32-bit integers
.int 1
.int 2
.int 3
.int 5

Data reservation

Data must be reserved in distinct ways in the

different sections. In the data section, the

data definition directives .byte, .word, .int,

and .quad are used to define bytes, words(16bit),
doublewords(32bit) and quad words (64bit).

The directive must be followed by a constant

expression. When defining bytes or words the

constant must be an integer. .float and .dou-

ble may be used to define floating point con-

stants as shown previously.

In the bss section the directive .space is used

to reserve a specified number of bytes, but no
value is associated with these bytes.

13

Stack data

Data can be allocated in the stack section by
use of the enter operation code name. This
takes the form:

enter space, level

It should be used as the first operation code
name of a function. The level parameter is
only of relevance in block structured languages
and should be set to O for assembler program-
ming. T he space parameter specifies the num-
ber of bytes to be reserved for the private use
of the function. Once the enter instruction has
executed, the data can be accessed at negative
offsets from the rbp register.

14

Releasing stack space dynamically

The last two instructions in a function should,
as shown in algorithm be

leave
ret $0

The combined effect of these is to free the
space reserved on the stack by enter, and pop
the return address from the stack. The param-
eter to the operation code name ret is used to
specify how many bytes of function parameters
should be discarded from the stack. If one is
interfacing to C this should always be set to O.

15

Label qualification

The default scope of a label is the assembler
source file containing the line it prefixes. But
labels can be used to mark the start of func-
tions that are to be called from C or other
high level languges. To indicate that they have
scope beyond the current asscembler file, the
.global directive should be used as shown in
algorithm 1.

The converse case, where an assembler file
calls a function exported by a C program is
handled by the .extern directive:

.extern printreal

call printreal

in the above example we assume that printreal

iIs a C function called from assembler.
16

Linking and object file formats

There are 4 object file formats that are com-
monly used on Linux and Windows systems
as shown in table ?7. This lists the name of
the format, its file extension - which is often
ambiguous and the combination of operating
system and compiler that makes use of it. A
flag provided to Gas specifies which format it
should use. We will only go into the use of the
gcc compiler, since this is portable between
Windows and Linux.

Let us assume we have a C program called
c2asm.c and an assembler file asmfromc.asm. Sup-
pose we wish to combine these into a single ex-
ecutable module c2asm. We issue the following
commands at the console:

as -0 asmfromc.o asmfromc.asm

17

gcc -oc2asm c2asm.c asmfromc.o

