
Gnu AssemblerThe Gnu assembler(Gas) is an open sour
e As-sembler. The assembler is in
luded as stan-dard in the g

 distribution and is available fordownload to run under Windows. It providessupport for the instru
tionset of the host CPU.Cross assembler versions are also available.The assembler is invoked by the
ommand as.as provides support for the obje
t module for-mat used in whi
hever g

 distribution it
omeswith. If you are programming in assembler,Gas provides a more
omplete range of instru
-tions, in asso
iation with better portability be-tween operating systems than
ompeting as-semblers.It is beyond the s
ope of this
ourse to providea
omplete guide to assembler programming1

for the Intel pro
essor family. Readers wantinga general ba
kground in assembler program-ming should
onsult appropriate text books [℄in
onjun
tion with the pro
essor referen
e man-uals published by Intel[?℄[?℄ and AMD [?℄.

General instru
tion syntaxAssembler programs take the form of a se-quen
e of lines with one ma
hine instru
tionper line. The instru
tions themselves take theform of an optional label, an operation
odename
onditionally followed by up to three
ommaseparated operands. For example:
l1:
ltq # 0 operand instru
tionpop %rax # 1 operand instru
tionmov %rax,%r9 # 2 operand instru
tionimulq $3,%r9,%r10 # 3 operand instru
tion

As shown above, a
omment
an be pla
edon an assembler line, with the
omment dis-tinguished from the instru
tion by a leading #. The label, if present is separated from theoperation
ode name by a
olon. 2

In the as assembler, unlike in the original Intelassembler, the dire
tion of assignment in aninstru
tion is always from left to right∗, so that
mov %rax,%r
x

means
%rax → %r
x

and
addss %xmm0,%xmm3

means
(%xmm0 + %xmm3)→ %xmm3

∗This is a result of as having originated as a Motorola as-sembler that was
onverted to re
ognise Intel op
odes.Motorola follow a left to right assignment
onvention.3

Operand formsOperands to instru
tions
an be
onstants, reg-ister names or memory lo
ations.ConstantsConstants are values known at assembly time,and take the form of numbers, labels,
hara
-ters or arithmeti
 expressions whose
ompo-nents are themselves
onstants.The most important
onstant values are num-bers. A
onstant must be pre�xed by a $
mov $7,%rax # load 7 into register rax

Only integer
onstants
an o

ur in instru
-tions. Floating point
onstants
an o

ur indata de
larations but not in instru
tions.4

Floating point
onstants are also supportedas operands to store allo
ation dire
tives (seese
tion ??):
.double 3.14156.float 9.2e3

It is important to realise that due to limitationsof the AMD and Intel instru
tion-sets, �oatingpoint
onstants
an not be dire
tly used asoperands to instru
tions. Any �oating point
onstants used in an algorithm have to be as-sembled into a distin
t area of memory andloaded into registers from there.
5

LabelsConstants
an also take the form of labels.As the assembler program is pro
essed, theassembler allo
ates an integer value to ea
hlabel.We
an load a register with the address ref-ered to by a label by in
luding the label as a
onstant operand:
mov $ sour
ebuf,%rsi

You must not
onfuse this with
mov sour
ebuf,%rsi

whi
h loads the register with the word in mem-ory labeled by sour
ebuf.
6

Constant expressionsSuppose there exists a data-stru
tures for whi
hone has a base address label, it is often
on-venient to be able to refer to �elds within thisstru
ture in terms of their o�set from the startof the stru
ture. Consider the example of ave
tor of 4 single pre
ision �oating point val-ues at a lo
ation with label myve
. The a
tualaddress at whi
h myve
 will be pla
ed is deter-mined by Gas, we do not know it. We mayknow that we want the address of the 3rd el-ement of the ve
tor:
mov $ myve
 + $3 *$4, %esi

will pla
e the address of this word into the esiregister. 7

Constant expressionsGas allows one to pla
e arithmeti
 expressionswhose sub-expressions are
onstants wherevera
onstant
an o

ur. The arithmeti
 opera-tors are written C style as shown below.operator means operator means| bitwise or + add^ bitwise xor - subtra
t& bitwise and * multiply<< shift left / signed division>> shift right% remainder
8

RegistersOperands
an be register names. The avail-able register names are shown in table ??. Inthe binary operation
odes interpreted by theCPU, registers are identi�ed using 3-bit inte-gers. Depending on the operation
ode, these3 bit �elds are interpreted as the di�erent
at-egories of register shown in table ??.Register names should be pre
eeded by % inthe assembler syntax to distinguish them fromlabel names.You should be aware that in the Intel ar
hite
-ture a number of registers are aliased to thesame state ve
tors, thus for example the eax,ax, al, ah registers all share bits. More in-sidiously the �oating point registers ST0..ST7not only share state with the MMX registers,9

but their mapping to these registers is dynami
and variable.The �rst 8 registers have names whi
h theyinherit from the Pentium pro
essors, the AMDopteron added additional registers to the gen-eral register set and simd set.general registers fpu mmx SIMD8 16 32 64 80 64 128# reg reg reg reg sta
k reg regAliased Aliased0 al ax eax rax st0 mm0 xmm01
l bx e
x r
x st1 mm1 xmm12 dl
x edx rdx st2 mm2 xmm23 bl bx ebx rbx st3 mm3 xmm34 ah sp esp rsp st4 mm4 xmm45
h bp ebp rbp st5 mm5 xmm56 dh si esi rsi st6 mm6 xmm67 bh di edi rdi st7 mm7 xmm78..15 r8..r15 xmm8..xmm15

Memory Lo
ationsMemory lo
ations are synta
ti
ally representedby labels, addresses or lo
ations pointed to byregisters: 100 , myve
 , 0(%rsi) all representmemory lo
ations.The address expressions, unlike
onstant ex-pressions,
an
ontain
omponents whose val-ues are not known until program exe
ution.The �nal example above refers to the mem-ory lo
ation addressed by the value in the %rsiregister, and as su
h, depends on the historyof prior
omputations a�e
ting that register.
10

Here are the register addressing forms
• n(reg) address reg+n ,� eg 8(%rdx)
• n(reg,m) address n+reg1*m� eg 16(%rax,2) , m must be 2,4,8
• n(reg1,reg2) address n+reg1+reg2,� eg 20(%rax,%rsi)
• n(reg1,reg2,m) address n+reg1+reg2*m� eg 100(rbx,%r10,8) , m must be 2,4or 8

11

Se
tioningPrograms running under Linux have their mem-ory divided into 4 se
tions:
text is the se
tion of memory
ontain-ing operation
odes to be exe
uted.It is typi
ally mapped as read onlyby the paging system.
data is the se
tion of memory
ontain-ing initialised global variables, whi
h
an be altered following the startof the program.
bss is the se
tion
ontaining uninitialsedglobal variables. 12

sta
k is the se
tion in whi
h dynami
allyallo
ated lo
al variables of subrou-tines are lo
ated.
The .se
tion dire
tive is used by assembler pro-gramers to spe
ify into whi
h se
tion of mem-ory they want subsequent lines of
ode to beassembled. For example in the listing shown inalgorithm 1 we divide the program into threese
tions: a text se
tion
ontaining myfun
, abss se
tion
ontaining 64 unde�ned bytes anda data se
tion
ontaining a ve
tor of 4 inte-gers.
The label myfun
base
an be used with negativeo�sets to a

ess lo
ations within the bss, wilstthe label myfun
global
an be used with posi-tive o�sets to a

ess elements of the ve
tor inthe data se
tion.

Algorithm 1 Examples of the use of se
tionand data reservation dire
tives.se
tion .text.global myfun
myfun
:enter $128,$0# body of fun
tion goes hereleaveret $0.se
tion .bss.align 16.spa
e 64 # reserve 64 bytesmyfun
Base:.se
tion .datamyfun
global: # reserve 4 by 32-bit integers.int 1.int 2.int 3.int 5

Data reservationData must be reserved in distin
t ways in thedi�erent se
tions. In the data se
tion, thedata de�nition dire
tives .byte, .word, .int,and .quad are used to de�ne bytes, words(16bit),doublewords(32bit) and quad words (64bit).The dire
tive must be followed by a
onstantexpression. When de�ning bytes or words the
onstant must be an integer. .�oat and .dou-ble may be used to de�ne �oating point
on-stants as shown previously.In the bss se
tion the dire
tive .spa
e is usedto reserve a spe
i�ed number of bytes, but novalue is asso
iated with these bytes.
13

Sta
k dataData
an be allo
ated in the sta
k se
tion byuse of the enter operation
ode name. Thistakes the form:enter spa
e, levelIt should be used as the �rst operation
odename of a fun
tion. The level parameter isonly of relevan
e in blo
k stru
tured languagesand should be set to 0 for assembler program-ming. The spa
e parameter spe
i�es the num-ber of bytes to be reserved for the private useof the fun
tion. On
e the enter instru
tion hasexe
uted, the data
an be a

essed at negativeo�sets from the rbp register.
14

Releasing sta
k spa
e dynami
allyThe last two instru
tions in a fun
tion should,as shown in algorithm be
leaveret $0

The
ombined e�e
t of these is to free thespa
e reserved on the sta
k by enter, and popthe return address from the sta
k. The param-eter to the operation
ode name ret is used tospe
ify how many bytes of fun
tion parametersshould be dis
arded from the sta
k. If one isinterfa
ing to C this should always be set to 0.
15

Label quali�
ationThe default s
ope of a label is the assemblersour
e �le
ontaining the line it pre�xes. Butlabels
an be used to mark the start of fun
-tions that are to be
alled from C or otherhigh level languges. To indi
ate that they haves
ope beyond the
urrent ass
embler �le, the.global dire
tive should be used as shown inalgorithm 1.The
onverse
ase, where an assembler �le
alls a fun
tion exported by a C program ishandled by the .extern dire
tive:.extern printreal
all printrealin the above example we assume that printrealis a C fun
tion
alled from assembler. 16

Linking and obje
t �le formatsThere are 4 obje
t �le formats that are
om-monly used on Linux and Windows systemsas shown in table ??. This lists the name ofthe format, its �le extension - whi
h is oftenambiguous and the
ombination of operatingsystem and
ompiler that makes use of it. A�ag provided to Gas spe
i�es whi
h format itshould use. We will only go into the use of theg

ompiler, sin
e this is portable betweenWindows and Linux.Let us assume we have a C program
alled
2asm.
 and an assembler �le asmfrom
.asm. Sup-pose we wish to
ombine these into a single ex-e
utable module
2asm. We issue the following
ommands at the
onsole:
as -o asmfrom
.o asmfrom
.asm 17

g

 -o
2asm
2asm.
 asmfrom
.o

