
Gnu AssemblerThe Gnu assembler(Gas) is an open soure As-sembler. The assembler is inluded as stan-dard in the g distribution and is available fordownload to run under Windows. It providessupport for the instrutionset of the host CPU.Cross assembler versions are also available.The assembler is invoked by the ommand as.as provides support for the objet module for-mat used in whihever g distribution it omeswith. If you are programming in assembler,Gas provides a more omplete range of instru-tions, in assoiation with better portability be-tween operating systems than ompeting as-semblers.It is beyond the sope of this ourse to providea omplete guide to assembler programming1

for the Intel proessor family. Readers wantinga general bakground in assembler program-ming should onsult appropriate text books [℄in onjuntion with the proessor referene man-uals published by Intel[?℄[?℄ and AMD [?℄.

General instrution syntaxAssembler programs take the form of a se-quene of lines with one mahine instrutionper line. The instrutions themselves take theform of an optional label, an operation odename onditionally followed by up to three ommaseparated operands. For example:
l1: ltq # 0 operand instrutionpop %rax # 1 operand instrutionmov %rax,%r9 # 2 operand instrutionimulq $3,%r9,%r10 # 3 operand instrution

As shown above, a omment an be plaedon an assembler line, with the omment dis-tinguished from the instrution by a leading #. The label, if present is separated from theoperation ode name by a olon. 2

In the as assembler, unlike in the original Intelassembler, the diretion of assignment in aninstrution is always from left to right∗, so that
mov %rax,%rx

means
%rax → %rx

and
addss %xmm0,%xmm3

means
(%xmm0 + %xmm3)→ %xmm3

∗This is a result of as having originated as a Motorola as-sembler that was onverted to reognise Intel opodes.Motorola follow a left to right assignment onvention.3

Operand formsOperands to instrutions an be onstants, reg-ister names or memory loations.ConstantsConstants are values known at assembly time,and take the form of numbers, labels, hara-ters or arithmeti expressions whose ompo-nents are themselves onstants.The most important onstant values are num-bers. A onstant must be pre�xed by a $
mov $7,%rax # load 7 into register rax

Only integer onstants an our in instru-tions. Floating point onstants an our indata delarations but not in instrutions.4

Floating point onstants are also supportedas operands to store alloation diretives (seesetion ??):
.double 3.14156.float 9.2e3

It is important to realise that due to limitationsof the AMD and Intel instrution-sets, �oatingpoint onstants an not be diretly used asoperands to instrutions. Any �oating pointonstants used in an algorithm have to be as-sembled into a distint area of memory andloaded into registers from there.
5

LabelsConstants an also take the form of labels.As the assembler program is proessed, theassembler alloates an integer value to eahlabel.We an load a register with the address ref-ered to by a label by inluding the label as aonstant operand:
mov $ sourebuf,%rsi

You must not onfuse this with
mov sourebuf,%rsi

whih loads the register with the word in mem-ory labeled by sourebuf.
6

Constant expressionsSuppose there exists a data-strutures for whihone has a base address label, it is often on-venient to be able to refer to �elds within thisstruture in terms of their o�set from the startof the struture. Consider the example of avetor of 4 single preision �oating point val-ues at a loation with label myve. The atualaddress at whih myve will be plaed is deter-mined by Gas, we do not know it. We mayknow that we want the address of the 3rd el-ement of the vetor:
mov $ myve + $3 *$4, %esi

will plae the address of this word into the esiregister. 7

Constant expressionsGas allows one to plae arithmeti expressionswhose sub-expressions are onstants wherevera onstant an our. The arithmeti opera-tors are written C style as shown below.operator means operator means| bitwise or + add^ bitwise xor - subtrat& bitwise and * multiply<< shift left / signed division>> shift right% remainder
8

RegistersOperands an be register names. The avail-able register names are shown in table ??. Inthe binary operation odes interpreted by theCPU, registers are identi�ed using 3-bit inte-gers. Depending on the operation ode, these3 bit �elds are interpreted as the di�erent at-egories of register shown in table ??.Register names should be preeeded by % inthe assembler syntax to distinguish them fromlabel names.You should be aware that in the Intel arhite-ture a number of registers are aliased to thesame state vetors, thus for example the eax,ax, al, ah registers all share bits. More in-sidiously the �oating point registers ST0..ST7not only share state with the MMX registers,9

but their mapping to these registers is dynamiand variable.The �rst 8 registers have names whih theyinherit from the Pentium proessors, the AMDopteron added additional registers to the gen-eral register set and simd set.general registers fpu mmx SIMD8 16 32 64 80 64 128# reg reg reg reg stak reg regAliased Aliased0 al ax eax rax st0 mm0 xmm01 l bx ex rx st1 mm1 xmm12 dl x edx rdx st2 mm2 xmm23 bl bx ebx rbx st3 mm3 xmm34 ah sp esp rsp st4 mm4 xmm45 h bp ebp rbp st5 mm5 xmm56 dh si esi rsi st6 mm6 xmm67 bh di edi rdi st7 mm7 xmm78..15 r8..r15 xmm8..xmm15

Memory LoationsMemory loations are syntatially representedby labels, addresses or loations pointed to byregisters: 100 , myve , 0(%rsi) all representmemory loations.The address expressions, unlike onstant ex-pressions, an ontain omponents whose val-ues are not known until program exeution.The �nal example above refers to the mem-ory loation addressed by the value in the %rsiregister, and as suh, depends on the historyof prior omputations a�eting that register.
10

Here are the register addressing forms
• n(reg) address reg+n ,� eg 8(%rdx)
• n(reg,m) address n+reg1*m� eg 16(%rax,2) , m must be 2,4,8
• n(reg1,reg2) address n+reg1+reg2,� eg 20(%rax,%rsi)
• n(reg1,reg2,m) address n+reg1+reg2*m� eg 100(rbx,%r10,8) , m must be 2,4or 8

11

SetioningPrograms running under Linux have their mem-ory divided into 4 setions:
text is the setion of memory ontain-ing operation odes to be exeuted.It is typially mapped as read onlyby the paging system.
data is the setion of memory ontain-ing initialised global variables, whihan be altered following the startof the program.
bss is the setion ontaining uninitialsedglobal variables. 12

stak is the setion in whih dynamiallyalloated loal variables of subrou-tines are loated.
The .setion diretive is used by assembler pro-gramers to speify into whih setion of mem-ory they want subsequent lines of ode to beassembled. For example in the listing shown inalgorithm 1 we divide the program into threesetions: a text setion ontaining myfun, abss setion ontaining 64 unde�ned bytes anda data setion ontaining a vetor of 4 inte-gers.
The label myfunbase an be used with negativeo�sets to aess loations within the bss, wilstthe label myfunglobal an be used with posi-tive o�sets to aess elements of the vetor inthe data setion.

Algorithm 1 Examples of the use of setionand data reservation diretives.setion .text.global myfunmyfun:enter $128,$0# body of funtion goes hereleaveret $0.setion .bss.align 16.spae 64 # reserve 64 bytesmyfunBase:.setion .datamyfunglobal: # reserve 4 by 32-bit integers.int 1.int 2.int 3.int 5

Data reservationData must be reserved in distint ways in thedi�erent setions. In the data setion, thedata de�nition diretives .byte, .word, .int,and .quad are used to de�ne bytes, words(16bit),doublewords(32bit) and quad words (64bit).The diretive must be followed by a onstantexpression. When de�ning bytes or words theonstant must be an integer. .�oat and .dou-ble may be used to de�ne �oating point on-stants as shown previously.In the bss setion the diretive .spae is usedto reserve a spei�ed number of bytes, but novalue is assoiated with these bytes.
13

Stak dataData an be alloated in the stak setion byuse of the enter operation ode name. Thistakes the form:enter spae, levelIt should be used as the �rst operation odename of a funtion. The level parameter isonly of relevane in blok strutured languagesand should be set to 0 for assembler program-ming. The spae parameter spei�es the num-ber of bytes to be reserved for the private useof the funtion. One the enter instrution hasexeuted, the data an be aessed at negativeo�sets from the rbp register.
14

Releasing stak spae dynamiallyThe last two instrutions in a funtion should,as shown in algorithm be
leaveret $0

The ombined e�et of these is to free thespae reserved on the stak by enter, and popthe return address from the stak. The param-eter to the operation ode name ret is used tospeify how many bytes of funtion parametersshould be disarded from the stak. If one isinterfaing to C this should always be set to 0.
15

Label quali�ationThe default sope of a label is the assemblersoure �le ontaining the line it pre�xes. Butlabels an be used to mark the start of fun-tions that are to be alled from C or otherhigh level languges. To indiate that they havesope beyond the urrent assembler �le, the.global diretive should be used as shown inalgorithm 1.The onverse ase, where an assembler �lealls a funtion exported by a C program ishandled by the .extern diretive:.extern printrealall printrealin the above example we assume that printrealis a C funtion alled from assembler. 16

Linking and objet �le formatsThere are 4 objet �le formats that are om-monly used on Linux and Windows systemsas shown in table ??. This lists the name ofthe format, its �le extension - whih is oftenambiguous and the ombination of operatingsystem and ompiler that makes use of it. A�ag provided to Gas spei�es whih format itshould use. We will only go into the use of theg ompiler, sine this is portable betweenWindows and Linux.Let us assume we have a C program alled2asm. and an assembler �le asmfrom.asm. Sup-pose we wish to ombine these into a single ex-eutable module 2asm. We issue the followingommands at the onsole:
as -o asmfrom.o asmfrom.asm 17

g -o2asm 2asm. asmfrom.o

