
Grammars and machines

What makes a language a language rather than an arbitrary sequence of
symbols is its grammar.

A grammar specifies the order in which the symbols of a language may be
combined to make up legitimate statements in the language. Human lan-
guages have rather relaxed informal grammars that we pick up as children.
Computer languages are sometimes called formal languages because they
obey an explicitly specified grammar.

When people came to design computer languages around the end of the
1950’s they had to devise methods of formally specifying what the grammar
of these new language was to be. By coincidence the linguist Chomsky had
been investigating the possibility of formally specifying natural languages,
and had published an influential paper in which he had classified all possi-
ble grammars into 4 classes. These classes of grammars are now refered
to as Chomsky class 0, class 1, class 2 and class 3 grammars. It turns out
that Chomsky class 2 and class 3 grammars are most suitable to describe
programming languages. To understand what these different classes of
grammars are we need to go into a little formal notation.

1

The syntax or grammar of a language can be thought of as being made up
of a 4 tuple (T ,N ,S,P) where:

T stands for what are called the terminal symbols of the language. In a
human language these terminal symbols are the words or lexicon of the
language. In a computer language they are things like identifiers, reserved
words and punctuation symbols.

N stands for what are called the non-terminal symbols of the language.
In a human language a non-terminal would be grammatical constructs like
a sentence, a noun clause or a phrase. A computer language is likely to
have a large number of non-terminals with names like clause, statement,
expression .

S is the start symbol of the grammar. It is one of the non terminals. Its
meaning will become clear shortly.

2

P is a set of productions or rewrite rules. These tell you how to expand a
non-terminal in terms of other terminals and non-terminals.

This sounds a bit dry, but it will be clearer if we give an example. Suppose
we wish to define a grammar that describes the ‘speech’ of a traffic light. A
traffic light has a very limited vocabulary. It can say red or amber or green
or red-and-amber . These are the terminal symbols of its language.

T = { red, green, amber, red-and-amber }

At any moment in time the traffic light is in a current state and after some
interval it goes into a new state that becomes its current state. Each state
is described by one of the colours of T . This can be expressed as a set of
non-terminal symbols which we will call:

N = { going-red, going-green, going-amber, going-red-and-amber }

We will assume that when the power is applied for the first time the light
enters state going-red. Thus

S = going-red

A traffic light has to go through a fixed sequence of colours. These are
the syntax of the traffic light language. Which sequence it goes through
is defined by the productions of the traffic light language. If the light is in
going-red then it must output a red and go into going-red-and-amber. We
can write this down as:

going-red→ red going-red-and-amber

This is an individual production in the traffic light language.

The whole set of productions is given by:

P = { going-red→ red going-red-and-amber

going-green→ green going-amber

going-red-and-amber→ red-and-amber going-green

going-amber→ amber going-red

}

This combination of (T ,N ,S,P) ensures that the only sequence of colours
allowed by the traffic light are thing like :

3

red red-and-amber green amber red going-red-and-amber

It turns out that traffic lights speak the simplest of the Chomsky classes of
language, which perversely enough is class 3.

To distinguish between these classes of grammars the following notation
will be used:

bold letters : a b c ... represent non-terminals

italic letters : a b c ... represent terminals

Class 3

Class 3 languages like that of the traffic light have all of their productions
of the form:

a→ ab

or

a→ c

The traffic light obviously only has the first type of production or it would
stop at some point. These simple languages occur widely in nature. Look
at the patterns of leaves round the stem of a plant. They will often alternate
left or right, or form a spiral that can be described by a class 3 grammar.
In the example in figure we can describe the plant shape by the grammar:

4

Plant generated by a regular grammar

T = { flower, left, right }

N = { lstem, rstem }

S = lstem

P = { rstem→ flower

lstem→ left rstem

rstem→ right lstem

}

5

Class 3 grammars are also sometimes described at regular grammars and
the patterns they describe as regular expressions. It turns out that the
reserved words of most computer languages can be described by class 3
grammars.

6

Class 2

Class 2 grammars, also called context free grammars have productions of
the form

a→ b

where a is a non-terminal symbol and b is some combination of terminals
and non terminals. We could describe the ‘if’ expression in an algol like
language as:

if-expression→ if expression then expression else expression

where italics are non-terminals and bold letters are terminals. Most of the
syntax of algol like programming languages can be captured using class 2
grammars.

7

Class 1

Class 1 grammars, also called context sensitive grammars have production
of the form

abc→ axc

where a and c are strings of terminals and non-terminals,

b

is a single non-terminal and x is a non-empty string of terminals and non-
terminals. The string of symbols on the right hand side must be a least as
long as the string on the left hand side.

8

The reason why these are called context sensitive is that the production of
x from b can only occur in the context of abc . In the context free languages
a non terminal can be expanded out irrespective of the context. Although
the bulk of a programming language’s syntax can be described in a context
free fashion, some parts are context sensitive. Consider the line:

x:=9

This will only be valid if at some point previously there has been a line
declaring x . The name of the variable must have been introduced earlier
and it must have been specified that it was an integer or real variable. The
context sensitive part of the language is dealt with by the type checking
system. In untyped languages like Basic context sensitive parts are mini-
mal. In more advanced languages they are crucial.

The class 1 grammars can be recognised by a Linear Bounded Turing ma-
chine, that is a Turing machine with a fixed length tape.

9

Class 0

Class 0 grammars, the most powerful class are not needed for translating
programming languages. Here we have productions of the form:

X→Y

where X is made up of non-terminal symbols and Y is any string of termi-
nals or non terminals of any length.

10

This requires a full Turing machine to recognise it.

The Class 0 grammars also correspond to what are called the Recursively
Enumerable languages.

Definition 1.

Given string w as input, the algorithm halts and outputs YES if and
only if w belongs to the language L. If w does not belong to the
language L, the algorithm either runs forever, or halts and outputs
NO.

11

Definition 2.

The algorithm takes a positive integer, say n as an argument, and
produces as output a string in the language L. For every string s
which is in L there must be an n so that the algorithm produces
the string s.

12

The equivalence of these two definitions can be seen as follows:

1 -> 2 Given an algorithm A according to the first definition for language
L (assumed to be non-empty), the following algorithm will enumerate L
according to the second definition:

Let E be an algorithm which enumerates all strings, and so that every string
appears infinitely often in the enumeration. We write E(n) to denote the
string produced by algorithm E on input n. Pick a fixed string t in L (possible
since L is non-empty). The following algorithm enumerates L:

Given integer n, run algorithm A on input E(n) for n steps. If the
answer is YES, output the string E(n). Otherwise, output string t.

13

Clearly this will output only strings in L, since t is in L and any string on
which A halts with YES is also in L. Moreover it will output all of them,
since for any string s in L we can find a n such that the number of steps A
will take to recognise it will be less than n and E(n)=s.

Hierarchy of grammars

A programming language can be translated by using a hierarchy of gram-
mars.

At the lowest level we use class 3 grammars to recognise the identifiers
and reserved words of the language. Above that we use class 2 grammars
to analyze the context free parts of the language. Finally we use type
checkers to verify that the context sensitive rules of the language are being
obeyed.

14

Program Module Grammar
type checking class 1
syntax analysis class 2
lexical analysis class 3

The hierarchy of grammars is reflected in compiler structure

The structure of the compiler reflects this structure of the language. to
each of the layers of grammar there is a module of the compiler. It also
turns out that in our strategy for writing the compiler we can take advantage
of a relationship which exists between classes of grammars and types of
computing machines.

The idea of store and stored state will be familiar to all programmers, but
a stored program computer need not in principle be anything like the Von

15

Neumann machines that we normally call computers. There are in principle
much more general purpose designs. At the most general level digital
computer capable of performing computation over time must contain a set
of storage cells each capable of holding a bit. The computer is capable
of existing in a number of states characterised by the values in its storage
cells. If we consider these we can see that the number of states that the
computer can occupy will be 2s where s is the number of storage cells in
the machine.

Computation proceeds by the computer going from one state to the next
as shown below.

Computation as an evolution of numbered states

&%
'$

1 -&%
'$

2 -&%
'$

3

Clearly the number of state that a computer can go through in the course
of a computation will be 2s. The larger the number of storage cells in the
machine the longer or more complex the sequence of state that it can go
through. This relationship is familiar to us all in the way more complex
programs demand more store.

To actually perform computation it is necessary to be able to modify the
sequence of states that the computer goes through on the basis of input
signals. To produce any useful effect the computer must generate one or

more output signals, to indicate the result of the computation. Reduced to
its most simple a computer must be capable of responding to a sequence
of inputs and generating appropriate outputs.

Consider a machine that has to recognise a 3 digit sequence and then
respond with a yes or no according to whether or not the sequence was
correct. An example might be digital door lock as shown in the diagram
below. This requires the sequence 469 to be keyed in to open the lock.

This sequence of numbers can be described by a class 3 grammar: (T ,N ,S,P)
where

T = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 }

N = { s, t, u }

S = s

P = {

s → 4t

t → 6u

u → 9

}

16

We define a set of numbered states corresponding to the non terminals of
the grammar such that s = 1, t = 2 etc. The machine starts in state 1 and
undergoes transitions to successive states on the basis of the keys that are
pressed. If any incorrect key is pressed the state reverts to the start state.

A digital door lock

0
1
2
3
4
5
6
7
8
9

1 2

3

4

lockpattern recogniser

keypad

17

The collection of numbered circles with arrows connecting them is called a
state transition diagram.

How should state bits be organised?

Given that we wish to be able to represent state, it still does not follow that
we will end up with a random access store. There are other possibilities,
which have been tried in the past, and which still have certain limited ap-
plications. If each bit represents a state we could easily construct the door
lock by stringing 4 cells together in sequence and having them activated
sequentially by the and of the signal from a button and the previous state.

This is simple to implement and some digital logic used to be built this way,
but it makes poor use of the state bits as we only get s rather than 2s states
from an s bit store.

18

An improved arrangement is to gather all of the bits in the computer into
one word s bits long. This is then treated as a binary number and the
computer program can be thought of as a mapping of the form:

program:(int x input)→ (int x output)

Succesive application of the program function to the state word and the
input generates a new state and an output. This is in theoretical terms
the ideal way to construct a computer. For large s the number of states
possible becomes astronomical. A computer with a 64 bit status word could
have a state to represent every centimeter of the distance between here
and the nearest star. This sort of computer is a generalised finite state
automaton . If the computer is organised as shown :

19

A finite state machine

state word

logic block

next state

control outputs

input

This architecture can go from any state to any other in a single step. Each
bit in the current state can be taken into account in determining the next
state. All values of the input bits can be taken into account likewise. A
class 3 grammar can be handled by a finite state machine.

20

Finite state machines are widely used in computer hardware in the form of
PLA’s or programmable logic arrays. These are basic components of mi-
croprocessors that are used to decode machine instructions. The instruc-
tion decode unit of a microprocessor has to parse machine code. Machine
code has a class 3 grammar so a finite state machine is enough.

Although this sort of machine is very fast, we have practical difficulties
in scaling it up. The problem is the rate at which hardware complexity
increases with the size of the computer. The number of interconnection
wires required to allow each state bit to affect the next state of every other
bit goes up as the square of the number of bits, and the number of logic
cells (ANDs , ORs) to do this goes up quadratically in the number of state
bits.

21

The number of wires used to connect state cells in finite automata goes up
as s(s− 1)

��������

����
����
�
�
�
�@

@
@
@����
���� ����HHHH

��
��
�
��
�

��������

�
��
�

J
J
J
J
J
JJ

HHH
HHH

HH

���� ����HHH
H

����

����

22

Random Addressed store

If instead of connecting all of the state cells to one another, we organise
the state cells into subgroups of bits termed words and lead these into a
common logic block then we can diminish the number of wires considerably

23

A random addressed store computer

next state
logic

decoder

address

arranged in a grid
9 state bits need
only 6 wires to
connect them rather
than the 72 that
a FSM would need

24

If we divide our s state bits into w = s/b words each of b bits, and wire
them up in a grid, we need only (w+ b) wires to join them to the common
logic block. What we then have is the random access memory computer.
Like a generalised finite state automaton it runs in a cycle reading the
present state and modifying the state vector as a result of what it has read
but it is less powerful than an FSA in that at most w bits of the state can
be taken into account each cycle and at most w bits of the state altered in
each cycle.

25

The paradox is that although the FSA is the fastest type of computing ma-
chine, used in CPU’s where speed matters, it is linguistically the least com-
petent.

Suppose that I have a class 2 grammar (T ,N ,S,P)

where

T = {), (, 1, 2, 3 } , N= {s, t, u }, S= s

P= {s→(t) ; t→1u2u→t ; u→s ; u→3 }

This can generate sequences like

(132) or (11322) or (1(132)2)
26

You will find that you can not draw a state transition diagram that is capa-
ble of handling this syntax. In fact it can not be handled by a finite state
machine. The machine would have to remember how many left brackets
and how many 1s it had encountered and in what order they had come so
that it could match them up with right brackets and 2s. Since the sequence
defined by the grammar can be of arbitrary length, no finite memory could
hold the information.

27

To handle a class 2 grammar like this you need to have an infinite stack
memory. As each left bracket or one is encountered, a token representing
it is pushed onto the stack. When parsing, the computer looks at the top of
the stack and at the next character to decide what state to go into.

28

Of course in practice any stack that we build will be of finite depth. This
means that looked at another way a stack machine is still a finite state
automaton.

There will be sequences of symbols that are just too long to parse. For
practical purposes we are willing to accept that some programs are too
big to compile. But we can write our compiler as if it was going to run on a
computer with an infinite stack. This technique allows us to write a program
that only needs to have a small number of rules in it. The complexity of the
parser is then limited by the size of the grammar itself rather than by the
size of the programs it will have to compile.

29

When we take into account context sensitive information, we will need the
full facilities of a random access memory in which we can built up informa-
tion about what identifiers and types have been declared. Broadly speak-
ing, the lexical analysis part of compiling will be handled by algorithms that
mimic a finite state machine. The syntax analysis will be handled using a
stack, and the type checking will use a random access heap. A machine
with a finite random access store is computationally equivalent to a Linear
Bounded Turing machine.

30

