
Compiler Course Level IV: Practical exercise

Paul Cockshott

Contents

Chapter 1. Introduction 4

Chapter 2. Hi 5
2.1. Types 5
2.2. Functions 6
2.3. Expressions 6
2.4. Primitive functions 8
2.5. HiMain function 8

Chapter 3. Semantic discussion 9
3.1. Overloading again 9
3.2. Compile time versus run time storage allocation 10

Chapter 4. Syntax specification and Sable 11
4.1. Hi Syntax 11
4.2. Sable 12

Chapter 5. Your exercise 14
5.1. Transformation of the program to prefix functional form 14
5.2. Generate a full compiler 15

3

CHAPTER 1

Introduction

In this course you will have to produce a compiler written in java for the sim-
ple functional Language Hi. This document describes the language and the steps
that you must undertake to perform the practical work. More details on the prac-
tical work can be found in section 5.1.

4

CHAPTER 2

Hi

This describes the tiny programming language Hi, which is designed to be a
minimal example language for teaching compilers.
It illustrates in minimal form:

(1) An infinite type system.
(2) Functions and parameter passing.
(3) Computationally complete control structures.
(4) Operator overloading.
(5) Separate compilation.
(6) The possibility of parallel evaluation of code.

In this chapter I give an informal description of the syntax and semantics of Hi. In
the exercises you will be given part of an implementation of Hi that uses integer
representation for its numbers, you will have to produce an implementation that
uses floating point representation.

2.1. Types

2.1.1. Scalars. Hi has a single base type: the scalar. These may be treated
as either ASCII characters or as numbers. The representation of numbers - the
number of bits used or whether reals or integers are used is up to the implementor.
I will present an implementation using 32 bit integers, you may be asked to use a
different implementation.
In the source code of the pogram words can be represented as decimal num-

bers. Thus 7, 42, 99 are valid literal representations of scalars. Minus numbers
are written thus:_50
using the underbar character. This is done to make parsing easier by ensuring that
- is always treated as a binary operator.
The type of a scalar is named s
alar.
2.1.2. Vectors. Vectors of arbitrary dimension are supported. A one dimen-

sional vector constructor can be written thus: [67, 90, 12 ℄
or thus'here we go'
In the latter case any sequence of ASCII characters can be embeded in the

string. The Pascal sort of escape mechanism is used, thus ”” is the representation
of the single quote character.
An n dimensional vector constructor for n > 1 is written as a comma separated

list of n− 1 dimensional vector values in [].
The type of an n dimensional vector is named ve
n, thus: ve
1, ve
3 are

valid vector type names. The name ve
0 is an alternative name for the type name
5

2.3. EXPRESSIONS 6s
alar. The number which follows the word ve
 in a type is called the rank of the
type.
2.1.2.1. Null vectors. A null vector is written either as : [℄ or �. A null vector

is of type ve
1.
2.2. Functions

A function maps a list of arguments to a result. Function calls have the form:foo(p,q,r)Where foo is a function name and p,q,r are values.
An example function declaration would bedbl(s
alar a->s
alar) a+a

In this dbl is the name of the function, (s
alar -> s
alar) is the type of the
function and a+a is the expression that evaluates to give the function result. The
identifier a names the parameter to the function.. Parameters must be typed.
Parameter names are sequences of alphabetic characters. Function names are

either sequences of alphabetic characters or, sequences of one or more characters
drawn from the operator alphabet+ - = \ / . ! # & � * ~ | % _ ? < > :
A sequence drawn from the operator alphabet is an operator name.
A function declared with an operator name must have two parameters.
External functions (written in C for instance) can be denoted using the wordexternal in place of the expression that is evaluated to give a result.

2.3. Expressions

An expression is a formula that is evaluated to yield a result. Expressions are
either:

(1) primary values, which are:
(a) literal values (section 2.1.1)
(b) parameter names (section 2.2)
(c) subscripted vectors
(d) vector constructors (section 2.1.2)
(e) conditional values
(f) function calls
(g) bracketed expressions

(2) operator expressions

2.3.1. Primary values.
2.3.1.1. Subscripted vectors. If x is a ve
n valued expression and y is ve
m val-

ued expression then (x#y) is a ve
l valued expression where l = m+ n− 1.
Examples.[1,2,3,5,7℄(4) = 5[1,2,3,5,7℄([3,2,4℄) = [3,2,5℄'hello'(3)= 'l''hello'([2,3,5,1℄) = 'eloh'['me','too'℄(2)= 'too'[[9℄,[8.7℄℄(2) = [8,7℄['me','too'℄(2)([2,1℄)= 'ot'['me','too'℄([[1,2℄,[2,1℄℄)= [['me','too'℄,['too','me'℄℄

2.3. EXPRESSIONS 7'zot'([[1,2℄,[2,1℄℄)= ['zo','oz'℄
If a vector has length n then attempting to subscript by numbers outside the

closed interval [1..n] will yield undefined results.
2.3.1.2. Function calls. A function call has the syntactic form f (x, y, , , , , z)where

f is a function name, and x, y, ..etc are values. The types of the parameter names
declared in the function definition must exactlymatch the types of the correspond-
ing values supplied as actual parameters except as described in the section on op-
erator overloading 2.3.3.
2.3.1.3. Bracketed expressions. Any expression p can be enclosed in brackets

thus (p). Bracketing imposes an association order on operator expressions.
2.3.1.4. Conditional Evaluation. An expression can be conditionally evaluated

using the if .. then ... else ... fi thus where x=4if x>2 then a else b fi
will evaluate to a. The conditional expression evaluates to the then branch if the
expression between if and then is non zero. Otherwise it evaluates to the else
branch.

2.3.2. Operator expressions. In Hi all operators are of the same priority. Ex-
pressions are evaluated right to left. The pre-defined operators and their signa-
tures are:

Operator Signature
+ (scalar , scalar→ scalar) signed addition
* (scalar , scalar→ scalar) integer multiplication
/ (scalar , scalar→ scalar) integer division
- (scalar , scalar→ scalar) signed subtraction
< (scalar , scalar→ scalar) less than
> (scalar , scalar→ scalar) greater than
&& (scalar , scalar→ scalar) and
|| (scalar , scalar→ scalar) or

== (scalar , scalar→ scalar) equal to
(vecn,scalar→vecn− 1) column subscription
(vec2,scalar→vec1) matrix row subscription
| (vecn,vecn→vecn) concatenate
~ (scalar→scalar) not, maps 0→1, 1→ 0
_ (scalar→scalar) negate, multiplies by -1

Examples of operator expressions are:2+2 = 4a-b*
 evaluates as a-(b*
)1-2*3 = _5a*b-
 evaluates as a*(b-
)2*3-1 = 4[1,2,3℄|[7,11,13℄ = [1,2,3,7,11,13℄[[11,12℄,[21,22℄℄#2 = [12,22℄[[11,12℄,[21,22℄℄##2= [21,22℄[1,2℄#1 = 1'hi'|'lo' = 'hilo'

2.5. HIMAIN FUNCTION 8

2.3.3. Overloading of operators. All primitive and user defined operators are
overloaded to work on vectors of higher dimension than those for which they are
defined. Examples using predefined operators are:2+[9,11,7℄ =[11,13,9℄[2,3℄*[3,4℄ =[6,12℄[1,2,3℄+[4,5℄ =[5,7℄[1,2℄*[2,3,2℄ =[2,6℄[[1,2℄,[3,4℄℄-[1,0℄ =[[0.2℄,[2.4℄℄
Similarly functions are overloaded so that givenfoo(s
alar a, ve
1 b, ve
2
-> ve
1)a+b*
(a)
the expressionfoo(1,[[3℄,[4,5℄℄,[[10,20℄,[30,40℄℄)
will yield a result of type ve
2 : [[31℄,[41,101℄℄.

2.4. Primitive functions

The following functions have to be provided by a runtime system and can not
be written in Hi itself.
length. The length(ve
1 → s
alar) function returns the number of elements

in a vector.
getChar. The function getChar(→ s
alar) returns the next character from

standard input.
putChar. The function putChar(s
alar→ s
alar) outputs a scalar to stan-

dard output as a character. It returns its input parameter.
iota. The function iota(s
alar→ve
1) generates a vector containing an as-

cending sequence of integers. Thus iota(4)→ [1, 2, 3, 4]
The following functions should be provided in a Hi implementation either in

a library written in Hi itself or as externals.
getNum. The function getInt(→ s
alar) parses the input to read the next

decimal number.
putNum. The function putInt(s
alar→ s
alar) outputs a scalar to stan-

dard output as a decimal number. It returns its input parameter.

2.5. HiMain function

A Hi program is a sequence of function declarations. One of these must be
called HiMain. This should be declared to have a type that matches its actual return
value. This function will be executed as the main program.

CHAPTER 3

Semantic discussion

The salient features of this language are:

• It is applicative, there are no assignments in the language.
• It is partially functional, in that it supports functions but not higher order
functions.

• It is an array language which provides operations on whole arrays.

Many of the semanic problems with implementing the language stem from the ar-
ray operations, but when considered in conjunction with its applicative character,
these array features open up considerable scope for parallelism in code generation.

3.1. Overloading again

It is worth looking a bit further at the semantics of the array overloading of
functions and operators.
Given an nary function g whose result is of rank p we can describe the ranks

of its formal parameters with an n element vector of integers. Given a function call
we can similarly describe the actual parameters’ ranks. Let us call the first vector
f and the second a. We define the overloading degree δ as

δ = max(ai − fi)∀i=1..n

The result of applying g in this context is then of rank p+ δ. In the case where the
function has more than one overloaded parameter, then the lengths of the over-
loaded result vector v can be defined as

lengthj(v) = min(lengthj−p(o)∀o∈ωj
∀j=p+1..p+δ

where ωj is the set of parameters overloaded by degree j.

3.1.1. examples.

(1) Let a function f be of rank [0, 1, 2] → 1. If it is supplied with actual pa-
rameters of rank [1, 1, 3] then clearly δ = 1, and the rank of the result
will be 2. Suppose the lengths of the first dimension of the actual pa-
rameters are [3, 2, 5] then length(v) the length of the result will be [x, y, z]
for some integers , x, y, z, and the length of the first dimension of the re-

sult, length2(v), in the equation above, will be length([x, y, z]) = 3 =
min([3, 5]), the minimum of the first dimension of the overloaded pa-
rameters.

(2) If the function f above is applied to actual parameters a, b, c of ranks 2, 2, 2
then the result will be of rank 3. If length(a) = [3, 10] and length(b) =
[4, 5, 6] then clearly length1(v)will be a 2 dimensional array [[h, k, l], [r, s, t, u, v]]
for some non-negative integers h, k, l, r, s, t, u, v. Furthermore

length2(v) = [3, 5] = min([length1(a), length1(b)])

9

3.2. COMPILE TIME VERSUS RUN TIME STORAGE ALLOCATION 10

= min([[3, 10], [4, 5, 6]])

Finally the length of the first dimension of the result length3(v) will be 2
since

2 = length([3, 5]) = length(length2(v))

.

3.2. Compile time versus run time storage allocation

The language Hi can be statically type checked. That is to say the compiler can
always determine if an expression returns a scalar or a vector, and if it is a vector,
what the rank of that vector will be. On the other hand the compiler can not be
sure at compile time what the length of a vector produced by an expression will
be.
For this reason it is necessary for vectors to be allocated space on the heap

rather than on the stack. Furthermore, since there is no explicit vector de-allocate
operation, it is desireable to have a garbage collector available.

CHAPTER 4

Syntax specification and Sable

4.1. Hi Syntax

I give below a syntax specification for Hi written in the Sable grammer defini-
tion language.Pa
kage Hi;/*\end{verbatim}\subse
tion{Helpers}Helpers are regular expressions ma
ros used in the definition of terminal symbols of the grammar.\begin{verbatim}*/Helpersletter = [['A'..'Z'℄+['a'..'z'℄℄;digit = ['0'..'9'℄;alphanum = [letter+['0'..'9'℄℄;
r = 13;lf = 10;tab = 9;digit_sequen
e = digit+;letseq = letter+;opsym = '+'|'-'|'='|'\'|'.'|'!'|'#'|'&'|'�'|'*'|'~'|'|'|'%'|'_'|'?'|'<'|'>'|'/';opseq = opsym+;eol =
r lf |
r |lf; // This takes
are of different platformsnot_
r_lf = [[32..127℄ - [
r + lf℄℄;quote = �';all =[0..127℄;s
har = [all-�'℄;not_star = [all - '*'℄;not_star_slash = [not_star - '/'℄;Tokensarrow= '->';bra= '[';
omma= ',';def='def' ;dot='.';else= 'else';external= 'external';fi= 'fi';if= 'if';inline= 'inline';ket= '℄';

11

4.2. SABLE 12lparen = '(';number= digit_sequen
e;rparen = ')';s
alar= 's
alar';semi= ';';then= 'then';ve
= 've
';/*
omposite tokens */id = letseq;op=opseq;
omment = '/*' not_star* '*'+ (not_star_slash not_star* '*'+)* '/';string = quote s
har+ quote;blank = (' '|
r|lf|tab)+;Ignored Tokensblank,
omment;Produ
tionsprogram = fnde
l + ;a
tuallist = expr
omma;a
tualparams= {emptyparams}| {paramlist} a
tuallist* expr;atom = {literal} literal| {paramname} id| {
omp}
omp;body = {expression}expr semi| {external} external semi| {inline} inline string semi;
omp = {ve
tor} ve
tor
on | {if}
onval | {bra
keted} lparen expr rparen;
ond = expr;
onval = if
ond then true else false fi;exp
omma = expr
omma;expr = {opexpr} opexpr | {se
ondary}se
ondary ;false = expr;fnde
l = id lparen params arrow type rparen body |{opde
} op lparen opparam arrow type rparen body;literal = {string} string| {s
alar} number;map = id lparen a
tualparams rparen;opexpr = primary op expr ;opparam = [l℄: param
omma [r℄:param|{monop} param;param = type id;paramlist = param
omma;params = {emptyparams} | {paramlist}paramlist* param;primary = {map} map|atom;se
ondary = {primary}primary| {monad} op atom;true = expr;type = {s
alar} s
alar| {ve
tor} ve
 number ;ve
tor
on = bra a
tualparams ket ;
4.2. Sable

Sable is a compiler compiler developed at the University of McGill in Mon-
treal. It takes in syntax specifications and writes out a collection of Java source
files. These Java files constitute a parser for the language described in the syntax
specification. When given an input stream the parser will parse the input and, if

4.2. SABLE 13

it is syntactically correct, build a syntax tree for the program so parsed. Details of
how to use it are given in the lecture notes.

CHAPTER 5

Your exercise

5.1. Transformation of the program to prefix functional form

In Hi there are three different ways to write expressions that do calculations.

(1) You can use a function call as in f(x,y)
(2) You can use a prefix operator as in ~ a
(3) You can use an infix operator as in a+b

All of these can be considered syntactic sweetening on a single basic mechanism
: function application. Thus in principle one could syntactically transform an ex-
pression of the form:a + (b*2)
to add(a,times(b,2))
and the expression ~ a could become the function callnot(a)
We would not want this in the source code but it may be desirable to perform

the transformation when translating the code. If we do, then there will only be
one place in the compiler that has to deal with generating code for calculations -
where a function call occurs.
As a first phase of your project you are to do the following

(1) Build a parser using Sable for the Hi Grammar
(2) Write classes that will manipulate the syntax tree produced by Sable to
rewrite all operator expressions as function application

(3) Demonstrate this working by printing out the transformed syntax tree.

5.1.1. Sample code. Here is sample code that will remove monadic expres-
sions from the syntax tree. You can extend this class to allow the removal of dyadic
operator expressions as well.pa
kage Hi ;import java.util.*;import Hi.node.*;import Hi.analysis.*;publi

lass MonadRemover extends DepthFirstAdapter {publi
 void outASe
ondaryExpr(ASe
ondaryExpr node){ PSe
ondary se
ond = node.getSe
ondary();if (se
ond instan
eof AMonadSe
ondary){AMonadSe
ondary amonad = (AMonadSe
ondary)se
ond;PAtom atm= amonad.getAtom();

14

5.2. GENERATE A FULL COMPILER 15String id = amonad.getOp().toString() .trim();AMap map = new AMap();TLparen lp = new TLparen();map.setLparen(lp);map.setRparen(new TRparen());map.setId(new TId(id));AParamlistA
tualparams apl = new AParamlistA
tualparams();apl.setExpr(new ASe
ondaryExpr(new APrimarySe
ondary(new APrimary(atm))));map.setA
tualparams(apl);node.setSe
ondary(new APrimarySe
ondary(new AMapPrimary(map)));}}}
5.2. Generate a full compiler

Having transformed the program to an internal form that contains only func-
tion applications, you can now go on to produce a full compiler with type checker
and code generator.

(1) Assume that your first pass over the abstract syntax tree converts it to
functional form.

(2) A second pass can find all the operator and function declarations and
enter these into a symbol table along with their types.

(3) A third pass can walk over the modified syntax tree one more time and
check as it goes that the type rules are not broken. It can also output
assembler code equivalent to each function or expression as it walks over
it.

(4) A fourth phase will use the gnu assembler to convert the assembler file
into a .o file.

(5) A final phase will invoke the gcc compiler to link this .o file with the
run-time library.

(6) It will also be necessary to write a shell script hi
1 that will :
(a) append the postlude file to the source file and put the result in a
temporary file

(b) feed this temporary file into your compiler
(c) invoke the assembler
(d) invoke the gcc compiler

(7) It may also be handy to create a shell script run which will compile and
run the hi program.

1For Hi Compile.

