
Hi - a tiny language

It illustrates in minimal form:

1. An in�nite type system.

2. Functions and parameter passing.

3. Computationally complete control structures.

4. Operator overloading.

5. Separate compilation.

6. The possibility of parallel evaluation of code.
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Hi has a single base type: the scalar. These

may be treated as either ASCII characters or

as numbers. The representation of numbers -

the number of bits used or whether reals or

integers are used is up to the implementor.

I will present an implementation using 32 bit

integers, you may be asked to use a di�erent

implementation.
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In the source code of the pogram words can be

represented as decimal numbers. Thus 7, 42,

99 are valid literal representations of scalars.

Minus numbers are written thus:

_50

using the underbar character. This is done to

make parsing easier by ensuring that - is always

treated as a binary operator.

The type of a scalar is named scalar.
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Vectors

Vectors of arbitrary dimension are supported.

A one dimensional vector constructor can be

written thus: [ 67, 90, 12 ]

or thus'here we go'

In the latter case any sequence of ASCII char-

acters can be embeded in the string. The Pas-

cal sort of escape mechanism is used, thus � �

is the representation of the single quote char-

acter.

An n dimensional vector constructor for n > 1

is written as a comma separated list of n − 1

dimensional vector values in [].
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Vector type names

The type of an n dimensional vector is named

vecn, thus: vec1, vec3 are valid vector type

names. The name vec0 is an alternative name

for the type name scalar. The number which

follows the word vec in a type is called the rank

of the type.

Null vectors

A null vector is written either as : [ ] or �. A

null vector is of type vec1.
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Functions

A function maps a list of arguments to a re-

sult. Function calls have the form: foo(p,q,r)

Where foo is a function name and p,q,r are

values.

An example function declaration would be

dbl(scalar a->scalar) a+a

In this dbl is the name of the function, (scalar

-> scalar) is the type of the function and a+a is

the expression that evaluates to give the func-

tion result. The identi�er a names the pa-

rameter to the function.. Parameters must be

typed.

Parameter names are sequences of alphabetic

characters.

6



Function names are either sequences of alpha-

betic characters or, sequences of one or more

characters drawn from the operator alphabet

+ - = \ / . ! # & @ * ~ | % _ ? < > :

A sequence drawn from the operator alphabet

is an operator name.

A function declared with an operator name

must have two parameters.

External functions ( written in C for instance

) can be denoted using the word external in

place of the expression that is evaluated to give

a result.
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Expressions

An expression is a formula that is evaluated to

yield a result. Expressions are either:

1. primary values, which are:

(a) literal values (section )

(b) parameter names (section )

(c) vector constructors (section )

(d) conditional values

(e) function calls

(f) bracketed expressions

2. operator expressions
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Primary values
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Function calls

A function call has the syntactic form f(x, y, , , , , z)

where f is a function name, and x, y, ..etc are

values. The types of the parameter names de-

clared in the function de�nition must exactly

match the types of the corresponding values

supplied as actual parameters except as de-

scribed in the section on operator overloading

.

Bracketed expressions

Any expression p can be enclosed in brackets

thus (p). Bracketing imposes an association

order on operator expressions.
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Conditional Evaluation

An expression can be conditionally evaluated

using the if .. then ... else ... fi thus where

x=4

if x>2 then a else b fi

will evaluate to a. The conditional expression

evaluates to the then branch if the expression

between if and then is non zero. Otherwise it

evaluates to the else branch.
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Operator expressions

In Hi all operators are of the same priority. Ex-

pressions are evaluated right to left. The pre-

de�ned operators and their signatures are:

Operator Signature
+ (scalar , scalar → scalar) signed addition
* (scalar , scalar → scalar) integer multiplication
/ (scalar , scalar → scalar) integer division
- (scalar , scalar → scalar) signed subtraction
< (scalar , scalar → scalar) less than
> (scalar , scalar → scalar) greater than

&& (scalar , scalar → scalar) and
|| (scalar , scalar → scalar) or

== (scalar , scalar → scalar) equal to
# (vecn,scalar →vecn− 1) column subscription
## (vec2,scalar →vec1) matrix row subscription
| (vecn,vecn→vecn) concatenate
~ (scalar →scalar) not, maps 0→1, 1→ 0

(scalar →scalar) negate, multiplies by -1

12



Examples of operator expressions are:

2+2 = 4

a-b*c evaluates as a-(b*c)

1-2*3 = _5

a*b-c evaluates as a*(b-c)

2*3-1 = 4

[1,2,3]|[7,11,13] = [1,2,3,7,11,13]

[[11,12],[21,22]]#2 = [12,22]

[[11,12],[21,22]]##2= [21,22]

[1,2]#1 = 1

'hi'|'lo' = 'hilo'

Subscripted vectors

Examples

[ 1,2,3,5,7]#(4) = 5

[ 1,2,3,5,7]#([3,2,4]) = [3,2,5]

'hello'#(3)= 'l'

'hello'#[2,3,5,1] = 'eloh'

13



['me','too']##(2)= 'too'

[[9],[8,7]]## 2 = [8,7]

(['me','too']## 2)# [2,1] = 'ot'

['me','too']#([[1,2],[2,1]])= [['me','ot'] ]

'zot'#([[1,2],[2,1]])= ['zo','oz']

If a vector has length n then attempting to

subscript by numbers outside the closed inter-

val [1..n] will yield unde�ned results.



Overloading of operators

All primitive and user de�ned operators are

overloaded to work on vectors of higher di-

mension than those for which they are de�ned.

Examples using prede�ned operators are:

2+[9,11,7] =[11,13,9]

[2,3]*[3,4] =[6,12]

[1,2,3]+[4,5] =[5,7]

[1,2]*[2,3,2] =[2,6]

[[1,2],[3,4]]-[1,0] =[[0.2],[2.4]]

Similarly functions are overloaded so that given

foo(scalar a, vec1 b, vec2 c-> vec1)a+b*c(a)

the expression

foo(1,[[3],[4,5]],[[10,20],[30,40]])

will yield a result of type vec2 : [[31],[41,101]].
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Primitive functions

The following functions have to be provided by

a runtime system and can not be written in Hi

itself.

length

The length(vec1 → scalar) function returns the

number of elements in a vector.

getChar

The function getChar(→ scalar) returns the

next character from standard input.

putChar

The function putChar(scalar→ scalar) outputs

a scalar to standard output as a character. It

returns its input parameter.
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iota

The function iota(scalar →vec1) generates a

vector containing an ascending sequence of in-

tegers. Thus iota(4)→ [1,2,3,4]



The following functions should be provided in

a Hi implementation either in a library written

in Hi itself or as externals.

getNum

The function getInt(→ scalar) parses the in-

put to read the next decimal number.

putNum

The function putInt(scalar→ scalar) outputs

a scalar to standard output as a decimal num-

ber. It returns its input parameter.
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HiMain function

A Hi program is a sequence of function decla-

rations. One of these must be called HiMain.

This should be of signature (→ scalar). This

function will be executed as the main program.

It should return 0 to indicate success or return

a non-zero value to indicate an error code.

.
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