
Hi - a tiny language

It illustrates in minimal form:

1. An in�nite type system.

2. Functions and parameter passing.

3. Computationally complete control structures.

4. Operator overloading.

5. Separate compilation.

6. The possibility of parallel evaluation of code.

1

Hi has a single base type: the scalar. These

may be treated as either ASCII characters or

as numbers. The representation of numbers -

the number of bits used or whether reals or

integers are used is up to the implementor.

I will present an implementation using 32 bit

integers, you may be asked to use a di�erent

implementation.

2

In the source code of the pogram words can be

represented as decimal numbers. Thus 7, 42,

99 are valid literal representations of scalars.

Minus numbers are written thus:

_50

using the underbar character. This is done to

make parsing easier by ensuring that - is always

treated as a binary operator.

The type of a scalar is named scalar.

3

Vectors

Vectors of arbitrary dimension are supported.

A one dimensional vector constructor can be

written thus: [67, 90, 12]

or thus'here we go'

In the latter case any sequence of ASCII char-

acters can be embeded in the string. The Pas-

cal sort of escape mechanism is used, thus � �

is the representation of the single quote char-

acter.

An n dimensional vector constructor for n > 1

is written as a comma separated list of n − 1

dimensional vector values in [].

4

Vector type names

The type of an n dimensional vector is named

vecn, thus: vec1, vec3 are valid vector type

names. The name vec0 is an alternative name

for the type name scalar. The number which

follows the word vec in a type is called the rank

of the type.

Null vectors

A null vector is written either as : [] or �. A

null vector is of type vec1.

5

Functions

A function maps a list of arguments to a re-

sult. Function calls have the form: foo(p,q,r)

Where foo is a function name and p,q,r are

values.

An example function declaration would be

dbl(scalar a->scalar) a+a

In this dbl is the name of the function, (scalar

-> scalar) is the type of the function and a+a is

the expression that evaluates to give the func-

tion result. The identi�er a names the pa-

rameter to the function.. Parameters must be

typed.

Parameter names are sequences of alphabetic

characters.

6

Function names are either sequences of alpha-

betic characters or, sequences of one or more

characters drawn from the operator alphabet

+ - = \ / . ! # & @ * ~ | % _ ? < > :

A sequence drawn from the operator alphabet

is an operator name.

A function declared with an operator name

must have two parameters.

External functions (written in C for instance

) can be denoted using the word external in

place of the expression that is evaluated to give

a result.

7

Expressions

An expression is a formula that is evaluated to

yield a result. Expressions are either:

1. primary values, which are:

(a) literal values (section)

(b) parameter names (section)

(c) vector constructors (section)

(d) conditional values

(e) function calls

(f) bracketed expressions

2. operator expressions

8

Primary values

9

Function calls

A function call has the syntactic form f(x, y, , , , , z)

where f is a function name, and x, y, ..etc are

values. The types of the parameter names de-

clared in the function de�nition must exactly

match the types of the corresponding values

supplied as actual parameters except as de-

scribed in the section on operator overloading

.

Bracketed expressions

Any expression p can be enclosed in brackets

thus (p). Bracketing imposes an association

order on operator expressions.

10

Conditional Evaluation

An expression can be conditionally evaluated

using the if .. then ... else ... fi thus where

x=4

if x>2 then a else b fi

will evaluate to a. The conditional expression

evaluates to the then branch if the expression

between if and then is non zero. Otherwise it

evaluates to the else branch.

11

Operator expressions

In Hi all operators are of the same priority. Ex-

pressions are evaluated right to left. The pre-

de�ned operators and their signatures are:

Operator Signature
+ (scalar , scalar → scalar) signed addition
* (scalar , scalar → scalar) integer multiplication
/ (scalar , scalar → scalar) integer division
- (scalar , scalar → scalar) signed subtraction
< (scalar , scalar → scalar) less than
> (scalar , scalar → scalar) greater than

&& (scalar , scalar → scalar) and
|| (scalar , scalar → scalar) or

== (scalar , scalar → scalar) equal to
(vecn,scalar →vecn− 1) column subscription
(vec2,scalar →vec1) matrix row subscription
| (vecn,vecn→vecn) concatenate
~ (scalar →scalar) not, maps 0→1, 1→ 0

(scalar →scalar) negate, multiplies by -1

12

Examples of operator expressions are:

2+2 = 4

a-b*c evaluates as a-(b*c)

1-2*3 = _5

a*b-c evaluates as a*(b-c)

2*3-1 = 4

[1,2,3]|[7,11,13] = [1,2,3,7,11,13]

[[11,12],[21,22]]#2 = [12,22]

[[11,12],[21,22]]##2= [21,22]

[1,2]#1 = 1

'hi'|'lo' = 'hilo'

Subscripted vectors

Examples

[1,2,3,5,7]#(4) = 5

[1,2,3,5,7]#([3,2,4]) = [3,2,5]

'hello'#(3)= 'l'

'hello'#[2,3,5,1] = 'eloh'

13

['me','too']##(2)= 'too'

[[9],[8,7]]## 2 = [8,7]

(['me','too']## 2)# [2,1] = 'ot'

['me','too']#([[1,2],[2,1]])= [['me','ot']]

'zot'#([[1,2],[2,1]])= ['zo','oz']

If a vector has length n then attempting to

subscript by numbers outside the closed inter-

val [1..n] will yield unde�ned results.

Overloading of operators

All primitive and user de�ned operators are

overloaded to work on vectors of higher di-

mension than those for which they are de�ned.

Examples using prede�ned operators are:

2+[9,11,7] =[11,13,9]

[2,3]*[3,4] =[6,12]

[1,2,3]+[4,5] =[5,7]

[1,2]*[2,3,2] =[2,6]

[[1,2],[3,4]]-[1,0] =[[0.2],[2.4]]

Similarly functions are overloaded so that given

foo(scalar a, vec1 b, vec2 c-> vec1)a+b*c(a)

the expression

foo(1,[[3],[4,5]],[[10,20],[30,40]])

will yield a result of type vec2 : [[31],[41,101]].

15

Primitive functions

The following functions have to be provided by

a runtime system and can not be written in Hi

itself.

length

The length(vec1 → scalar) function returns the

number of elements in a vector.

getChar

The function getChar(→ scalar) returns the

next character from standard input.

putChar

The function putChar(scalar→ scalar) outputs

a scalar to standard output as a character. It

returns its input parameter.

16

iota

The function iota(scalar →vec1) generates a

vector containing an ascending sequence of in-

tegers. Thus iota(4)→ [1,2,3,4]

The following functions should be provided in

a Hi implementation either in a library written

in Hi itself or as externals.

getNum

The function getInt(→ scalar) parses the in-

put to read the next decimal number.

putNum

The function putInt(scalar→ scalar) outputs

a scalar to standard output as a decimal num-

ber. It returns its input parameter.

17

HiMain function

A Hi program is a sequence of function decla-

rations. One of these must be called HiMain.

This should be of signature (→ scalar). This

function will be executed as the main program.

It should return 0 to indicate success or return

a non-zero value to indicate an error code.

.

18

