
SIMD code generation

Paul Cockshott

1

IBM/Sony Cell

Classic Microprocessors

80486, SPARC, MIPS

Add SIMD instructions for
graphics applications
MMX, 3DNOW, SSE
UltraVec etc

Replicate the Vector Units

ANSI C
ISO Pascal etc

C with assembler
C++ short vector
 classes

Vector Pascal

C with interprocess
harness like PVM
Vector Pascal with
extended Units

Sony Emotion Engine

2

Does Vector Pascal di�er from Vector exten-
sions to C for SIMD microprocessors?

3

Feature C extension Vector Pascal
Vector types small set of �xed arrays of any

size vectors size or rank
Vector Ops procedural all operators extended

syntax including user de�ned
Saturated procedural +: -:
math syntax or Pixel type
slicing not supported supported

4

Summary of new Features in VP

Overloading of all operators to array types
Functions map over arrays
Matrix transpose operator
Array permutation operators
Array slices
Generalised reduction operations
Saturated arithmetic operators +:, -:
Operators MIN, MAX
Conditional expressions
Operator overloading
Polymorphic functions
Dimensioned types
Pixels as �xed point type
Input and output of scalar types
Input and output of arrays
Optional garbage collection
Literate programming support
Sets of arbitrary size
and non ordinal type

5

An example program listing

program tables ;
var

Let α, b, c, d ∈ array[1..5] of integer;
Let t ∈ array[1..5]of array [1..5] of in-
teger;

begin
α← ι0;
t← α × α T ;

times
tables write(t);

b← ∑t T ;
sum of
columns writeln(b);

powers
of two c← 2ι0;

squares
up to
25

d← diag t ;
t← c × d T ;
writeln(c, d);
write(t);
output table of i2 ∗ 2i

end .

6

Output produced

1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25

15 45 90 150 225

2 4 8 16 32
1 4 9 16 25

2 4 8 16 32
8 16 32 64 128
18 36 72 144 288
32 64 128 256 512
50 100 200 400 800

7

And the same as a source program

program tables;
var alpha,b,c,d:array[1..5] of integer;
t:array[1..5]of array [1..5] of integer;
begin
alpha:= iota 0;
t:= alpha*trans alpha;
write(t);{times tables}
b:=\+ trans t;
writeln(b);{ sum of columns}
c:= 2 pow iota 0; { powers of two }
d:= diag t; { squares up to 25}
t:= c * trans d;
writeln(c,d);
write(t);

(*! output table of i^2*2^i *)
end.

8

../ilcg/system.eps not found!

9

ILCG

The purpose of ILCG (Intermediate Language
for Code Generation) is to mediate between
CPU instruction sets and high level language
programs. It poth provides a representation
to which compilers can translate a variety of
source level programming languages and also
a notation for de�ning the semantics of CPU
instructions.

10

Its purpose is to act as a notation for two
types of programs:

1. ILCG structures produced by a HLL com-
piler are input to an automatically con-
structed code generator, working on the
syntax matching principles described in
[?]. This then generates equivalent se-
quences of assembler statements.

2. Machine descriptions written as ILCG source
�les are input to code-generator-generators
which produce java programs which per-
form function (1) above.

11

So far one HLL compiler producing ILCG
structures as output exists: the Vector Pas-
cal compiler. There also exists two code-
generator-generators which produces code gen-
erators that use a top-down pattern match-
ing technique analogous to Prolog uni�ca-
tion.

12

ILCG is intended to be �exible enough to
describe a wide variety of machine architec-
tures. In particular it can specify both SISD
and SIMD instructions and either stack-based
or register-based machines. However, it does
assume certain things about the machine:
that certain basic types are supported and
that the machine is addressed at the byte
level.

13

Data formats

The data in a memory can be distinguished
initially in terms of the number of bits in
the individually addressable chunks. The ad-
dressable chunks are assumed to be the pow-
ers of two from 3 to 7, so we thus have
as allowed formats:word8, word16, word32,
word64, word128.

When data is being explicitly operated on
without regard to its type, we have termi-
nals which stand for these formats: octet,
halfword, word, doubleword, quadword.

14

Typed formats

Each of these underlying formats can contain
information of di�erent types, either signed
or unsigned integers, �oats etc. ILCG allows
the following integer types as terminals :int8,
uint8, int16, uint16, int32, uint32, int64,
uint64 to stand for signed and unsigned in-
tegers of the appropriate lengths.

The integers are logically grouped into signed
and unsigned. As non-terminal types they are
represented as byte, short, integer, long and
ubyte, ushort, uinteger, ulong.

15

Floating point numbers are either assumed to
be 32 bit or 64 bit with 32 bit numbers given
the nonterminal symbols �oat,double. If we
wish to specify a particular representation of
�oats of doubles we can use the terminals
ieee32, ieee64.

16

Ref types

ILCG uses a simpli�ed version of the Algol-
68 reference typing model. A value can be a
reference to another type. Thus an integer
when used as an address of a 64 bit �oating
point number would be a ref ieee64 . Ref
types include registers. An integer register
would be a ref int32 when holding an inte-
ger, a ref ref int32 when holding the address
of an integer etc.

17

Type casts

The syntax for the type casts is C style so
we have for example (ieee64) int32 to rep-
resent a conversion of an 32 bit integer to
a 64 bit real. These type casts act as con-
straints on the pattern matcher during code
generation. They do not perform any data
transformation. They are inserted into ma-
chine descritions to constrain the types of
the arguments that will be matched for an
instruction. They are also used by compilers
to decorate ILCG trees in order both to en-
force, and to allow limited breaking of, the
type rules.

18

Arithmetic

The allowed dyadic arithmetic operations are
addition, saturated addition, multiplication,
saturated multiplication, subtraction, satu-
rated subtraction, division and remainder with
operator symboles +, +:, *, *:, -, -:, div ,
mod..

The concrete syntax is pre�x with bracketing.
Thus the in�x operation 3 + 5 ÷ 7 would be
represented as +(3 div (5 7)).

19

Memory

Memory is explicitly represented. All accesses
to memory are represented by array opera-
tions on a prede�ned array mem. Thus loca-
tion 100 in memory is represented asmem(100).
The type of such an expression is address. It
can be cast to a reference type of a given for-
mat. Thus we could have (ref int32)mem(100)

20

Assignment

We have a set of storage operators corre-
sponding to the word lengths supported. These
have the form of in�x operators. The size of
the store being performed depends on the
size of the right hand side. A valid storage
statement might be (ref octet)mem(299)
:=(int8) 99

The �rst argument is always a reference and
the second argument a value of the appro-
priate format.

If the left hand side is a format the right hand
side must be a value of the appropriate size.
If the left hand side is an explicit type rather
than a format, the right hand side must have
the same type.

21

Dereferencing

Dereferencing is done explicitly when a value
other than a literal is required. There is a
dereference operator, which converts a ref-
erence into the value that it references. A
valid load expression might be: (octet)↑ (
(ref octet)mem(99))

The argument to the load operator must be
a reference.

22

Machine description

Ilcg can be used to describe the semantics of
machine instructions. A machine description
typically consists of a set of register decla-
rations followed by a set of instruction for-
mats and a set of operations. This approach
works well only with machines that have an
orthogonal instruction set, ie, those that al-
low addressing modes and operators to be
combined in an independent manner.

23

Registers

When entering machine descriptions in ilcg
registers can be declared along with their
type hence register word EBX assembles['ebx']
;

reserved register word ESP assembles['esp'];

would declare EBX to be of type ref word.

24

Aliasing

A register can be declared to be a sub-�eld of
another register, hence we could write alias
register octet AL = EAX(0:7) assem-
bles['al'];

alias register octet BL = EBX(0:7) as-
sembles['bl'];

to indicate that BL occupies the bottom 8
bits of register EBX. In this notation bit zero
is taken to be the least signi�cant bit of a
value. There are assumed to be two pregiven
registers FP, GP that are used by compilers
to point to areas of memory. These can be
aliased to a particular real register.register
word EBP assembles['ebp'] ;

alias register word FP = EBP(0:31) as-
sembles ['ebp'];

25

Additional registers may be reserved, indicat-
ing that the code generator must not use
them to hold temporary values:

reserved register word ESP assembles['esp'];

Register sets

A set of registers that are used in the same
way by the instructionset can be de�ned. pat-
tern reg means [EBP |EBX|ESI|EDI|ECX|EAX|EDX|ESP]
;

pattern breg means[AL|AH|BL|BH|CL|CH|DL|DH];

All registers in an register set should be of
the same length.

26

Register Stacks

Whilst some machines have registers organ-
ised as an array, another class of machines,
those oriented around post�x instructionsets,
have register stacks.

The ilcg syntax allows register stacks to be
declared:

register stack (8)ieee64 FP assembles['
'] ;

Two access operations are supported on stacks:

PUSH

is a void dyadic operator taking a stack of
type ref t as �rst argument and a value of
type t as the second argument. Thus we
might have: PUSH(FP,↑mem(20))

POP

is a monadic operator returning t on stacks of
type t. So we might havemem(20):=POP(FP)

27

Vector registers

register quadword XMM0
assembles['XMM0'];

alias register ieee32 XMM00=XMM0(0:31)
assembles['xmm0'] ;

alias register ieee64 XMM0R64=XMM0(0:63)
assembles['xmm0'] ;

alias register ieee32 vector (4) XMM0R324=XMM0(0:127)
assembles['XMM0'];

alias register ieee64 vector (2) XMM0R642=XMM0(0:127)
assembles['XMM0'];

28

Use of M4 macro processor to de�ne short-
cuts for type casts

de�ne(singlequad, (ieee32 vector(4))$1)

de�ne(refsinglequad,(ref ieee32 vector(4))$1)

de�ne(i8x16, int8 vector(16))

de�ne(u8x16, uint8 vector(16))

de�ne(i16x8, int16 vector(8))

de�ne(i32x4, int32 vector(4))

de�ne(r64x2, ieee64 vector(2))

de�ne(i8x16, int8 vector(16))

de�ne(i16x8, int16 vector(8))

de�ne(i32x4, int32 vector(4))
29

Declare operators

operation add means + assembles ['add'];
operation and means AND assembles['and'];
operation or means OR assembles['or'];
operation xor means XOR assembles['xor'];
operation sub means - assembles ['sub'];
operation mul means * assembles ['mul'];

30

Instruction formats

An instruction format is an abstraction over
a class of concrete instructions. It abstracts
over particular operations and types thereof
whilst specifying how arguments can be com-
bined.

pattern

RR(operator op, anyreg r1, anyreg r2,
int t)

means[r1:=(t) op(↑((ref t) r1),↑((ref t)
r2))]

assembles[op ' ' r1 ',' r2];

In the above example, we specify a register to
register instruction format that uses the �rst
register as a source and a destination whilst
the second register is only a destination. The
result is returned in register r1.

31

We might however wish to have a more pow-
erful abstraction, which was capable of tak-
ing more abstract apeci�cations for its argu-
ments. For example, many machines allow
arguments to instructions to be addressing
modes that can be either registers or mem-
ory references. For us to be able to specify
this in an instruction format we need to be
able to provide grammer non-terminals as ar-
guments to the instruction formats.

32

For example we might want to be able to say

instruction pattern

RRM(operator op, reg r1, maddrmode
rm, int t)

means [r1:=(t) op(↑((ref t)r1),↑((ref t)
rm))]

assembles[op ' ' r1 ',' rm] ;

This implies that addrmode and reg must be
non terminals. Since the non terminals re-
quired by di�erent machines will vary, there
must be a means of declaring such non-terminals
in ilcg.

33

An example would be:

pattern regindirf(reg r)
means[↑(r)]
assembles[r];
pattern baseplusoffsetf(reg r, signed s)
means[+(↑(r) ,const s)]
assembles[r '+' s];
pattern addrform
means[baseplusoffsetf| regindirf];
pattern maddrmode(addrform f)
means[mem(f)]
assembles['[' f ']'];

This gives us a way of including non terminals
as parameters to patterns.

34

Vector instructions

instruction pattern
OPPD(soperator op, xmmr64 r2,xmmr64 r1)
means[(ref r64x2) r1 :=
op((r64x2) ^(r1), (r64x2)^(r2))]

assembles[op 'pd ' r1 ',' r2];

35

Control structures

Ilcg provides goto and if then as control
structures along with explicit labels - it is
thus close to machine language.

instruction pattern GOTO(jumpmode l)
means[goto l]
assembles['jmp ' l];
instruction pattern
IFLITGOTO(label l,addrmode r1,

signed r2,condition c,
signed t,int b)

means[if((b)c((t) ^(r1),const r2))goto l]
assembles[' cmp 't' ' r1 ', ' r2

'\n j' c ' near ' l];

36

It also allows for loops.

instruction pattern
REPMOVSD(countreg s,maddrmode m1,

sourcereg si, destreg di)

means[for (ref int32)m1:=0 to ^(s) step 1 do

(ref int32)mem(+(^(di),*(^((ref int32)m1),4))):=
^((ref int32)mem(+(^(si),*(^((ref int32)m1),4))))

]

assembles[' inc ecx\n rep movsd'];

This is useful both for block moves and op-
timizing vector operations. Code generator
automatically vectorises for-loops looking for
vector intsructions to do this.

37

Choice of Instructions

Instructions are chosen in the priority order
given in a list of instructions at the end of
the ILCG machine spec.

instructionset[
LDW|LDB|LDBU|LDH|LDHU|LDHH|LDHUH|
STW|STH|STB|
RI|RRR|NOR|NOTOP| RRRieee32|RRRBieee32|
IFGOTO|IFBOOL|SET| PLANT|GOTO|GOTOINDIRECT|
PLANTICONST|PLANTSCONST|
PLANTBCONST|PLANTWCONST|
/* make mov last to prevent redundant moves */
MOVIA|MOVI|MOVIU |MOVI32|MOV|

PUSHR]

38

Use of Ilcg

1. Write a standard parser using top down
of machine generated parsing techniques

2. Generate a tree of the code in ILCG for-
mat

3. Pass the tree to an automatically con-
structed tree walker which walkes over it
to produce assembler

39

A:

program vecadd;
type byte=0..255;
var v1,v2,v3
:array[0..6399]of byte;
i:integer;
begin
v3:=v1 + v2;

end.

C:

cmp DWORD[ebp+-19208],6399
jg NEAR l4847d577
mov ecx, DWORD [ebp+-19208]
movq MM1, [ecx+ebp +-6400]
paddb MM1, [ecx+ebp +-12800]
movq [ecx+ebp +-19200],MM1
add DWORD [ebp+-19208], 8
jmp l4843d577
l4847d577:

↓ ↑
B: (ref uint8 vector (6400))mem(+(�((ref int32)ebp),-19200)):=
+(�((ref uint8 vector (6400))mem(+(�((ref int32)ebp),-6400))),
�((ref uint8 vector (6400))mem(+(�((ref int32)ebp),-12800)))
)

A normal Pascal unit has 4 main parts:

1. A uses list which speci�es which other
units it imports types, data or procedures
from.

2. An interface part which speci�es the iden-
ti�ers that are to be exported from the
unit.

3. An implementation part that contains
both identi�ers that are private to the
unit and also the procedure bodies of any
procedures exposed in the interface part.

4. Finally there is an initialisation block that
executes prior to program startup time,
to ensure that variables in the block are
appropriately intialised.

40

program skyslider;
uses dyanmics, views,cmath;
....

If we want to place this on a PS2 we change
the program header to:

program skyslider;
uses dyanmics[0], views[1],cmath;
....

Thus indicating that the unit dynamics was to
be mounted on attached processor 0 (APU)
and views was to be mounted on attached
processor 1.

41

The fact that memory is not shared between
units imposes restraints on what identi�ers
may be exported from a unit that is being
compiled to an APU. Only constants, types
and procedures can be exported from a unit
running on an APU.

Units used by units that are mounted on an
APU must themselves be compiled and mounted
on the APU. If the unit dynamics made use of
a further unit cmath handling complex maths
then a copy of cmath would be generated in
the instructionset of the attached processor.
This copy of cmath would be distinct from
that seen and used by the main program.

42

The absence of shared memory has other im-
plications for what is exported accross unit
boundaries. If a procedure is exported from
an APU mounted unit, then that procedure
must use call by value semantics and, more-
over, the types passed as parameters must
not include any pointers.

The absence of var parameters prevents pro-
cedures from passing any information back to
the calling environment.

Functions on the other hand, return results
by a copy back mechanism, which is adapt-
able to the DMA mechanisms used to trans-
fer information between processors on the
PS2 or the PS3.

43

UNIT views;

INTERFACE

CONST maxv=40;

TYPE matrix4x4= array[1..4,1..4] of real;
coordblk = array[1..maxv,1..4] of real;
PROCEDURE setviewtransform(m:matrix4x4);
PROCEDURE processvertices(c:coordblk);
FUNCTION getvertices:coordblk;

IMPLEMENTATION

VAR t:matrix4x4;
transformed:coordblk;
PROCEDURE setviewtransform;
BEGIN t:=m END;
PROCEDURE processvertices;
BEGIN
{ do matrix multiply }
transformed := t . c

END;
FUNCTION getvertices;
BEGIN getvertices:=transformed END;

END.

44

Status

Work on the PS2 compiler reached the stage
that allows programs to run in SIMD mode
on the MIPS control processor using VPU0,
but the DMA transfer of parameters to units
has not yet been implemented.

45

Conclusion

The language Vector Pascal alreay provides
a number of the key elements needed to sup-
port microgrids. In particular it has

1. Support for the SIMD model of program-
ming supported by machines like the Cell.

2. A readily retargetable backend that al-
lows con�guration to new instructionsets.

3. Dynamically loadable code generators so
that hetrogenous code can be output.

Further, we have shown above that a rel-
atively simple extension to the Pascal Unit
syntax allows both the parameterisation of
units to multiple hetrogenous cores, and pro-
vides a natural model for coarse grained par-
allelism without the need to introduce any
new control constructs beyond those already
provided by procedures and functions.

46

