
Useful x86 instructions

This is a very small subset of the available in-

structions but should be enough for your pur-

poses.



Data movement

mov mem, reg/lit

example

mov [ebp+12],eax

mov dword[esp+4],12

means

store the right operand in the memory location

on the left

1



mov reg, mem/reg/lit

example

mov ebx,1

mov ecx,[esi+ebp]

mov eax,ebx

means

load the right operand into the register on the

left

2



movss mem, reg

example

movss [ebp+12],xmm0

means

store the right operand in the memory location

on the left. The right operand is the bottom

32 bits of an xmm register.

3



movss reg, mem/reg

example

movss xmm1,[esi+ebp]

movss xmm1,xxm2

means

load the right operand into the register on the

left, the left operand is the lower 32 bits of a

xmm register and the data should be a 32 bit

�oat

4



movups mem, reg

example

movss [ebp+12],xmm0

means

store the right operand in the memory location

on the left. The right operand is a 128 bit xmm

register.

5



movss reg, mem

example

movups xmm1,[esi+ebp]

means

load the right operand into the register on the

left, the left operand is a 128 bit xmm register

6



push mem/reg/lit

example

push dword 10

push dword[esi+ebp+40]

push ecx

means

push the operand on stack, pre-decrementing

the esp register by 4

7



pop mem/reg

example

pop dword[esi+ebp+40]

pop ecx

means

the operand is assigned the value on the top

of stack and the stack pointer is then incre-

mented by 4

8



�d mem

example

fld dword[esi+ebp+40]

means

the operand which is assumed to be a 32 bit

�oating point value is pushed on the fpu stack

9



�ld mem

example

fild dword[esi+ebp+40]

means

the 32bit integer operand is pushed on the fpu

stack as a �oating point number

10



fstp mem

example

fstp dword[esi+ebp+40]

means

the operand is assigned the 32bit �oating point

value on the fpu stack the fpu stack is then

popped

11



�stp mem

example

fistp dword[esi+ebp+40]

means

the 32bit �oating point value on the fpu stack

is converted to an integer and stored in the

operand, the fpu stack is then popped.

12



Arithmetic

Integer arithmetic instructions can be divided

into 3 classes

1. Add, subtract, and, or, xor.These are treated

absolutely regularly as two operand instruc-

tions as shown below in section ??.

2. Multiply, this comes in both 2 and 3 operand

forms.

3. Divide and Modulus, these are irregular and

make use of speci�c registers

13



Regular integer arithmetic

These take the form

operation dest, src

and mean dest:= dest operation src

the following operation codes are allowed

add, sub, and, or, xor

14



The table shows the allowed combinations of

destination and source

Operand combinations for regular arithmetic

dest src

register register
register constant
register memory
memory register
memory constant

Examples

add esp,5

sub eax, ebx

and [eax+12],ebp

add dword[esi+edi],1

add esi,[edi]

15



Multiply

imul reg,reg/mem

This is functionally the same as the regular 2

operand integer arithmetic instructions.

Example

imul ebx, dword [ebp-26]

imul reg,reg,const

This three operand form is particularly useful

for computing array o�sets.

Example

imul esi,eax,16

16



Divide/modulus

A single instruction is used for both division

and modulus.

idiv reg/mem

The 64 bit value in edx:eax is divided by the

operand, the quotient is placed in eax, and the

remainder is placed in edx.

Example

idiv [ebp+64]

17



Floating point arithmetic

The �oating point stack can be used to per-

form arithmetic in a post�x manner. The fol-

lowing fpu opcodes operate on the top two

items on the fpu stack:

faddp st1

fsubp st1

fdivp st1

fmulp st1

These perfrom an operation between the top

of the fpu stack (st0) and st1, store the result

in st1, then pop the stack so that st1 becomes

the new top of stack. Bear in mind that the

maximum depth of the fpu stack is 8. Opera-

tions are performed using 80bit internal �oat-

ing point representation.

18



Vector arithmetic

It is possible to perform parallel operations on

vectors of 32 bit �oats using the xmm regis-

ters. These instructions have the general for-

mat

operationPS xmmreg,xmmreg

For example

mulps xmm0,xmm5

the su�x PS stands for Packed Single precison

�oats. In this case the 4 �oats in xmm0 are

multiplied by the corresponding �oats in xmm5

and the result stored in xmm0.

19



The other useful vector arithmetic instructions

in this context are:

addps, subps, divps

These instructions also exist in a memory to

register form but for these to be used you have

to guarantee that the operands are aligned on

16 byte memory boundaries. Since this is com-

plicated to ensure, I suggest that you restrict

yourself to the register to register forms of

these instructions.

20



Scalar arithmetic

It is also possible to perform scalar arithmetic

in the low order 32 bit words of the xmm regis-

ters. For instance, you can do all of the vector

operations by using the subscript SS standing

for Scalar Single precision after the operation

thus:

addss xmm2,xmm0

would add the bottom 32 bit �oat in xmm0 to

the bottom �oat in xmm2 and leave the result

in xmm2.

21



Conversion instructions

operation dest src

cvtsi2ss xmm register general register
cvtsi2ss xmm register memory
cvtss2si general register xmm register
cvtss2si memory xmm register

If you are going to use these scalar instruc-

tions it is worth taking note of the conversion

instructions cvtsi2ss and cvtss2si which con-

vert signed doubleword integers to single pre-

cision �oats and vice versa.

Examples

cvtsi2ss xmm4, ebx

cvtsi2ss xmm3, [ebp+20]

cvtss2si eax, xmm0

22



Integer comparisons

Comparison instructions exist which will place

the results of comparison in the �ags. The cmp

instruction compares two integers.

Examples

cmp eax, 12

cmp eax, ecx

cmp ebx, [ebx+16]

23



Set

The result of the comparison is written to the

�ags and can be used either by a SET instruc-

tion or by a conditional jump instruction.

For instance to test if the eax register was less

then 10 we could write

cmp eax,10

setl bl

At the end of this the bl register will contain

a boolean value of 1 if eax had been less than

10 and 0 if it had been greater than 10. The

su�xes used by the SET instruction indicate

which comparison is being tested. The su�xes

that are most likely to be of use to you are L,

G and E standing for Less than, Greater than,

and Equal.

24



fcomip st0,st1

The instruction fcomip compares the top two

elements of the �oating point stack, popping

the top one from the stack and placing the

result of the comparison in the cpu �ags.

It may be necessary to discard the next item

on the fpu stack using an fincstp instruction

which increments the �oating point stack pointer.

25



cmpss

There are a family of comparison operations

that work between scalar xmm registers. These

leave an integer result in one of the registers

thus:

cmpltss xmm2,xmm4

would compare the �oat in the bottom 32 bits

of xmm2 with the corresponding �oat in xmm4

and set xmm2 to all 1s if xmm2 was less than

xmm4, otherwise it would set xmm2 to zero.

26



Scalar comparisons

instruction means

cmpltss xmma,xmmb xmma<xmmb
cmpeqss xmma,xmmb xmma=xmmb
cmpnless xmma,xmmb xmma>xmmb

27



comiss

Comiss is an alternative technique for perform-

ing scalar comparisons it compares the con-

tents of two xmm registers and returns the

results in the cpu �ags.

Example

comiss xmm1, xmm7

28



Branches

Branches can be unconditional and direct:

jmp lab

or uncoditional and indirect:

jmp dword[ebp+10]

or conditional on a condition code and direct:

jl lab1

jg lab3

je lab4

29



Calls

Calls can be u direct:

call lab

or indirect:

call dword[ebp+10]

in either case the current value of the eip reg-

ister is pushed on the stack and the eip reg-

ister loaded from the operand. Returns are

perfomed using the ret instruction which pops

the top of stack into the eip register.

30


