Primitive Operations in Hi

Q)(

Q(

. Literals

. Parameters

. Monadic

. Dyadic

. Conditional

. Array indexing

Literal atoms

We have the grammar rule

= {literal} literal
| {paramname} id
| {comp}comp;

atom

And we need a visitor method for literal atoms:

//atoms
public void
outALiteralAtom(ALiteralAtom node)
{
types.put (node,
types.get(node.getLiteral()));

this just records the type of the atom node to
be the same as the type of the literal

The grammar defines literals to be strings or
numbers

literal = {string} string

| {scalar} number;

this means we need visitor methods for string
literals and number literals, thise will be called
iINAStringLiteral, outAStringLiteral etc

Here is an example visitor to handle numeric
literals

public void outAScalarLiteral (AScalarLiteral n
{
types.put (node, new Integer(0));
writer.println("push "+node) ;

This first associates the node with the rank O
in the type table since it is a scalar. It then

outputs assembler to push the scalar onto the
main stack of the processor.

Word size

In past years the Hi compiler has been targeted
at the Pentium.

For simplicity all values, whether integer, pointer,
or character are stored in a single machine
word.

In the past this was a 32 bit word. Due to the
upgrade of machines to Opteron class proces-
sors, we now use 64 bit words. This is rather
wasteful, but we retain it to allow a simple
compiler to be built.

String literals issues:

1. Converting from source form to actual string

2. Internal representation

Source form

'abc’ , 'ab\ndef’ , 'a \'quoted\’ string’

If one performs a toString() call on the nodes
returned by the Sable lexer you get the source

of the lexeme followed by a space. Thus for
the above we get back as Java strings:

u!abcr u’ urab\\ndefv u’
“a \\'quoted\\’ string" “

We must

1. strip of trailing spaces and single quotes

2. deal with escape chars "\\' in the source
string.

Internal representation

String literals are a denotation for Hi vectors
of rank 1. The elements of the string are num-
bers. This requires us to know about the in-
ternal format of vectors. This is what we want
to achieve:

ab\ ndef

»
|

6 | ength of vector

97 a

98 b

10 new | i ne

100 d

101 e

102 f

The following code sequence would put a pointer
on the stack to a vector of the appropriate for-
mat for the string 'ab\ndef’

push $11111str
jmp 11111 # jump past the chars
11111str:.quad 6

.quad 97

.quad 98

.quad 10

.quad 100

.quad 101

.quad 102

11111: # continue from here

public void outAStringlLiteral (AStringLiteral node)
{

String past=newlab();
String s=node.toString();
// count backslashes
int backs=0;
for(int i=1;i<s.length()-2;i++)

if (s.charAt (i)==>\\?){backs++;i++;}
writer.println(

"push $"+past+"str\n’+

“‘jmp "+past+"\n"+

past+"str:.quad "+(s.length()-3-backs));
for(int i=1;i<s.length()-2;i++){

if (s.charAt (i) !=>\\?)

writer.println(".quad "+(int)s.charAt(i));

elseq{

i++;

b

if (s.charAt(i)==’n’)
{writer.println(".quad "+(int)’\n’);}
else
{writer.println(".quad "+ (int)s.charAt(i)
}
}
writer.println(past+":");

types.put(node, new Integer(1));

Parameters

Identifiers occur in two contexts in Hi, as pa-
rameters to functions and as function names.
We deal next with the the translation of names.

We associate with each name currently in scope
a description. If it is a parameter this descrip-
tion is of class param

class param{
int rank,offset;
param(int r,int o){rank=r; offset=o;}

If the name denotes an nary function then we
associate with it a Vector of length n+1, for
which the elements 0..n-1 indicate the param-
eter ranks and element n indicates the rank of

the result.
10

In what follows I initially present the parameter
mechanism that are used on 32 bit Pentium
family processors.

Subsequently I will look at how parameters are
passed for 64 bit Opteron family (x86-64) pro-
cessors, since calling works differently on these.

11

Interpreting the offset field of a param

foo(x,y)
> AV
+12 »l X call frane
+8 ret addr
ebp ol Link
\/
st ack

Thus for x we would generate

push dword[ebp+8]

etc

In a Pentium you just push parameters on the
stack and then make a call.

12

Opteron style calling

In an Opteron class processor parameters are
mainly passed in registers.

If the parameter is INTEGER or POINTER,
the next available register of the sequence %rdi,

%r rsi, %rdx, %rcx, %r8 and %r9 is used

If the parameter is floating point the next avail-
able SSE register is used, the registers are

taken in the order from %xmmO0 to %xmm7

If insufficient registers are available, then re-
maining parameters are passed on stack

13

Saving parameters

Since functions may be recursive we can not
leave parameters in registers.

We thus have to save them on the stack after
function entry.

We give them an address below the frame pointer.

Suppose we have f(a,b), then on entry we have
the following code

enter 0,0
push %rdi # save a offset will be %rbp -8
push Jrsi # save b offset will be %rbp -16

14

Opteron style returning of results

Integer and pointer results return in %rax

Floating point results in %xmm0

15

Monadic operations

These are of the form

{monad} op atom;

for instance we might have 15 for the factorial
function if we had implemented that.

! (scalar x->scalar)
if x<=1 then 1 else x* !(x-1) fi;
HiMain(->scalar)putNum(!5)*0;

This will print

120

16

Sequence of operations:

1. Look up the operator and report an error
if it was not declared

2. Check that it takes only 1 argument

3. Check that the type of the actual argument
matches the type of the declared argument

4. Look up the implementation of the opera-
tor

5. Print the implementation

17

Operator implementations:

1. Create a hash table indexed on the opera-
tor name

2. If the operator is declared inline, store the
assembler string for the operator as the im-
plementation.

3. If the operator is declared as a high level
operator then allocate a unique label - for
instance the hex expansion of the charac-
ters of the operator, so ! might be repre-
sented as OP21

4. Place call to this in the implementation
“call OP21\n"

18

5. Preceed the code generated for the body
of the operator with this label.

Example

So putNum(!5) compiles to
push $5

pop %rdi

call 0P21

push Yrax

pop %rdi

call putNum

If we are smart we can optimize this to:

mov $4 , Yrdi
call 0P21

mov jrax, hrdi
call putNum

and the operator declaration

! (scalar x->scalar)
if x<=1 then 1 else x* !(x-1) fi;

compiles to

OP21:enter $0,$0

followed by the body of the ! code
followed by the return code

pop %rax

leave

ret O

19

whereas the expression x-1

would compile simply to

push $1

pushq -8(%rbp) # push x

pop %rax

subq 0(%rsp),%rax # subtract top of stack (1)

movq f%rax,0()rsp) # store result on stack
q p

All this is assuming that we have a prior defi-
nition of binary - as:

- (scalar x,scalar y->scalar)inline ’pop %rax
subq 0(/rsp),%rax
movq %rax,0(%rsp)’;

20

push $1

pushqg -8(%rbp) # push x

pop %rax # X now in rax

subg 0(%rsp),%rax # subtract top of stack (1)

movq %rax,0(%rsp) # store result on stack

can be simply optimised to

push $1

mov -8(%rbp) , %rax # load x into rax
subq 0(%rsp),%rax #-

movq A4rax,0(%rsp)

A more sophisticated optimisation might be

mov -8(/%rbp) , %rax # load x
dec Yrax

push Yrax

21

Note that the above optimisation involves spot-
ting that there is a special decrement instruc-
tion available.

Conditionals

Let us look in more detail at what we generate
for the conditional expression in the definition
of the factorial function:

if x<=1 then 1 else x* !(x-1) fi;

Remember we are generating code implements
the Sable Reverse depth first visitor class. This
means that

1. each subtree is visited without being aware
of what it is located in, the visiting of the
x*1(x-1) generates the code for this with-
out being aware it is in an if expression

2. the visiting is done from right to left (we
need this for parameter passing), this im-
plies the else-code is generated followed by
the then-code followed by the if-code

22

if x<=1 then 1 else x* I(x-1) fi;

So we start with a jump to the if which comes
at the end:

jmp 11111if

23

followed by the else code

jmp 11111if

111llelse:
push $1
mov -8(/rbp) , Jrax
subg 0(%rsp),%rax #-
movq /rax,0(%rsp)
pop %rdi

call 0P21

push Yrax

mov -8(%rbp) , Jrax
imulq O0(%rsp),%rax

movq %Arax,0(/%rsp) # *
jmp 11111f3

24

Next we handle the then code

11111then:
push $1
jmp 11111fi

Finally we handle the conditon

11111if:
push $1
mov -8(%rbp) , %rdi
pop %rsi
call 0P3c3d # do comparison
and Yrax,lrax
jnz 111ll1then
jmp 1lllllelse
11111f3:

25

To alter the order of this towards a more nat-
ural order we would have to overide the visi-
tor method in ReversedDepthFirstAdaptor for
if then elses from:

Reverse order

public void caseAConval(AConval node)

{
inAConval (node) ;
if (node.getFalse() != null)
{node.getFalse() .apply(this);}
if (node.getTrue() != null)
{node.getTrue() .apply(this) ;}
if (node.getCond() != null)
{ node.getCond() .apply(this); }
outAConval (node) ;

+

26

Normal order

public void caseAConval(AConval node)

{
inAConval (node) ;
if (node.getCond() != null)
{ node.getCond() .apply(this);}
if (node.getTrue() != null)
{ node.getTrue() .apply(this);}
if (node.getFalse() != null)
{ node.getFalse() .apply(this); }
outAConval (node) ;

}

27

Maps

function application hsd the syntax

map = id 1lparen actualparams rparen;

28

Example:

HiMain(->scalar)putNum(indexfn(myarray(3),2));
indexfn(vecl a,scalar i->scalar)a#(i);

myarray (scalar n->vecl)n*iota(n);

T his will print out 6

myarray (3)

evaluates as

-> 3xiota(3)
-> 3%[1,2,3]
-> [3,6,9]

29

we then call indexfn with parameters set as

a<-[3,6,9], i<-2
a#t (i)

We evaluate this to vield 6.

30

Here is the code for the # operation

/* vector subscription operator */
#(vecl v, scalar s->scalar)inline ’pop ’%rdi
pop %rsi
pushq 0(Y%rdi,%rsi,8)’;

31

pushq 0(%rdi,’%rsi,8)

This is the crucial step, rax contains a, the
address of the vector, rsi contains the index.

the vector looks like:

d 3 length

a+8

a+16
a+24

32

so if rsi contains 2 the instruction will load
mem|[a+2*8]=mem[a+16]= 6 into rax as we re-
quire.

Structure of a 2d vector:

e
L

This representation of 2d arrays is refered to
as an lliffe vector after lIliffe an ICL designer
who invented them

33

Issues for you to consider

1. How are we to represent vectors if our nu-
meric representation moves from integers
to reals?

2. How does this affect the code required to
index vectors?

3. Should we use 4 or 8 byte reals?

34

