
The NASM assembler is an open source project

to develop a Net-wide Assembler. The assem-

bler is included as standard in most Linux dis-

tributions and is available for download to run

under Windows. It provides support for the full

Intel and AMD SIMD instruction-sets and also

recognises some extra MMX instructions that

run on Cyrix CPUs. NASM provides support

for multiple object module formats from the

old MS-DOS com �les to the obj and elf for-

mats used under Windows and Linux. If you

are programming in assembler, NASM provides

a more complete range of instructions, in as-

sociation with better portability between op-

erating systems than competing assemblers.

Microsoft's MASM assembler is restricted to

Windows. The GNU assembler, as, runs un-

der both Linux and Windows, but uses non-

standard syntax which makes it awkward to

use in conjunction with Intel documentation.

1

It is beyond the scope of this course to provide

a complete guide to assembler programming

for the Intel processor family. Readers wanting

a general background in assembler program-

ming should consult appropriate text books []

in conjunction with the processor reference man-

uals published by Intel[?][?] and AMD [?].

General instruction syntax

Assembler programs take the form of a se-

quence of lines with one machine instruction

per line. The instructions themselves take the

form of an optional label, an operation code

name conditionally followed by up to three comma

separated operands. For example:

l1: SFENCE ; 0 operand instruction

PREFETCH [100] ; 1 operand instruction

MOVQ MM0,MM1 ; 2 operand instruction

PSHUFD XMM1,XMM3,00101011b ; 3 operand instruction

As shown above, a comment can be placed

on an assembler line, with the comment dis-

tinguished from the instruction by a leading

semi-colon. The label, if present is separated

from the operation code name by a colon.

2

Case is signi�cant neither in operation code

names nor in the names of registers. Thus

prefetch is equivalent to PREFETCH and mm4 equiv-

alent to MM4.

In the NASM assembler, as in the original In-

tel assembler, the direction of assignment in

an instruction follows high level language con-

ventions. It is always from right to left∗, so
that

MOVQ MM0,MM4

is equivalent to

∗If you chose to use the GNU assembler as, instead of
NASM you should be aware that this follows the oppo-
site convention of left to right assignment. This is a
result of as having originated as a Motorola assembler
that was converted to recognise Intel opcodes. Mo-
torola follow a left to right assignment convention.

3

MM0:=MM4

and

ADDSS XMM0,XMM3

is equivalent to

XMM0:= XMM0 + XMM3

Operand forms

Operands to instructions can be constants, reg-
ister names or memory locations.

Constants

Constants are values known at assembly time,
and take the form of numbers, labels, charac-
ters or arithmetic expressions whose compo-
nents are themselves constants.

The most important constant values are num-
bers. Integer numbers can be written in base
16, 10, 8 or 2.

mov al,0a2h ; base 16 leading zero required

mov bh,$0a2 ; base 16 alternate notation

mov cx,0xa2 ; base 16 C style

add ax,101 ; base 10

mov bl,76q ; base 8

xor ax,11010011b ; base 2

4

Floating point constants are also supported

as operands to store allocation directives (see

section ??):

dd 3.14156

dq 9.2e3

It is important to realise that due to limitations

of the AMD and Intel instruction-sets, �oating

point constants can not be directly used as

operands to instructions. Any �oating point

constants used in an algorithm have to be as-

sembled into a distinct area of memory and

loaded into registers from there.

5

Labels

Constants can also take the form of labels.

As the assembler program is processed, NASM

allocates an integer value to each label. The

value is either the address of the operation-

code pre�xed by the instruction or may have

been explicitly set by an EQU directive:

Fseek equ 23

Fread equ 24

We can load a register with the address ref-

ered to by a label by including the label as a

constant operand:

mov esi, sourcebuf

6

Using the same syntax we can load a register

with an equated constant:

mov cl, fread

Constant expressions

Suppose there exists a data-structures for which

one has a base address label, it is often con-

venient to be able to refer to �elds within this

structure in terms of their o�set from the start

of the structure. Consider the example of a

vector of 4 single precision �oating point val-

ues at a location with label myvec. The actual

address at which myvec will be placed is de-

termined by NASM, we do not know it. We

may know that we want the address of the 3rd

element of the vector:

mov esi, myvec + 3 *4

will place the address of this word into the esi

register.

7

Constant expressions

NASM allows one to place arithmetic expres-

sions whose sub-expressions are constants wher-

ever a constant can occur. The arithmetic op-

erators are written C style as shown below.

operator means operator means
| or + add
^ xor - subtract
& and * multiply
<< shift left / signed division
>> shift right // unsigned division
% modulus %% unsigned modulus

8

Registers

Operands can be register names. The avail-

able register names are shown in table ??. In

the binary operation codes interpreted by the

CPU, registers are identi�ed using 3-bit inte-

gers. Depending on the operation code, these

3 bit �elds are interpreted as the di�erent cat-

egories of register shown in table ??.

You should be aware that in the Intel architec-

ture a number of registers are aliased to the

same state vectors, thus for example the eax,

ax, al, ah registers all share bits. More in-

sidiously the �oating point registers ST0..ST7

not only share state with the MMX registers,

but their mapping to these registers is dynamic

and variable.

9

byte word dword �oat nnx sse
number reg reg reg reg reg reg

Aliased Aliased
0 al ax eax st0 mm0 xmm0

1 cl bx ecx st1 mm1 xmm1

2 dl cx edx st2 mm2 xmm2

3 bl bx ebx st3 mm3 xmm3

4 ah sp esp st4 mm4 xmm4

5 ch bp ebp st5 mm5 xmm5

6 dh si esi st6 mm6 xmm6

7 bh di edi st7 mm7 xmm7

Memory Locations

Memory locations are syntactically represented

by the use of square brackets around an ad-

dress expression thus: [100], [myvec], [esi]

all represent memory locations.

The address expressions, unlike constant ex-

pressions, can contain components whose val-

ues are not known until program execution.

The �nal example above refers to the memory

location addressed by the value in the esi reg-

ister, and as such, depends on the history of

prior computations a�ecting that register.

10

Address expressions have to be encoded into

machine instructions, and since machine in-

structions, although of variable length on a

CISC are nonetheless �nite, so too must the

address expressions be. On Intel and AMD

machines this constrains the complexity of ad-

dress expressions to the following grammer:

memloc::= address | format address

format::= byte | word | dword | qword

address::= [const] | [aexp] | [aexp + const]

aexp::= reg | reg + iexp

iexp::= reg | reg * scale

scale::= 2|4|8

reg::= eax | ecx | ebx | edx | esp | ebp | esi | edi

const::= integer | label

11

Examples

byte[edx]

byte pointed to by edx

dword[edx+10]

4 byte word pointed to by edx+10

12

dword[edx+esi+34]

4 byte word at the address given by the sum

of the esi and edx registers +34

word[eax+edi*4+200]

2 byte word at the address given by the eax

register + 4* edi register + 200

The format quali�ers are used to disambiguate

the size of an operand in memory where the

combination of the operation code name and

the other non-memory operands are insu�-

cient so to do.

13

Sectioning

Programs running under Linux have their mem-

ory divided into 4 sections:

text is the section of memory contain-

ing operation codes to be executed.

It is typically mapped as read only

by the paging system.

data is the section of memory contain-

ing initialised global variables, which

can be altered following the start

of the program.

bss is the section containing uninitialsed

global variables.

14

stack is the section in which dynamically

allocated local variables of subrou-

tines are located.

The section directive is used by assembler pro-

gramers to specify into which section of mem-

ory they want subsequent lines of code to be

assembled. For example in the listing shown in

algorithm ?? we divide the program into three

sections: a text section containing myfunc, a

bss section containing 64 unde�ned bytes and

a data section containing a vector of 4 inte-

gers.

The label myfuncbase can be used with negative

o�sets to access locations within the bss, wilst

the label myfuncglobal can be used with posi-

tive o�sets to access elements of the vector in

the data section.

Algorithm 1 Examples of the use of section

and data reservation directives
section .text

global myfunc

myfunc:enter 128,0

; body of function goes here

leave

ret 0

section .bss

alignb 16

resb 64 ; reserve 64 bytes

myfuncBase:

section .data

myfuncglobal: ; reserve 4 by 32-bit integers

dd 1

dd 2

dd 3

dd 5

Data reservation

Data must be reserved in distinct ways in the

di�erent sections. In the data section, the data

de�nition directives db, dw, dd, and dq are used

to de�ne bytes, words, doublewords and quad

words. The directive must be followed by a

constant expression. When de�ning bytes or

words the constant must be an integer. Dou-

blewords and quadwords may be de�ned with

�oating point or integer constants as shown

previously.

In the bss section the directive resb is used

to reserve a speci�ed number of bytes, but no

value is associated with these bytes.

15

Stack data

Data can be allocated in the stack section by

use of the enter operation code name. This

takes the form:

enter space, level

It should be used as the �rst operation code

name of a function. The level parameter is

only of relevance in block structured languages

and should be set to 0 for assembler program-

ming. The space parameter speci�es the num-

ber of bytes to be reserved for the private use

of the function. Once the enter instruction has

executed, the data can be accessed at negative

o�sets from the ebp register.

16

Releasing stack space dynamically

The last two instructions in a function should,

as shown in algorithm be

leave

ret 0

The combined e�ect of these is to free the

space reserved on the stack by enter, and pop

the return address from the stack. The param-

eter to the operation code name ret is used to

specify how many bytes of function parameters

should be discarded from the stack. If one is

interfacing to C this should always be set to 0.

17

Label quali�cation

The default scope of a label is the assembler

source �le containing the line it pre�xes. But

labels can be used to mark the start of func-

tions that are to be called from C or other

high level languges. To indicate that they have

scope beyond the current asscembler �le, the

global directive should be used as shown in

algorithm ??.

The converse case, where an assembler �le

calls a function exported by a C program is

handled by the etern directive:

extern printreal

call printreal

in the above example we assume that printreal

is a C function called from assembler.

18

Linking and object �le formats

There are 4 object �le formats that are com-

monly used on Linux and Windows systems

as shown in table ??. This lists the name of

the format, its �le extension - which is often

ambiguous and the combination of operating

system and compiler that makes use of it. A

�ag provided to Nasm speci�es which format

it should use. We will only go into the use of

the gcc compiler, since this is portable between

Windows and Linux.

Let us assume we have a C program called

c2asm.c and an assembler �le asmfromc.asm. Sup-

pose we wish to combine these into a single ex-

ecutable module c2asm. We issue the following

commands at the console:

nasm -felf -o asmfromc.o asmfromc.asm

19

gcc -oc2asm c2asm.c asmfromc.o

This assumes that we are working either under

Linux or under Cygwin. If we are using djgpp

we type:

nasm -fcoff -o asmfromc.o asmfromc.asm

gcc -oc2asm c2asm.c asmfromc.o

Format Extension Operating System C++ Compiler
win32 .obj Windows Microsoft C++
obj .obj Windows Borland C++
co� .o Windows Djgpp gcc
.elf .o Windows Cygwin gcc
.elf .o Linux gcc

Leading underbars

If working with djgpp all external labels in your

program, whether imported with extern or im-

ported with global must have a leading under-

bar character. Thus to call the C procedure

printreal one would write:

extern printreal

call printreal

whilst to export myfunc one would write

global myfunc

myfunc:enter 128,0

20

