
Advanced function calling techniques

1. revision of activation records

2. nested functions

3. function parameters

4. functions as results

5. curried functions

1

revision of activation records

convention used in diagrams in this section

Low addresses are show at the top of the page

high addresses at the bottom

consider:

struct{int x,y;double z}zot;

int foo(int x, y;double z};

void bar()

{ int x, y;

double z:

}

2

Stack frames and structures

struct zot

x

y

z

base addr
of zot x

y

z

stack
pntr

stack before a call
to foo

x

y

z

stack
pntr

d link

ret add

stack on entry to bar

4

8

0 0

4

8

0

-8

-120

4

8

x

y

z

d link

ret add

frame base
register

frame base
register

stack
pntr locals

of foo

n

n+4

n+8

n+12

n+16

8

12

16

stack on entry to foo

3

Note that the addresses of parameters and variables can be

specified relative either to the frame pointer or to the stack

pointer. If your code does not dynamically push things onto

the stack or if your compiler keeps track of the stack position,

then the SP register may be prefered.

Key points:

If you address via the frame pointer (EBP) then the parame-

ters have +ve addresses and the locals have -ve addresses.

If you address using the stack pointer they all have +ve ad-

dresses.

If you use the SP you have to take into account temporaries

that you push on the stack.

4

Var Params

We have been assuming value parameters.

If we have var parameters (parameters which can be as-

signed to changing the value of the actual parameter) then

the address of the parameter rather than the value of the pa-

rameter has to be passed on the stack. The compiler then

places and extra level of indirection onto the addressing of

the parameter.

5

Nested Functions

Consider the following Extended-Hi example where we al-

low function nesting.

sum(vec1 v->scalar)

{

total(scalar i->scalar)

if i<1 then 0 else v[i]+total(i-1);

total(length(v))

}

Total recurses on i, but each invocation accesses the same

copy of v.

Can we use the d-link to access v?

NO

6

Consider the following:

ret add

dlink

ret add

dlink

i

v

3

7

2

frame of
total

frame of
sum

vector on
heap

sum([3,7])

first invocation of total

SP,FP

At this point we can access v at mem[dlink+8], but what

happens on the next recursion?

7

next invocation of total

ret add

dlink

v

3

7

2

first frame of
total

frame of
sum

vector on
heap

sum([3,7])

SP,FP

ret add

dlink

i

ret add

dlink

i

second
frame of
total

if we use mem[dlink+8] we get the previous version of i, v is

now at mem[mem[dlink]+8]

8

We need an alternative approach lets look at 3 practical al-

ternatives:

• Displays

• Static Links

• Lambda Lifting

9

Displays can use the Enter instruction defined as:

enter storage,level

push ebp

temp:=esp

if level>0

then

repeat (level-1) times

ebp:=ebp-4

push dword[ebp]

end repeat

push temp

fi

ebp:=temp

esp:=esp - storage

Up to now we have assumed procedures use

enter xxx,0

10

Consider the effect of using enter 0,1 for sum and enter 0,2

for total :

first frame of
total

frame of
sum

sum([3,7])

SP

ret add

dlink

i

ret add

dlink

v

ret add

dlink

i

second
frame of
total

3

7

2 vector on
heap

FP

ll1

ll1

ll2

ll1

ll2 display
of 2nd call
of total

display
of 1st call
of total

display of sum

11

All variables are now addressed as a pair (lexlevel,offset),

where an outer level function is lexical level 1, the first nested

function is lexical level 2 etc.

A parameter can now be addressed as

mem[display[lexlevel]+offset]

The display is an array in memory at the start of the current

frame. Using this notation, parameter i is always addressed

as

mem[display[2]+8]= mem[mem[fp-8]+8]

and v is always at

mem[display[1]+8]

12

Optimisations

FP always points to the current lexical level so at lexical level

2 we have

mem[display[2]+8]

= mem[mem[fp-8]+8]

= mem[fp+8]

Likewise we can chose to cache other display values in reg-

isters so avoiding repeated dereferencing of the display on

stack.

13

Static Links

An alternative approach is to use a static chain as well as

a dynamic chain. This substitutes a linked list for the array

used in the display.

When an nested procedure declaration like total is encoun-

tered, the compiler plants code to

push ebp ; frame pointer

push total ; start address of total

This pair of words is called a closure

It binds the code of total with the non-local variables acces-

sible to that code, namely the frame of sum.

14

ret add

dlink

v

3

7

2

frame of
sum

vector on
heap

sum([3,7])

SLink

CPntr

code of total

SP

FP

closure of
total

after form closure
of total

15

Calling with closures

to call a closure we

1. push the parameters on the stack

2. push both words of the closure onto the stack

3. perform a RET instruction which transfers control to the

address last pushed on the stack.

Let us look at this with a diagram:

16

after setting up the call to total

ret add

dlink

v

3

7

2

frame of
sum

vector on
heap

sum([3,7])

SLink

CPntr

code of total

SP

FP

closure of
total

after pushing params
but before calling total

SLink

CPntr

i

we then execute RET and enter total for the first time:

17

ret add

dlink

v

3

7

2

frame of
sum

vector on
heap

sum([3,7])

SLink

CPntr

code of totalSPFP

closure of
total

on entering the first
call of total

SLink

i

retadd

dlink

Within total the parameter v is accessed as

mem[slink+8]=mem[mem[fp+8]+8]

18

We then push the closure of total back on the stack for the

next call. Note that total is a local variable of sum. As such

it it accessed via the static link as

mem[slink-8]

so we can push it on the stack and call it with the following

mov eax,[fp+8] ; get the slink

lea eax,[eax-8] ; get the address of totals closure

push [eax+4] ; push the first word

push [eax] ; push the second word

ret ; enter total

This results in the following stack configuration

19

ret add

dlink

v

3

7

2

frame of
sum

vector on
heap

sum([3,7])

SLink

CPntr

code of total

SPFP

closure of
total

on entering the 2nd
call of total

SLink

i

retadd

dlink

SLink

i

retadd

dlink
2nd frame of total

1st frame of total

Note that the address of v remains

mem[slink+8]=mem[mem[fp+8]+8]

20

Lambda Lifting

The idea here is to make all functions global but to add ad-

ditional parameters to get at local variables.

In the compiler we do a preprocessing pas which trans-

froms:

sum(vec1 v->scalar)

{

total(scalar i->scalar)

if i<1 then 0 else v[i]+total(i-1);

total(length(v))

}

to

21

sum(vec1 v->scalar) sum$total(v,length(v));

sum$total(vec1 v,scalar i->scalar)

if i<1 then 0

else v[i]+sum$total(v,i-1);

and then compile as normal. We use the symbol $ to create

variable names which can not clash with any declared by the

programmer. (first pass would throw out any such names).

The effect is to remove any nested variable accesses.

For imperative languages we pass the addresses of the vari-

ables instead of the values of the variables.

22

Functions as parameters

The three methods described above are all equally good for

the purposes of handling nesting. Only one of them works

OK for function parameters.

Let us look at a toy example in Hi. Consider a function that

will integrate another function over a range a..b. i.e we want

f (g,a,b) =
∫ b

a
g(x)dx

if we allow function parameter we could approximate this

with

f((scalar->scalar)g,scalar a,scalar b->scalar)

sum(g(iota(b-a)+a-1));

23

Suppose we now use f in the following:

h(scalar p->scalar)

{

pow(scalar x->scalar)

{

pwr(scalar i->scalar)

if i=0 then 1 else x*pwr(i-1);

pwr(p)

}

f(pow,1,10)

}

This will approximate

h(p) =
∫ 10

1
xpdx

24

• Can we use Lambda Lifting?

– No because different functions g, passed to f, may

have different numbers of additional parameters.

• Can we use displays?

– No, because the display of f will not contain an en-

try corresponding to the frame of h which calls it.

Thus the display set up by pow would be wrong

and could not allow access to p.

• Can we use closures?

– Yes, provided we pass both words of the closure to

f, the static chain will work.

25

• Here is a stack snapshot for h(2)

•
2=p

ret add

dlink

code of pow

10=b

1=a

slink

cpntr

slink

cpntr

ret add

dlink

frame of h

frame of f

f (g , a, b) =f(pow,1,10)

closure of pow
on the stack
gives access to
p=2

copy of
pow’s
closure

Note that applytoall would have to be modified to take clo-

sures as parameters instead of simple machine addresses.

26

Functions as results

The next level of complexity comes when we create func-

tions that return functions. I will show how to modify the

implementation of closures and activation records to deal

with this.

Given the definition of f previously , let us define a function

that will allow g to be integrated within a specified range.

k(scalar l->((scalar ->scalar)->scalar))

{ i((scalar->scalar)g->scalar)f(g,1,l);i}

such that

k(l)(g) =
∫ l

1
g(x)dx

27

when k(l) is called it returns i, and when i runs it has to have

access to the parameter l of k,

But parameter l will have been on the stack when k was

called but will have been poped from the stack by the time i

is called.

This means that the static link will be pointing at a part of

the stack that is no longer valid. How to deal with this?

28

Context on the heap

l

ret add

dlink

context

slink

cpntr

copy of l

code for i

context of k on heap

activation record
of k on stack

SP

FP

stack during call of k

stack on return from k

SP

closure of i
cpntr

slink

• The parameters and local store of k are transfered from

the stack to the heap,

• parameters have to be copied on entry

29

On entry to function i

slink of i

ret add

dlinkslink

cpntr

copy of l

code for i

context of k on heap
activation record
of i on stack

SPFP

stack on entry to i

closure of g
cpntr of g

slinkof g

When i runs it now has access to l via its static link as before,

except that the block holding l is now on the heap. The ad-

dress of variables relative to slink will obviously be different

in this case.

30

curried functions

Currying also called partial application involves creating a

new function as a result of partially binding the formal pa-

rameters of an existing function

for instance given

g(scalar->scalar)

and

f((scalar->scalar),scalar ,scalar ->scalar)

then f(,a,b) gives us a function of form

((scalar->scalar)->scalar)

31

These can be handled by translating them into appropriate

nested functions:

thus

m(scalar a,scalar b->((scalar->scalar)->scalar))
f(,a,b);

can be transformed into

m(scalar a,scalar b->((scalar->scalar)->scalar))

{ F((scalar ->scalar)G->scalar)f(G,a,b);F}

which can be handled other nested functions.

32

Register Windows

1. Used on some RISC machines

2. Optimised for calling C

3. Uses stack of registers not stack in memory

33

SPARC

Sparc has 32 general purpose integer registers visible to

the program at any given time. Of these, 8 registers are

global registers and 24 registers are in a register window.

A window consists of three groups of 8 registers, the out,

local, and in registers. A Sparc implementation can have

from 2 to 32 windows, thus varying the number of registers

from 40 to 520. Most implentations have 7 or 8 windows.

The variable number of registers is the principal reason for

the Sparc being "scalable".

Register Group Mnemonic Register Address

global %g0-%g7 r[0]-r[7]
out %o0-%o7 r[8]-r[15]

local %l0-%l7 r[16]-r[23]
in %i0-%i7 r[24]-r[31]

At any one point the registers in use are selected by a cur-

rent register bank register in the cpu.

This is basically a stack within the cpu.

34

It is actually implemented as a circular buffer

35

1. The SPARC approach is only suitable for languages

like C that do not allow nesting of functions since the

locals of a procedure are invisible to any called proce-

dure.

2. Furthermore it does not support passing the addresses

of parameters (Pascal Var Parameters)

3. Finally it costs a huge amount on process swap as all

of the register windows have to be stored and reloaded

each time there is a context switch.

It is a typical RISC bad idea arising from over concentration

on one problem - getting fast uni-process C code.

36

