
The nature of vector types
Languages can be categorized by the degree of dynamism associated with

their vector types and the implications this has for how vector operations are
done.

Continuum
Most dynamic -> least dynamic
Lisp -> APL -> Algols -> Fortran

lisp APL Algol Fortran
like like like like

A+ Delphi C
J Algol60 Pascal

Scheme S-algol Ada
Java ML
Hi Haskell

Note that at level of abstraction I treat lists, arrays and vectors as 'syntactic
sugar' over the basic concept of a sequence of values.

Dynamism

• Dynamic rank

• Fixed rank mutable array size

• Fixed rank array size �xed at point of declaration - may depend on function
parameters

• Statically known array size

Bounds

• Are they checked

• Do they start at zero

Lisp Like
A list is a sequence of values which may be either atoms or lists.
This allows lists of dynamically de�ned rank, and even of variable rank.
((2, 3, 7), 6)
The �rst element of the list is a list of 3 atoms and the second element is an

atom. Thus the notion of rank is not de�ned in this case.
APL Like
All arrays have a well de�ned rank (number of dimensions), and a well

de�ned shape (number of elements in a dimension) , but these can vary for a
given array variable in the course of computation.

APL: x←ι n
x gets the sequence of integers from 1 to n
S-Algol : let x:= vector 1::n of 1

1

x becomes the array of n storage locations, all initialised to 1
Java: x= new int[n];
x becomes the array of n storage locations initialised to 0
Note the di�erence in degrees of initialisation supported.
Algol 60 like
On entry to a block the array size is speci�ed by values that may be computed

at run time but once the variable has been created its size is un-varying.

read(x);

begin

integer [1:x] a;

for i:=1 to x step 1 do read(a[i]);

....

a has a �xed size during this block and is discarded on leaving the block.
kkkkk
Fortran Like : for these see section 6.2.6 of Modern Compiler Design

In this case the compiler knows as soon as it has parsed the declaration
exactly how much store will be used. The size of the array is �xed.

Additional issue here is whether the bounds have to start at a �xed number
such as 0 or 1 or can be de�ned by the programmer:

C: int x[6];
reserve 6 store locations numbered 0 to 5
Pascal : var sales: array[1996..2004] of integer;
reserve 8 store location numbered 1996 to 2004
The latter form has some advantages from the standpoint of intelligibility of

code.
Representations
Lisp Like

((2,3,5),7)

2

Tags
TAGS
Words can be tagged using the top bit of each word to indicate a pointer.

This allows arbitrary list structures to be disambiguaged but this has the e�ect
of reducing arithmetic precision.

Assume you have a 32 bit word. Then the normal sign bit (bit 31) is reserved
as a tag. You only have the normal range of +ve numbers available as integers
0..231 − 1

We have to map this into a range of -ve and +ve numbers.
Do this with the operations: getint(t)=t+ 230

putint(i,t) t← i− 230

Some special purpose Lisp Machines have provided 40 bit words with 8 bit
tags. These distinguished a number of di�erent types.

One, the Rekursiv, was designed by Prof Harland, formerly of this depart-
ment. I have an example here.

apl version
APL type arrays
these can be reshaped as the following A+ example shows

a:= ι 6

a

3

0 1 2 3 4 5

ρ a

6

b:= 2 3 ρa
b

0 1 2

3 4 5

ρ b

2 3

Here ρ is the shape and reshape operator. ι is the operator that generates a
sequence of integers.

Note that each variable is stored as a data vector and a shape vector which
says how to interpret the data vector. Arrays on the heap.

algol-like

4

Algol-Like arrays
In this case the array has both upper and lower bounds supplied when it is

created:

begin

integer a,b,c,d;

read(a,b,c,d);

begin

integer array x[a:b.c:d];

.....
a

b

c

d

1

2

2

3

x1

2

2

3

descriptor

x data

stack growth

Note that the array is created on the stack, the stack pointer being moved down
when the array declaration is encountered.

The array descriptor contains a pointer to the start of the array.

1. initialise the bounds in the descriptor

2. compute the space required s = (1 + upb1 − lwb1)× (1 + upb2 − lwb2)

3. subtract s from the stack pointer

4. set the pointer �eld of the descriptor to the stack pointer.

Fortran style arrays
C arrays
int a[2][3];
Compiler statically reserves 6 words of memory for the array.

5

Allocated typically on the stack, but in data segment if they are declared as
static.

Vector Operations

1. | concatenate

2. iota - create a sequence of integers

3. [] create a vector from values

4. Map an operation over vectors

We now look at how vector operations can be performed. These are operations
whose result is a vector.

The concatenate operation builds a vector out of two vectors, iota creates a
sequence of integers, [] builds a sequence of values of rank n into a value of rank
n+1.

Mapping takes a collection of vectors and an operator or function. It applies
the operator or function to n-tuples of values selected from the vectors.

Major design issue
Should these operations be done using library functions or should you gen-

erate machine code to perform each one?
In principle all could be done using direct machine code, not all can be done

entirely using library functions.
Trade-o�s

• Library function implementations are usually easier to implement

• Direct machine code is faster

Whilst these Hi examples do not apply directly to other languages, there are
analogous issues raised in the implementation of high level operations in many
languages.

Operator overloading
Polymorphism
Set operations
concat
the operator |

a|b

is the concatenation of the vectors a,b
This is best implemented as a library routine which

1. determines the sizes of a and b

2. creates a new vector large enough to hold them both

3. copies in the contents of a to the low numbered elements

6

4. copies the contents of b to the high numbered elements

5. returns the address of the new vector

iota
Iota
modeled on the APL operator or the same name. Produces vector of ascend-

ing integers.

/*example of iota*/

HiMain(->scalar)

putNum(rtotal(putNum(iota(4),1));

rtotal(vec1 x,scalar i->scalar)

if i>length(x)

then 0

else x(i)+rtotal(x,i+1)

fi;

outputs

1 2 3 4 10

tl
tl(x)
One can also implement hd(list) and tl(list) using iota:

/* use of iota to implement hd and tl on lists */

hd(vec1 x->scalar)x(1);

tl(vec1 x->vec1)x(1+ iota(length(x)-1));

HiMain(->scalar)putNum(total(tl([1,3,5]),1));

total(vec1 x,scalar i->scalar)

if (i)>length(x) then 0

else x(i)+ total(x,i+1)

fi;

Consider the expression

x(1+ iota(length(x)-1))

x(1+ iota(length(x)-1))

with x=[1,3,5]

length(x)=3

length(x)-1=3-1=2

iota(2)=[1,2]

1+iota(2)= [2,3]

x([2,3])= [x(2),x(3)]=[3,5]

7

which is the tail of the list [1,3,5]
Iota is easily implemented by a library function
There exist more e�cient implementations that we shall discuss after looking

at Map.
[]
[] vector construction
[a, b, c]
A reversed depth �rst traversal of the parse tree for this will produce code

whose execution will leave the stack looking like

+---------+

| c |

+---------+

| b |

+---------+

| a |

+---------+

We then plant code to push the length of the vector on the stack. So for the hi
code

[1,2,4]

we would get

push 4

push 2

push 1

push 3

we now call the heap allocator to get us space

extern sysvecalloc

call sysvecalloc

At this point the eax register contains the address of the unintialised vector on
the heap. We want to copy the vector on the stack onto the heap witha block
move instruction.

pop ecx ; load count

mov edx,ecx ; save in edx

lea edi,[eax+4]; load dest address

mov esi,esp

rep movsd

Lets look at this in more detail:
A block move sequence takes the address of a source vector in esi and a

destination in edi and a count in ecx.

8

register use

ecx count register
esi source index register
edi destination index register

pop ecx

will place 3 in ecx
Load e�ective address

lea edi,[eax+4]

means load e�ective address of memory location [eax+4] into the edi register.
That is the destination is set to point at location [1] in the new array. The o�set
of 4 is to allow for the length �eld of the array which will be initialised by the
heap allocator.

Movsd
MOVSD

The movsd instruction copies a 32 bit word from mem[esi] to mem[edi] and
then increments both registers.

tmp<= mem[esi]

mem[edi]<=tmp

esi<= esi+1

edi<= edi+1

REP

The rep instruction is a pre�x code that can preceed any other opcode. It
has the e�ect of causing that opcode to be repeated until the ecx register counts
to zero. Thus

rep foo

means

while ecx >0 do

begin

ecx:=ecx-1

foo

end

Finally we discard the data from the stack by moving the stack pointer up by
the number of words in the vector:

lea esp,[esp+edx*4]

and then push the address of the vector on the stack:

push eax

9

Issues

1. Would it be better to allocate the array �rst and then assign the values
in the brackets into the array 1 by 1? This would appear to save pushing
them onto the stack �rst.

2. Would we be better to use vector move instructions instead of block move
instructions?

Answers

1. Probably not. Given our general strategy for evaluating expressions the
vector elements are likely to be on the stack at some point. The block
move is then more e�cient than a series of pop instructions.

2. Yes but it is more complicated. If we know that the vector is of length 4
then this is a sensible optimisation. We replace the sequence:

pop ecx ; load count

mov edx,ecx ; save in edx

lea edi,[eax+4]; load dest address

mov esi,esp

rep movsd

with

movdqu xmm0, [esp] ; get the vector in a register

movdqu [eax],xmm0 ; store on the heap

add esp,16 ; drop it from the stack

which will probably run faster, but is less general
map
Map operations over arrays
Let us look at 3 kinds of mapping:

1. Dyadic operations

2. Function calls

3. Array indexing

First we will look at a functional programming approach, and then we will look
at an optimised imperative approach.

Dyadic
Dyadic operations
a+b
consider the combinations of the following possibilities

a b

scalar 1 2
vector [3,4] [7,11,19]

10

1+2 = 3

1+[7,11,19] = [8,12,20]

[3,4]+2 = [5,6]

[3,4]+[7,11,19]= [10,15]

Note that

1. the compiler will in general know the type of the arguments to an operator,
but it will not know the lengths of the vectors

2. the operator may be implemented either as inline code or as a function

3. the examples are only the simplest cases, one also has to deal with higher
rank arrays, consider:

putnum([1,3]+[[2,3],[4,6]])

3 4 7 9

Solution 1.
We write a function in C that maps a dyadic operator over two params and

pass it the address of the operator, and the ranks of the arrays being passed.
The function allocates store for the result and loops round calling the oper-

ator to do the calculations on the arguments.
Template of the C function might by

int dyadicmap(int opcode,

int xrank,

int yrank,

int x,

int y);

so x+y is compiled to

push y

push x

push yrank

push xrank

push address of plus

call dynamicmap

f
What do we do if the operator is inline?
We synthesise an anonymous function:

llll2:

enter 0,0

push dword[ebp+12]

push dword[ebp+8]

11

; + what follows is standard inline +

pop eax

add [esp],eax

;-------------------------------------

pop eax

leave

ret 0

This makes the operator callable as a function.
Can we generalise this to other situations:

• Calling a scalar argued function on a vector, eg:

putNum([1,4,7]) where putNum(scalar x->scalar)

• Indexing a vector by a vector

x([2,3]) where x a vector of any rank

• Calling a function of mixed rank on argument list also of mixed rank, for
instance extending vector dot product to matrix multiply:

/* define dot product of vectors */

.*(vec1 x,vec1 y->scalar)sum(x*y);

/* use it to do matrix product of vector */

HiMain(->scalar)

discard(putNum([[2,2],[0,1]].*[2,4]));

this prints

12 4

also uses:

discard(vec1 x->scalar)1;

total(vec1 x,scalar i->scalar)

if i>length(x) then 0

else x(i)+total(x,i+1)fi;

sum(vec1 x->scalar)total(x,1);

applytoeach
These cases can all be handled by a more general form of mapping function

in C.

int applytoall(

int overloading,

int * excessranks,

int proc,

int * p

)

12

overloading � the rank of the result
excessranks � the degree by which the rank of actual parameter pi exceeds

the rank of formal parameter pi
proc � the address of the function to call
p � the actual parameters packaged into a vector
notes
This recurses on �overloading� until overloading is zero, when it calls the

proc with the appropriate parameters.
Whilst recursing it creates successive new layers of vectors and iterates

through them to initialise them.
I leave it to you to look at the example implementation.

int applytoall(int overloading,int * excessranks,int proc, int * params)

{

int * carrier,*tmp,*excess;

int i,j,l,bound;

l=params[0];

if(overloading==0){

carrier=sysvecalloc(l+1);

carrier[l+1]=proc;

for(i=1;i<=l;i++)carrier[i]=params[i];

return callindirect(carrier);

}

else {

carrier=sysvecalloc(l);

bound=0x7fffffff;

for(i=1;i<=l;i++)

if(excessranks[i])

{tmp= (int*)params[i];

if(tmp[0]<bound)bound=tmp[0];

}

tmp=sysvecalloc(bound);

excess=sysvecalloc(l);

for(i=1;i<=l;i++)

excess[i]=(excessranks[i]?excessranks[i]-1:0);

for(j=1;j<=bound;j++){

for(i=1;i<=l;i++)

carrier[i]=

(excessranks[i]?((int*)params[i])[j]:params[i]);

tmp[j]=applytoall(overloading-1,excess,proc,carrier);

}

return (int)tmp;

}

}

13

