
Vector Pascal

Paul Cockshott and Ken Renfrew

October 31, 2005

2

Contents

I Language Reference Manual

Paul Cockshott 9

1 Elements of the language 11
1.1 Alphabet . 11

1.1.1 Extended alphabet . 11
1.2 Reserved words . 11
1.3 Comments . 12
1.4 Identifiers . 12
1.5 Literals . 12

1.5.1 Integer numbers . 12
1.5.2 Real numbers . 13
1.5.3 Character strings . 13

2 Declarations 15
2.1 Constants . 15

2.1.1 Array constants . 16
2.1.2 Pre-declared constants . 16

2.2 Labels . 16
2.3 Types . 17

2.3.1 Simple types . 17
2.3.2 Structured types . 20
2.3.3 Dynamic types . 21

2.4 File types . 23
2.5 Variables . 23

2.5.1 External Variables . 24
2.5.2 Entire Variables . 24
2.5.3 Indexed Variables . 24
2.5.4 Field Designators . 26
2.5.5 Referenced Variables . 26

2.6 Procedures and Functions .. 26

3 Algorithms 27
3.1 Expressions . 27

3.1.1 Mixed type expressions . 27
3.1.2 Primary expressions . 27
3.1.3 Unary expressions . 28
3.1.4 Operator Reduction . 31
3.1.5 Complex conversion . 32
3.1.6 Conditional expressions . 32
3.1.7 Factor . 33
3.1.8 Multiplicative expressions .. 33

3

4 CONTENTS

3.1.9 Additive expressions . 34
3.1.10 Expressions . 35
3.1.11 Operator overloading . 35

3.2 Statements . 37
3.2.1 Assignment . 37
3.2.2 Procedure statement . 38
3.2.3 Goto statement . 39
3.2.4 Exit Statement . 39
3.2.5 Compound statement . 39
3.2.6 If statement . 39
3.2.7 Case statement . 39
3.2.8 With statement . 40
3.2.9 For statement . 40
3.2.10 While statement . 40
3.2.11 Repeat statement . 40

3.3 Input Output . 41
3.3.1 Input . 41
3.3.2 Output . 41

4 Programs and Units 43
4.1 The export of identifiers from units 43

4.1.1 The export of procedures from libraries. 44
4.1.2 The export of Operators from units44

4.2 Unit parameterisation and generic functions 44
4.3 The invocation of programs and units 45
4.4 The compilation of programs and units. 45

4.4.1 Linking to external libraries .. 46
4.5 Instantiation of parametric units 46

4.5.1 Direct instantiation . 46
4.5.2 Indirect instantiation .46

4.6 The System Unit . 46

5 Implementation issues 49
5.1 Invoking the compiler .49

5.1.1 Environment variable . 49
5.1.2 Compiler options . 49
5.1.3 Dependencies . 50

5.2 Calling conventions .51
5.3 Array representation .52

5.3.1 Range checking . 53

6 Compiler porting tools 55
6.1 Dependencies . 55
6.2 Compiler Structure . 56

6.2.1 Vectorisation . 57
6.2.2 Porting strategy . 58

6.3 ILCG . 60
6.4 Supported types . 61

6.4.1 Data formats . 61
6.4.2 Typed formats . 61
6.4.3 Ref types . 61

6.5 Supported operations .61
6.5.1 Type casts . 61
6.5.2 Arithmetic . 61

CONTENTS 5

6.5.3 Memory . 61
6.5.4 Assignment . 62
6.5.5 Dereferencing . 62

6.6 Machine description .62
6.6.1 Registers . 62
6.6.2 Register sets . 63
6.6.3 Register Arrays . 63
6.6.4 Register Stacks . 63
6.6.5 Instruction formats . 63

6.7 Grammar of ILCG . 64
6.8 ILCG grammar . 64

6.8.1 Helpers . 64
6.8.2 Tokens . 65
6.8.3 Non terminal symbols . 67

7 Sample Machine Descriptions 71
7.1 Basic 386 architecture .. 71

7.1.1 Declare types to correspond to internal ilcg types 71
7.1.2 compiler configuration flags . 71
7.1.3 Register declarations . 71
7.1.4 Register sets . 73
7.1.5 Operator definition . 74
7.1.6 Data formats . 74
7.1.7 Choice of effective address .76
7.1.8 Formats for all memory addresses76
7.1.9 Instruction patterns for the 386 77

7.2 The MMX instruction-set .86
7.2.1 MMX registers and instructions86

7.3 The 486 CPU . 90
7.4 Pentium . 91

7.4.1 Concrete representation . 91

II VIPER

Ken Renfrew 93

8 Introduction to VIPER 95
8.1 Rationale . 95

8.1.1 The Literate Programming Tool.95
8.1.2 The Mathematical Syntax Converter. 96

8.2 A System Overview . 96
8.3 Which VIPER to download? . 96
8.4 System dependencies . 97
8.5 Installing Files . 97
8.6 Setting up the compiler .98

9 VIPER User Guide 99
9.1 Setting Up the System . 99

9.1.1 Setting System Dependencies . 100
9.1.2 Personal Set-up . 100
9.1.3 Dynamic Compiler Options . 101
9.1.4 VIPER Option Buttons . 103

9.2 Moving VIPER . 103

6 CONTENTS

9.3 Programming with VIPER . 103
9.3.1 Single Files . 103
9.3.2 Projects . 104
9.3.3 Embedding LATEX in Vector Pascal 105

9.4 Compiling Files in VIPER . 105
9.4.1 Compiling Single Files . 105
9.4.2 Compiling Projects . 106

9.5 Running Programs in VIPER . 106
9.6 Making VPTEX . 107

9.6.1 VPTEXOptions . 107
9.6.2 VPMath . 107

9.7 LATEX in VIPER . 108
9.8 HTMLin VIPER . 108
9.9 Writing Code to Generate Good VPTEX 108

9.9.1 Use of Special Comments . 108
9.9.2 Use of Margin Comments . 109
9.9.3 Use of Ordinary Pascal Comments 110
9.9.4 Levels of Detail within Documentation 110
9.9.5 Mathematical Translation: Motivation and Guidelines 111
9.9.6 LaTeX Packages . 111

Introduction

Vector Pascal is a dialect of Pascal designed to make efficient use of the multi-media in-
structionsets of recent procesors. It supports data parallel operations and saturated arith-
metic. This manual describes the Vector Pascal language.

A number of widely used contemporary processors have instructionset extensions for
improved performance in multi-media applications. The aimis to allow operations to pro-
ceed on multiple pixels each clock cycle. Such instructionsets have been incorporated both
in specialist DSP chips like the Texas C62xx[35] and in general purpose CPU chips like
the Intel IA32[14] or the AMD K6 [2].

These instructionset extensions are typically based on theSingle Instruction-stream
Multiple Data-stream (SIMD) model in which a single instruction causes the same math-
ematical operation to be carried out on several operands, orpairs of operands at the same
time. The level or parallelism supported ranges from 2 floating point operations at a time on
the AMD K6 architecture to 16 byte operations at a time on the intel P4 architecture. Whilst
processor architectures are moving towards greater levelsof parallelism, the most widely
used programming languages like C, Java and Delphi are structured around a model of com-
putation in which operations take place on a single value at atime. This was appropriate
when processors worked this way, but has become an impediment to programmers seeking
to make use of the performance offered by multi-media instructionsets. The introduction of
SIMD instruction sets[13][29] to Personal Computers potentially provides substantial per-
formance increases, but the ability of most programmers to harness this performance is held
back by two factors. The first is the limited availability of compilers that make effective use
of these instructionsets in a machine independent manner. This remains the case despite the
research efforts to develop compilers for multi-media instructionsets[8][26][24][32]. The
second is the fact that most popular programming languages were designed on the word at
a time model of the classic von Neumann computer.

Vector Pascal aims to provide an efficient and concise notation for programmers using
Multi-Media enhanced CPUs. In doing so it borrows concepts for expressing data paral-
lelism that have a long history, dating back to Iverson’s work on APL in the early ’60s[17].

Define a vector of typeT as having typeT[]. Then if we have a binary operator X:(T ,
T)→ T , in languages derived from APL we automatically have an operator X:(T[] ,T[]) →
T[] . Thus if x,y are arrays of integersk = x+y is the array of integers whereki = xi +yi.

The basic concept is simple, there are complications to do with the semantics of oper-
ations between arrays of different lengths and different dimensions, but Iverson provides a
consistent treatment of these. The most recent languages tobe built round this model are J,
an interpretive language[19][5][20], and F[28] a modernised Fortran. In principle though
any language with array types can be extended in a similar way. Iverson’s approach to
data parallelism is machine independent. It can be implemented using scalar instructions
or using the SIMD model. The only difference is speed.

Vector Pascal incorporates Iverson’s approach to data parallelism. Its aim is to provide
a notation that allows the natural and elegant expression ofdata parallel algorithms within a
base language that is already familiar to a considerable body of programmers and combine
this with modern compilation techniques.

By an elegant algorithm I mean one which is expressed as concisely as possible. El-

7

8 CONTENTS

egance is a goal that one approaches asymptotically, approaching but never attaining[7].
APL and J allow the construction of very elegant programs, but at a cost. An inevitable
consequence of elegance is the loss of redundancy. APL programs are as concise, or even
more concise than conventional mathematical notation[18]and use a special character-set.
This makes them hard for the uninitiated to understand. J attempts to remedy this by
restricting itself to the ASCII character-set, but still looks dauntingly unfamiliar to pro-
grammers brought up on more conventional languages. Both APL and J are interpretive
which makes them ill suited to many of the applications for which SIMD speed is required.
The aim of Vector Pascal is to provide the conceptual gains ofIverson’s notation within a
framework familiar to imperative programmers.

Pascal[21]was chosen as a base language over the alternatives of C and Java. C was
rejected because notations likex+y for x andy declared asint x[4] , y[4] , already have
the meaning of adding the addresses of the arrays together. Java was rejected because of
the difficulty of efficiently transmitting data parallel operations via its intermediate code to
a just in time code generator.

Iverson’s approach to data parallelism is machine independent. It can be implemented
using scalar instructions or using the SIMD model. The only difference is speed. Vector
Pascal incorporates Iverson’s approach to data parallelism.

Part I

Language Reference Manual

Paul Cockshott

9

Chapter 1

Elements of the language

1.1 Alphabet

The Vector Pascal compiler accepts files in the UTF-8 encoding of Unicode as source.
Since ASCII is a subset of this, ASCII files are valid input.

Vector Pascal programs are made up of letter, digits and special symbols. The letters
digits and special symbols are draw either from a base character set or from an extended
character set. The base character set is drawn from ASCII andrestricts the letters to be
from the Latin alphabet. The extended character set allows letters from other alphabets.

The special symbols used in the base alphabet are shown in table1.1 .

1.1.1 Extended alphabet

The extended alphabet is described in Using Unicode with Vector Pascal.

1.2 Reserved words

The reserved words are
ABS, ADDR, AND, ARRAY,
BEGIN, BYTE2PIXEL,
CASE, CAST, CDECL, CHR, CONST, COS,

DIV, DO, DOWNTO,
END, ELSE, EXIT, EXTERNAL,

Table 1.1: Special symbols

+ : (
- ’)
* = [
/ <>]
:= < {
. <= }
, >= ^
; > ..
+: @ *)
-: $ (*
_ **

11

12 CHAPTER 1. ELEMENTS OF THE LANGUAGE

FALSE, FILE, FOR, FUNCTION,
GOTO,
IF, IMPLEMENTATION, IN, INTERFACE, IOTA,
LABEL, LIBRARY, LN,
MAX, MIN, MOD,
NAME, NDX, NOT,
OF, OR, ORD, OTHERWISE,
PACKED, PERM, PIXEL2BYTE, POW, PRED,

PROCEDURE, PROGRAM, PROTECTED ,
RDU, RECORD, REPEAT, ROUND,
SET, SHL, SHR, SIN, SIZEOF, STRING, SQRT, SUCC,
TAN, THEN, TO, TRANS, TRUE, TYPE,
VAR,
WITH, WHILE, UNIT, UNTIL, USES
Reserved words may be written in either lower case or upper case letters, or any com-

bination of the two.

1.3 Comments

The comment construct
{ < any sequence of characters not containing “}” >}
may be inserted between any two identifiers, special symbols, numbers or reserved

words without altering the semantics or syntactic correctness of the program. The brack-
eting pair(* *) may substitute for{ } . Where a comment starts with{ it continues until
the next} . Where it starts with(* it must be terminated by*) 1.

1.4 Identifiers

Identifiers are used to name values, storage locations, programs, program modules, types,
procedures and functions. An identifier starts with a letterfollowed by zero or more letters,
digits or the special symbol_. Case is not significant in identifiers. ISO Pascal allows the
Latin letters A-Z to be used in identifiers. Vector Pascal extends this by allowing symbols
from the Greek, Cyrillic, Katakana and Hiragana, or CJK character sets

1.5 Literals

1.5.1 Integer numbers

Integer numbers are formed of a sequence of decimal digits, thus1, 23, 9976 etc, or as
hexadecimal numbers, or as numbers of any base between 2 and 36. A hexadecimal number
takes the form of a$ followed by a sequence of hexadecimal digits thus$01, $3ff, $5A .
The letters in a hexadecimal number may be upper or lower caseand drawn from the range
a..f or A..F.

A based integer is written with the base first followed by a # character and then a
sequence of letters or digits. Thus2#1101 is a binary number8#67 an octal number and
20#7i a base 20 number.

The default precision for integers is 32 bits2.

1Note this differs from ISO Pascal which allows a comment starting with { to terminate with *) and vice versa.
2The notation used for grammar definition is a tabularised BNF. Each boxed table defines a production, with

the production name in the left column. Each line in the rightcolumn is an alternative for the production. The
metasymbol + indicates one or more repetitions of what immediately preceeds it. The Kleene star * is used for
zero or more repetitions. Terminal symbols are in single quotes. Sequences in brackets [] are optional.

1.5. LITERALS 13

Table 1.2: The hexadecimal digits of Vector Pascal.
Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Notation 1 0 1 2 3 4 5 6 7 8 9 A B C D E F
Notation 2 a b c d e f

.

<digit sequence> <digit> +

<decimal integer> <digit sequence>

<hex integer> ‘$’<hexdigit>+

<based integer> <digit sequence>’#’<alphanumeric>+

<unsigned integer> <decimal integer>
<hex integer>

<based integer>

1.5.2 Real numbers

Real numbers are supported in floating point notation, thus14.7 , 9.99e5 , 38E3, 3.6e-4
are all valid denotations for real numbers. The default precision for real numbers is also
32 bit, though intermediate calculations may use higher precision. The choice of 32 bits as
the default precision is influenced by the fact that 32 bit floating point vector operations are
well supported in multi-media instructions.

<exp> ‘e’
‘E’

<scale factor> [<sign>] <unsigned integer>

<sign> ‘-’
‘+’

<unsigned real> <decimal integer> ‘.’ <digit sequence>
<decimal integer>‘ .’ <digit sequence> <exp><scale factor>

<decimal integer><exp> <scale factor>

Fixed point numbers

In Vector Pascal pixels are represented as signed fixed pointfractions in the range -1.0 to
1.0. Within this range, fixed point literals have the same syntactic form as real numbers.

1.5.3 Character strings

Sequences of characters enclosed by quotes are called literal strings. Literal strings consist-
ing of a single character are constants of the standard type char. If the string is to contain a
quote character this quote character must be written twice.

14 CHAPTER 1. ELEMENTS OF THE LANGUAGE

’A’ ’x’ ’hello’ ’John”s house’

are all valid literal strings. The allowable characters in literal strings are any of the
Unicode characters above u0020. The character strings mustbe input to the compiler in
UTF-8 format.

Chapter 2

Declarations

Vector Pascal is a language supporting nested declaration contexts. A declaration context
is either a program context, and unit interface or implementation context, or a procedure
or function context. A resolution context determines the meaning of an identifier. Within a
resolution context, identifiers can be declared to stand forconstants, types, variables, pro-
cedures or functions. When an identifier is used, the meaningtaken on by the identifier is
that given in the closest containing resolution context. Resolution contexts are any decla-
ration context or awith statement context. The ordering of these contexts when resolving
an identifier is:

1. The declaration context identified by anywith statements which nest the current
occurrence of the identifier. Thesewith statement contexts are searched from the
innermost to the outermost.

2. The declaration context of the currently nested procedure declarations. These proce-
dure contexts are searched from the innermost to the outermost.

3. The declaration context of the current unit or program.

4. The interface declaration contexts of the units mentioned in the use list of the current
unit or program. These contexts are searched from the rightmost unit mentioned in
the use list to the leftmost identifier in the use list.

5. The interface declaration context of the System unit.

6. The pre-declared identifiers of the language.

2.1 Constants

A constant definition introduces an identifier as a synonym for a constant.

<constant declaration> <identifier>=<expression>
<identifier>’:’<type>’=’<typed constant>

Constants can be simple constants or typed constants. A simple constant must be a con-
stant expression whose value is known at compile time. This restricts it to expressions for
which all component identifiers are other constants, and forwhich the permitted operators
are given in table2.1 . This restricts simple constants to beof scalar or string types.

Typed constants provide the program with initialised variables which may hold array
types.

<typed constant> <expression>
<array constant>

15

16 CHAPTER 2. DECLARATIONS

Table 2.1: The operators permitted in Vector Pascal constant expressions.
+ - * / div mod shr shl and or

2.1.1 Array constants

Array constants are comma separated lists of constant expressions enclosed by brackets.
Thus

tr:array[1..3] of real =(1.0,1.0,2.0);
is a valid array constant declaration, as is:
t2:array[1..2,1..3] of real=((1.0,2.0,4.0),(1.0,3.0,9 .0));

The array constant must structurally match the type given tothe identifier. That is to
say it must match with respect to number of dimensions, length of each dimension, and
type of the array elements.

<array constant> ’(’ <typed constant> [,<typed constant>]* ’)’

2.1.2 Pre-declared constants

maxint The largest supported integer value.

pi A real numbered approximation toπ

maxchar The highest character in the character set.

maxstring The maximum number of characters allowed in a string.

maxreal The highest representable real.

minreal The smallest representable positive real number.

epsreal The smallest real number which when added to 1.0 yields a value distinguish-
able from 1.0.

maxdouble The highest representable double precision real number.

mindouble The smallest representable positive double precision realnumber.

complexzero A complex number with zero real and imaginary parts.

complexone A complex number with real part 1 and imaginary part 0.

2.2 Labels

Labels are written as digit sequences. Labels must be declared before they are used. They
can be used to label the start of a statement and can be the destination of agoto statement.
A goto statement must have as its destination a label declared within the current innermost
declaration context. A statement can be prefixed by a label followed by a colon.

Example
label 99;
begin read(x); if x>9 goto 99; write(x*2);99: end;

2.3. TYPES 17

Table 2.2: Categorisation of the standard types.
type category

real floating point
double floating point
byte integral
pixel fixed point

shortint integral
word integral

integer integral
cardinal integral
boolean scalar

char scalar

2.3 Types

A type declaration determines the set of values that expressions of this type may assume
and associates with this set an identifier.

<type> <simple type>
<structured type>

<pointer type>

<type definition> <identifier>’=’<type>

2.3.1 Simple types

Simple types are either scalar, standard, subrange or dimensioned types.

<simple type> <scalar type>
<integral type>
<subrange type>

<dimensioned type>
<floating point type>

Scalar types

A scalar type defines an ordered set of identifier by listing these identifiers. The declaration
takes the form of a comma separated list of identifiers enclosed by brackets. The identifiers
in the list are declared simultaneously with the declared scalar type to be constants of this
declared scalar type. Thus

colour = (red,green,blue);
day=(monday,tuesday,wednesday,thursday,

friday,saturday,sunday);

are valid scalar type declarations.

Standard types

The following types are provided as standard in Vector Pascal:

integer The numbers are in the range -maxint to +maxint.

18 CHAPTER 2. DECLARATIONS

real These are a subset of the reals constrained by the IEEE 32 bit floating point
format.

double These are a subset of the real numbers constrained by the IEEE64 bit floating
point format.

pixel These are represented as fixed point binary fractions in the range -1.0 to 1.0.

boolean These take on the values(false,true) which are ordered such thattrue<false .

char These include the characters fromchr(0) to charmax . All the allowed char-
acters for string literals are in the type char, but the character-set may include
other characters whose printable form is country specific.

pchar Defined aŝ char .

byte These take on the positive integers between 0 and 255.

shortint These take on the signed values between -128 and 127.

word These take on the positive integers from 0 to 65535.

cardinal These take on the positive integers form 0 to 4292967295, i.e., the most that
can be represented in a 32 bit unsigned number.

longint A 32 bit integer, retained for compatibility with Turbo Pascal.

int64 A 64 bit integer.

complex A complex number with the real and imaginary parts held to 32 bit precision.

Subrange types

A type may be declared as a subrange of another scalar or integer type by indicating the
largest and smallest value in the subrange. These values must be constants known at com-
pile time.

<subrange type> <constant> ’..’ <constant>

Examples: 1..10, ’a’..’f’, monday..thursday.

Pixels

Theconceptual modelof pixels in Vector Pascal is that they are real numbers in therange
−1.0..1.0. As a signed representation it lends itself to subtraction. As an unbiased repre-
sentation, it makes the adjustment of contrast easier. For example, one can reduce contrast
50% simply by multiplying an image by 0.51. Assignment to pixel variables in Vector
Pascal is defined to be saturating - real numbers outside the range−1..1 are clipped to it.
The multiplications involved in convolution operations fall naturally into place.

The implementation modelof pixels used in Vector Pascal is of 8 bit signed integers
treated as fixed point binary fractions. All the conversionsnecessary to preserve the mono-
tonicity of addition, the range of multiplication etc, are delegated to the code generator
which, where possible, will implement the semantics using efficient, saturated multi-media
arithmetic instructions.

1When pixels are represented as integers in the range 0..255,a 50% contrast reduction has to be expressed as
((p−128)÷2)+128.

2.3. TYPES 19

Dimensioned types

These provide a means by which floating point types can be specialised to represent dimen-
sioned numbers as is required in physics calculations. For example:

kms =(mass,distance,time);
meter=real of distance;
kilo=real of mass;
second=real of time;
newton=real of mass * distance * time POW -2;
meterpersecond = real of distance *time POW -1;
The grammar is given by:

<dimensioned type> <real type> <dimension >[’*’ <dimension>]*

<real type> ’real’
’double’

<dimension> <identifier> [’POW’ [<sign>] <unsigned integer>]

The identifier must be a member of a scalar type, and that scalar type is then referred
to as the basis space of the dimensioned type. The identifiersof the basis space are re-
ferred to as the dimensions of the dimensioned type. Associated with each dimension of
a dimensioned type there is an integer number referred to as the power of that dimension.
This is either introduced explicitly at type declaration time, or determined implicitly for the
dimensional type of expressions.

A value of a dimensioned type is a dimensioned value. Let logd t of a dimensioned type
t be the power to which the dimensiond of type t is raised. Thus fort =newton in the
example above, andd =time, logd t =−2

If x andy are values of dimensioned typestxandtyrespectively, then the following op-
erators are only permissible iftx = ty

+ - < > <> = <= >=

For + and -, the dimensional type of the result is the same as that of the arguments. The
operations

* /

are permitted if the typestxandty share the same basis space, or if the basis space of
one of the types is a subrange of the basis space of the other.

The operationPOWis permitted between dimensioned types and integers.

Dimension deduction rules

1. If x = y∗ z for x : t1,y : t2,z : t3 with basis spaceB then

∀d∈B logd t1 = logd t2 + logd t3

2. If x = y/z for x : t1,y : t2,z : t3 with basis spaceB then

∀d∈B logd t1 = logd t2− logd t3

3. If x = y POWz for x : t1,y : t2,z : integerwith basis space fort2, B then

∀d∈B logd t1 = logd t2×z

20 CHAPTER 2. DECLARATIONS

.

2.3.2 Structured types

Static Array types

An array type is a structure consisting of a fixed number of elements all of which are the
same type. The type of the elements is referred to as the element type. The elements of an
array value are indicated by bracketed indexing expressions. The definition of an array type
simultaneously defines the permitted type of indexing expression and the element type.

The index type of a static array must be a scalar or subrange type. This implies that the
bounds of a static array are known at compile time.

<array type> ’array’ ’[’ <index type>[,<index type>]* ’]’ ’of’ <type>

<index type> <subrange type>
<scalar type>

<integral type>

Examples
array[colour] of boolean;
array[1..100] of integer;
array[1..2,4..6] of byte;
array[1..2] of array[4..6] of byte;
The notation [b,c] in an array declaration is shorthand for the notation [b] of array [

c]. The number of dimensions of an array type is referred to as its rank. Scalar types have
rank 0.

String types

A string type denotes the set of all sequences of characters up to some finite length and
must have the syntactic form:

<string-type> ’string[’ <integer constant>’]’
’string’

’string(’ <ingeger constant>’)’

the integer constant indicates the maximum number of characters that may be held
in the string type. The maximum number of characters that canbe held in any string
is indicated by the pre-declared constantmaxstring . The typestring is shorthand for
string[maxstring] .

Record types

A record type defines a set of similar data structures. Each member of this set, a record
instance, is a Cartesian product of number of components orfieldsspecified in the record
type definition. Each field has an identifier and a type. The scope of these identifiers is the
record itself.

A record type may have as a final component avariant part. The variant part, if a
variant part exists, is a union of several variants, each of which may itself be a Cartesian
product of a set of fields. If a variant part exists there may bea tag field whose value
indicates which variant is assumed by the record instance.

All field identifiers even if they occur within different variant parts, must be unique
within the record type.

2.3. TYPES 21

<record type> ’record’ <field list> ’end’

<field list> <fixed part>
<fixed part>’;’ <variant part>

<variant part>

<fixed part> <record section> [’;’ <record section.]*

<record section> <identifier>[’,’ <identifier>]* ’:’ <type>
<empty>

<variant part> ’case’ [<tag field> ’:’] <type identifier> ’of’<variant>[’;’ <variant>]*

<variant> <constant> [’,’ <constant>]*’:’ ’(’ <field list> ’)’
<empty>

Set types

A set type defines the range of values which is the power-set ofits base type. The base type
must be an ordered type, that is a type on which the operations<, = and> are defined2.
Thus sets may be declared whose base types are characters, numbers, ordinals, or strings.
Any user defined type on which the comparison operators have been defined can also be
the base type of a set.

<set type> ’set’ ’of’ <base type>

2.3.3 Dynamic types

Variables declared within the program are accessed by theiridentifier. These variables exist
throughout the existence of the scope within which they are declared, be this unit, program
or procedure. These variables are assigned storage locations whose addresses, either ab-
solute or relative to some register, can be determined at compile time. Such locations a
referred to as static3. Storage locations may also be allocated dynamically. Given a typet ,
the type of a pointer to an instance of typet is ^t .

A pointer of type^t can be initialised to point to a new store location of type t byuse
of the built in procedurenew. Thus ifp:^t ,

new(p);
causesp to point at a store location of typet .

Pointers to dynamic arrays

The types pointed to by pointer types can be any of the types mentioned so far, that is to
say, any of the types allowed for static variables. In addition however, pointer types can

2ISO Pascal requires the base type to be a scalar type, a character type, integer type or a subrange thereof.
When the base type is one of these, Vector Pascal implements the set using bitmaps. When the type is other than
these, balanced binary trees are used. It is strongly recomended that use be made of Boehm garbage collector (see
section 5.1.2) if non-bitmapped sets are used in a program.

3The Pascal concept of static variables should not be equatedwith the notion of static variables in some other
languages such as C or Java. In Pascal a variable is considered static if its offset either relative to the stack base
or relative to the start of the global segment can be determined at compile/link time. In C a variable is static only
if its location relative to the start of the global segment isknown at compile time.

22 CHAPTER 2. DECLARATIONS

be declared to point at dynamic arrays. A dynamic array is an array whose bounds are
determined at run time.

Pascal 90[15] introduced the notion of schematic or parameterised types as a means of
creating dynamic arrays. Thus wherer is some integral or ordinal type one can write

type z(a,b:r)=array[a..b] of t;
If p:^z , then
new(p,n,m)
wheren,m:r initialisesp to point to an array of boundsn..m . The bounds of the array

can then be accessed asp^.a, p^.b . In this casea, b are the formal parameters of the
array type. Vector Pascal currently only allows parameterised types to be allocated on the
heap vianew. The extended form of the procedurenew must be passed an actual parameter
for each formal parameter in the array type.

Dynamic arrays

Vector Pascal also allows the use of Delphi style declarations for dynamic arrays. Thus one
can declare:

type vector = array of real;
matrix = array of array of real;

The size of such arrays has to be explicitly initialised at runtime by a call to the library
proceduresetlength . Thus one might have:

function readtotal:real;
var len:integer;

v:vector;
begin

readln(len);
setlength(v,len);
readln(v);
readtotal := \+ v;

end;

The functionreadtotal reads the number of elements in a vector from the standard input.
It then callssetlength to initialise the vector length. Next it reads in the vector and
computes its total using the reduction operator\+ .

In the example, the variablev denotes an array of reals not a pointer to an array of
reals. However, since the array size is not known at compile time setlength will allocate
space for the array on the heap not in the local stack frame. The use ofsetlength is
thus restricted to programs which have been compiled with the garbage collection flag
enabled (see section 5.1.2). The proceduresetlength must be passed a parameter for
each dimension of the dynamic array. The bounds of the arraya formed by
setlength(a,i,j,k)
would then be0..i-1, 0..j-1, 0..k-1 .

Low and High

The build in functionslow andhigh return the lower and upper bounds of an array respec-
tively. They work with both static and dynamic arrays. Consider the following examples.

program arrays;
type z(a,b:integer)=array[a..b] of real;

vec = array of real;
line= array [1..80] of char;
matrix = array of array of real;

2.4. FILE TYPES 23

var i:^z; v:vec; l:line; m:matrix;
begin

setlength(v,10);setlength(m,5,4);
new(i,11,13);
writeln(low(v), high(v));
writeln(low(m), high(m));
writeln(low(m[0]),high(m[0]));
writeln(low(line),high(line));
writeln(low(i^),high(i^));

end.

would print

0 9
0 4
0 3
1 80

11 13

2.4 File types

A type may be declared to be a file of a type. This form of definition is kept only for back-
ward compatibility. All file types are treated as being equivalent. A file type corresponds to
a handle to an operating system file. A file variable must be associated with the operating
system file by using the proceduresassign, rewrite, append , andreset provided by
the system unit. A pre-declared file typetext exists.

Text files are assumed to be in Unicode UTF-8 format. Conversions are performed
between the internal representation of characters and UTF-8 on input/output from/to a text
file.

2.5 Variables

Variable declarations consist of a list of identifiers denoting the new variables, followed by
their types.

<variable declaration> <identifier> [’,’ <identifier>]* ’:’ <type><extmod>

Variables are abstractions over values. They can be either simple identifiers, compo-
nents or ranges of components of arrays, fields of records or referenced dynamic variables.

<variable> <identifier>
<indexed variable>
<indexed range>

<field designator>
<referenced variable>

Examples
x,y:real;
i:integer;
point:^real;
dataset:array[1..n]of integer;
twoDdata:array[1..n,4..7] of real;

24 CHAPTER 2. DECLARATIONS

2.5.1 External Variables

A variable may be declared to be external by appending the external modifier.

<extmod> ’;’ ’external’ ’name’ <stringlit>

This indicates that the variable is declared in a non Vector Pascal external library. The
name by which the variable is known in the external library isspecified in a string literal.

Example
count:integer; external name ’_count’;

2.5.2 Entire Variables

An entire variable is denoted by its identifier. Examplesx,y,point ,

2.5.3 Indexed Variables

A component of ann dimensional array variable is denoted by the variable followed byn
index expressions in brackets.

<indexed variable> <variable>’[’ <expression>[’,’<expression>]* ’]’

The type of the indexing expression must conform to the indextype of the array vari-
able. The type of the indexed variable is the component type of the array.

Examples
twoDdata[2,6]
dataset[i]
Given the declaration
a=array[p] of q
then the elements of arrays of typea, will have typeq and will be identified by indices

of typep thus:
b[i]
wherei:p , b:a .
Given the declaration
z = string[x]
for some integer x≤maxstring , then the characters within strings of typez will be

identified by indices in the range1..x, thus:
y[j]
wherey:z , j:1..x .

Indexed Ranges

A range of components of an array variable are denoted by the variable followed by a range
expression in brackets.

<indexed range> <variable> ’[’ <range expression>[’,’ <range expression>]* ’]’

<range expression> <expression> ’..’ <expression>

The expressions within the range expression must conform tothe index type of the
array variable. The type of a range expressiona[i..j] wherea: array[p..q] of t is
array[0..j-i] of t.

Examples:
dataset[i..i+2]:=blank;
twoDdata[2..3,5..6]:=twoDdata[4..5,11..12]*0.5;

2.5. VARIABLES 25

Subranges may be passed in as actual parameters to procedures whose corresponding
formal parameters are declared as variables of a schematic type. Hence given the following
declarations:

type image(miny,maxy,minx,maxx:integer)=array[miny.. maxy,minx..maxx]
of byte;

procedure invert(var im:image);begin im:=255-im; end;
var screen:array[0..319,0..199] of byte;
then the following statement would be valid:
invert(screen[40..60,20..30]);

Indexing arrays with arrays

If an array variable occurs on the right hand side of an assignment statement, there is a fur-
ther form of indexing possible. An array may be indexed by another array. Ifx:array[t0]
of t1 andy:array[t1] of t2 , theny[x] denotes the virtual array of typearray[t0]
of t2 such thaty[x][i]=y[x[i]] . This construct is useful for performing permutations.
To fully understand the following example refer to sections3.1.3,3.2.1.

Example Given the declarations
const perm:array[0..3] of integer=(3,1,2,0);
var ma,m0:array[0..3] of integer;
then the statements
m0:= (iota 0)+1;
write(’m0=’);for j:=0 to 3 do write(m0[j]);writeln;
ma:=m0[perm];
write(’perm=’);for j:=0 to 3 do write(perm[j]);writeln;
writeln(’ma:=m0[perm]’);for j:=0 to 3 do write(ma[j]);wr iteln;
would produce the output

m0= 1 2 3 4
perm= 3 1 2 0
ma:=m0[perm]
4 2 3 1

This basic method can also be applied to multi-dimensional array. Consider the follow-
ing example of an image warp:

type pos = 0..255;
image = array[pos,pos] of pixel;
warper = array[pos,pos,0..1] of pos;

var im1 ,im2 :image;
warp :warper;

begin
....
getbackwardswarp(warp);
im2 := im1 [warp];
....

The proceduregetbackwardswarp determines for each pixel positionx, y in an image
the position in the source image from which it is to be obtained. After the assignment we
have the postcondition

im2[x,y] = im1[warp[x,y,0],warp[x,y,1]]∀x,y ∈ pos

26 CHAPTER 2. DECLARATIONS

2.5.4 Field Designators

A component of an instance of a record type, or the parametersof an instance of a schematic
type are denoted by the record or schematic type instance followed by the field or parameter
name.

<field designator> <variable>’.’<identifier>

2.5.5 Referenced Variables

If p:^t , thenp^ denotes the dynamic variable of typet referenced byp.

<referenced variable> <variable> ’^’

2.6 Procedures and Functions

Procedure and function declarations allow algorithms to beidentified by name and have
arguments associated with them so that they may be invoked byprocedure statements or
function calls.

<procedure declaration> <procedure heading>’;’[<proc tail>]

<proc tail> ’forward’ must be followed by definition of procedure body

’external’ imports a non Pascal procedure
<block> procedure implemented here

<paramlist> ’(’<formal parameter section>[’;’<formal parameter section>]*’)’

<procedure heading> ’procedure’ <identifier> [<paramlist>]
’function’<identifier> [<paramlist>]’:’<type>

<formal parameter section> [’var’]<identifier>[’,’<identifier>]’:’<type>

The parameters declared in the procedure heading are local to the scope of the pro-
cedure. The parameters in the procedure heading are termed formal parameters. If the
identifiers in a formal parameter section are preceded by thewordvar , then the formal pa-
rameters are termed variable parameters. The block4 of a procedure or function constitutes
a scope local to its executable compound statement. Within afunction declaration there
must be at least one statement assigning a value to the function identifier. This assign-
ment determines the result of a function, but assignment to this identifier does not cause an
immediate return from the function.

Function return values can be scalars, pointers, records, strings or sets. Arrays may not
be returned from a function.

Examples The function sba is the mirror image of the abs function.
function sba(i:integer):integer;
begin if i>o then sba:=-i else sba:=i end;
type stack:array[0..100] of integer;
procedure push(var s:stack;i:integer);
begin s[s[0]]:=i;s[0]:=s[0]+1; end;

4see section 4.

Chapter 3

Algorithms

3.1 Expressions

An expression is a rule for computing a value by the application of operators and functions
to other values. These operators can bemonadic- taking a single argument, ordyadic-
taking two arguments.

3.1.1 Mixed type expressions

The arithmetic operators are defined over the base types integer and real. If a dyadic op-
erator that can take either real or integer arguments is applied to arguments one of which
is an integer and the other a real, the integer argument is first implicitly converted to a real
before the operator is applied. Similarly, if a dyadic operator is applied to two integral
numbers of different precision, the number of lower precision is initially converted to the
higher precisions, and the result is of the higher precision. Higher precision of typest,u
is defined such that the type with the greater precision is theone which can represent the
largest range of numbers. Hence reals are taken to be higher precision than longints even
though the number of significant bits in a real may be less thanin a longint.

When performing mixed type arithmetic between pixels and another numeric data type,
the values of both types are converted to reals before the arithmetic is performed. If the
result of such a mixed type expression is subsequently assigned to a pixel variable, all
values greater than 1.0 are mapped to 1.0 and all values below-1.0 are mapped to -1.0.

3.1.2 Primary expressions

<primary expression> ’(’ <expression> ’)’
<literal string>

’true’
’false’

<unsigned integer>
<unsigned real>

<variable>
<constant id>

<function call>
<set construction>

The most primitive expressions are instances of the literals defined in the language:
literal strings, boolean literals, literal reals and literal integers. ’Salerno’,true , 12, $ea8f,
1.2e9 are all primary expressions. The next level of abstraction is provided by symbolic

27

28 CHAPTER 3. ALGORITHMS

identifiers for values.X, left , a.max , p^.next , z[1] , image[4..200,100..150] are
all primary expressions provided that the identifiers have been declared as variables or
constants.

An expression surrounded by brackets() is also a primary expression. Thus ife is an
expression so is(e) .

<function call> <function id> [’(’ <expression> [,<expression>]* ’)’]

<element> <expression>
<range expression>

Let e be an expression of typet1 and if f is an identifier of typefunction(t1): t2,
then f(e) is a primary expression of typet2. A function which takes no parameters is
invoked without following its identifier by brackets. It will be an error if any of the actual
parameters supplied to a function are incompatible with theformal parameters declared for
the function.

<set construction> ’[’ [<element>[,<element>]*] ’]’

Finally a primary expression may be a set construction. A setconstruction is written as a
sequence of zero or more elements enclosed in brackets[] and separated by commas. The
elements themselves are either expressions evaluating to single values or range expressions
denoting a sequence of consecutive values. The type of a set construction is deduced by
the compiler from the context in which it occurs. A set construction occurring on the right
hand side of an assignment inherits the type of the variable to which it is being assigned.
The following are all valid set constructions:

[], [1..9], [z..j,9], [a,b,c,]
[] denotes the empty set.

3.1.3 Unary expressions

A unary expression is formed by applying a unary operator to another unary or primary ex-
pression. The unary operators supported are+, -, *, /, div, mod, and, or, not,
round, sqrt, sin, cos, tan, abs, ln, ord, chr, byte2pixel, pi xel2byte, succ,
pred, iota, trans, addr and@.

Thus the following are valid unary expressions: -1 , +b, not true , sqrt abs x ,
sin theta. In standard Pascal some of these operators are treated as functions,. Syntacti-
cally this means that their arguments must be enclosed in brackets, as insin(theta) . This
usage remains syntactically correct in Vector Pascal.

The dyadic operators+, -, *, /, div, mod , and or are all extended to unary
context by the insertion of an implicit value under the operation. Thus just as-a = 0-a so
too /2 = 1/2 . For sets the notation-s means the complement of the sets. The implicit
value inserted are given below.

type operators implicit value

number +,- 0
string + ”

set + empty set
number *,/ ,div,mod 1
number max lowest representable number of the type
number min highest representable number of the type
boolean and true
boolean or false

3.1. EXPRESSIONS 29

Table 3.1: Unary operators
lhs rhs meaning

<unaryop> ’+’ +x = 0+x identity operator
’-’ -x = 0-x,

note: this is defined on integer, real and complex
’*’, ’ ×’ *x=1*x identity operator

’/’ /x=1.0/x
note: this is defined on integer, real and complex

’div’, ’ ÷’ div x =1 div x
’mod’ mod x = 1 mod x
’and’ and x = true and x
’or’ or x = false or x

’not’, ’¬’ complements booleans
’round’ rounds a real to the closest integer

’sqrt’, ’√’ returns square root as a real number.
’sin’ sine of its argument. Argument in radians. Result is real.
’cos’ cosine of its argument. Argument in radians. Result is real.
’tan’ tangent of its argument. Argument in radians. Result is real.
’abs’ if x<0 then abs x = -x else abs x= x
’ln’ loge of its argument. Result is real.

’ord’ argument scalar type, returns ordinal
number of the argument.

’chr’ converts an integer into a character.
’succ’ argument scalar type,

returns the next scalar in the type.
’pred’ argument scalar type,

returns the previous scalar in the type.
’iota’, ’ ι’ iota i returns the ith current index
’trans’ transposes a matrix or vector

’pixel2byte’ convert pixel in range -1.0..1.0 to byte in range 0..255
’byte2pixel’ convert a byte in range 0..255 to a pixel in

the range -1.0..1.0
’@’,’addr’ Given a variable, this returns an

untyped pointer to the variable.

A unary operator can be applied to an array argument and returns an array result. Sim-
ilarly any user declared function over a scalar type can be applied to an array type and
return an array. Iff is a function or unary operator mapping from typer to type t then
if x is an array ofr, anda an array oft , thena:=f(x) assigns an array oft such that
a[i]=f(x[i])

<unary expression> <unaryop> <unary expression>
’sizeof’ ’(’ <type> ’)’
<operator reduction>
<primary expression>

’if’<expression> ’then’ <expression> ’else’ <expression>

sizeof

The constructsizeof(t) wheret is a type, returns the number of bytes occupied by an
instance of the type.

30 CHAPTER 3. ALGORITHMS

iota

The operator iota i returns the ith current implicit index1.

Examples Thus given the definitions
var v1:array[1..3]of integer;
v2:array[0..4] of integer;
then the program fragment
v1:=iota 0;
v2:=iota 0 *2;

for i:=1 to 3 do write(v1[i]); writeln;
writeln(’v2’);
for i:=0 to 4 do write(v2[i]); writeln;
would produce the output

v1
1 2 3
v2
0 2 4 6 8

whilst given the definitions
m1:array[1..3,0..4] of integer;m2:array[0..4,1..3]of i nteger;
then the program fragment
m2:= iota 0 +2*iota 1;
writeln(’m2:= iota 0 +2*iota 1 ’);
for i:=0 to 4 do begin for j:=1 to 3 do write(m2[i,j]); writeln ; end;

would produce the output

m2:= iota 0 +2*iota 1
2 4 6
3 5 7
4 6 8
5 7 9
6 8 10

The argument toiota must be an integer known at compile time within the range of implicit
indices in the current context. The reserved wordndx is a synonym foriota .

perm A generalised permutation of the implicit indices is performed using the syntactic
form:

perm[index-sel[,index-sel]*]expression

The index-sels are integers known at compile time which specify a permutation on the
implicit indices. Thus ine evaluated in contextperm[i, j,k] e, then:

iota 0 = iota i, iota 1= iota j, iota 2= iota k

This is particularly useful in converting between different image formats. Hardware frame
buffers typically represent images with the pixels in the red, green, blue, and alpha channels
adjacent in memory. For image processing it is convenient tohold them in distinct planes.
Theperm operator provides a concise notation for translation between these formats:

1See section 3.2.1.

3.1. EXPRESSIONS 31

type rowindex=0..479;
colindex=0..639;

var channel=red..alpha;
screen:array[rowindex,colindex,channel] of pixel;
img:array[channel,colindex,rowindex] of pixel;

...
screen:=perm[2,0,1]img;

trans anddiag provide shorthand notions for expressions in terms ofperm . Thus in
an assignment context of rank 2,trans = perm[1,0] anddiag = perm[0,0] .

trans

The operator trans transposes a vector or matrix. It achieves this by cyclic rotation of the
implicit indices. Thus iftrans e is evaluated in a context with implicit indices

iota 0.. iota n
then the expression e is evaluated in a context with implicitindices
iota ’0.. iota ’n
where
iota ’x = iota ((x+1)modn+1)
It should be noted that transposition is generalised to arrays of rank greater than 2.

Examples Given the definitions used above in section 3.1.3, the program fragment:
m1:= (trans v1)*v2;
writeln(’(trans v1)*v2’);
for i:=1 to 3 do begin for j:=0 to 4 do write(m1[i,j]); writeln ; end;

m2 := trans m1;
writeln(’transpose 1..3,0..4 matrix’);
for i:=0 to 4 do begin for j:=1 to 3 do write(m2[i,j]); writeln ; end;
will produce the output:

(trans v1)*v2
0 2 4 6 8
0 4 8 12 16
0 6 12 18 24
transpose 1..3,0..4 matrix
0 0 0
2 4 6
4 8 12
6 12 18
8 16 24

3.1.4 Operator Reduction

Any dyadic operator can be converted to a monadic reduction operator by the functional \.
Thus if a is an array,\+a denotes the sum over the array. More generally\Φx for some
dyadic operatorΦ meansx0Φ(x1Φ..(xnΦι)) whereι is the implicit value given the operator
and the type. Thus we can write\+ for summation,* for nary product etc. The dot product
of two vectors can thus be written as

x:= \+ y*x;

32 CHAPTER 3. ALGORITHMS

instead of
x:=0;
for i:=0 to n do x:= x+ y[i]*z[i];
A reduction operation takes an argument of rankr and returns an argument of rankr-1

except in the case where its argument is of rank 0, in which case it acts as the identity
operation. Reduction is always performed along the last array dimension of its argument.

The operations of summation and product can be be written eithter as the two functional
forms\ + and\ ∗ or as the prefix operators∑ (Unicode 2211) and∏ (Unicode 220f).

<operator reduction> ’\’<dyadic op> <multiplicative expression>
’∑’ <mutliplicative expression>
’∏’ < multiplicative expression>

<dyadic op> <expop>
<multop>
<addop>

The reserved wordrdu is available as a lexical alternative to \, so \+ is equivalent to
rdu +.

3.1.5 Complex conversion

Complex numbers can be produced from reals using the function cmplx . cmplx(re,im) is
the complex number with real partre, and imaginaray partim.

The real and imaginary parts of a complex number can be obtained by the functionsre
and im . re (c) is the real part of the complex numberc. im (c) is the imaginary part of the
complex numberc.

3.1.6 Conditional expressions

The conditional expression allows two different values to be returned depenent upon a
boolean expression.

var a:array[0..63] of real;
...

a:=if a>0 then a else -a;

...

The if expression can be compiled in two ways:

1. Where the two arms of the if expression are parallelisable, the condition and both
arms are evaluated and then merged under a boolean mask. Thus, the above assign-
ment would be equivalent to:

a:= (a and (a >0))or(not (a >0) and -a);

were the above legal Pascal2.

2. If the code is not paralleliseable it is translated as equivalent to a standard if state-
ment. Thus, the previous example would be equivalent to:

for i:=0 to 63 do if a[i] >0 then a[i]:=a[i] else a[i]:=-a[i];

Expressions are non parallelisable if they include function calls.
2This compilation strategy requires that true is equivalentto -1 and false to 0. This is typically the represen-

tation of booleans returned by vector comparison instructions on SIMD instruction sets. In Vector Pascal this
representation is used generally and in consequence,true <false .

3.1. EXPRESSIONS 33

Table 3.2: Multiplicative operators
Operator Left Right Result Effect ofa op b

*, × integer integer integer multiply
real real real multiply

complex complex complex multiply
/ integer integer real division

real real real division
complex complex complex division

div, ÷ integer integer integer division
mod integer integer integer remainder
and boolean boolean boolean logical and
shr integer integer integer shifta by b bits right
shl integer integer integer shifta by b bits left

in, ∈ t set of t boolean true ifa is member ofb

The dual compilation strategy allows the same linguistic construct to be used in recursive
function definitions and parallel data selection.

Use of boolean mask vectors

In array programming many operations can be efficiently be expressed in terms of boolean
mask vectors. Given the declarations:

i:array[1..4] of integer;
r:array[1..4] of real;
c:array[1..4] of complex;
b:array[1..4] of boolean;
s:array[1..4] of string;

and if

3.1.7 Factor

A factor is an expression that optionally performs exponentiation. Vector Pascal supports
exponentiation either by integer exponents or by real exponents. A numberx can be raised
to an integral powery by using the constructionx pow y. A number can be raised to an
arbitrary real power by the** operator. The result of** is always real valued.

<expop> ’pow’
’**’

<factor> <unary expression> [<expop> <unary expression>]

3.1.8 Multiplicative expressions

Multiplicative expressions consist of factors linked by the multiplicative operators*, ×,
/, div, ÷,, mod, shr, shl and . The use of these operators is summarised in table
3.2.

34 CHAPTER 3. ALGORITHMS

Table 3.3: Addition operations
Left Right Result Effect ofa op b

+ integer integer integer sum ofa andb

real real real sum ofa andb

complex complex complex sum ofa andb

set set set union ofa andb

string string string concatenatea with b ’ac’+’de’=’acde’

- integer integer integer result of subtractingb from a

real real real result of subtractingb from a

complex complex complex result of subtractingb from a

set set set complement ofb relative toa

+: 0..255 0..255 0..255 saturated + clipped to 0..255

-128..127 -128..127 -128..127 saturated + clipped to -128..127

-: 0..255 0..255 0..255 saturated - clipped to 0..255

-128..127 -128..127 -128..127 saturated - clipped to -128..127

min integer integer integer returns the lesser of the numbers

real real real returns the lesser of the numbers

max integer integer integer returns the greater of the numbers

real real real returns the greater of the numbers

or boolean boolean boolean logical or

>< set set set symetric difference

<multop> ’*’
’×’
’/’

’div’
’÷’
’shr’
’shl’
’and’
’mod’

<multiplicative expression> <factor> [<multop> <factor>]*
<factor>’in’<multiplicative expression>

3.1.9 Additive expressions

An additive expression allows multiplicative expressionsto be combined using the addition
operators+, -, or, +:,max, min, -: , ><. The additive operations are summarised in
table3.3 .

<addop> ’+’

’-’

’or’

’max’

’min’

’+:’

’-:’

<additive expression> <multiplicative expression> [<addop> <multiplicative expression>]*

3.1. EXPRESSIONS 35

Table 3.4: Relational operators

< Less than
> Greater than

<= Less than or equal to
>= Greater than or equal to
<> Not equal to
= Equal to

<expression> <additive expression> <relational operator> <expression>

3.1.10 Expressions

An expression can optionally involve the use of a relationaloperator to compare the results
of two additive expressions. Relational operators always return boolean results and are
listed in table 3.4.

3.1.11 Operator overloading

The dyadic operators can be extended to operate on new types by operator overloading.
Figure 3.1 shows how arithmetic on the typecomplex required by Extended Pascal [15] is
defined in Vector Pascal. Each operator is associated with a semantic function and if it is a
non-relational operator, an identity element. The operator symbols must be drawn from the
set of predefined Vector Pascal operators, and when expressions involving them are parsed,
priorities are inherited from the predefined operators. Thetype signature of the operator is
deduced from the type of the function3.

<operator-declaration> ’operator’ ’cast’ ’=’ <identifier>

’operator’ <dyadicop> ’=’ <identifier>’,’<identifier>

’operator’ <relational operator> ’=’ <identifier>

When parsing expressions, the compiler first tries to resolve operations in terms of
the predefined operators of the language, taking into account the standard mechanisms
allowing operators to work on arrays. Only if these fail doesit search for an overloaded
operator whose type signature matches the context.

In the example in figure 3.1, complex numbers are defined to be records containing
an array of reals, rather than simply as an array of reals. Hadthey been so defined, the
operators+,*,-,/ on reals would have masked the corresponding operators on complex
numbers.

The provision of an identity element for complex addition and subtraction ensures that
unary minus, as in−x for x :complex, is well defined, and correspondingly that unary /
denotes complex reciprocal. Overloaded operators can be used in array maps and array
reductions.

Implicit casts

The Vector Pascal language already contains a number of implicit type conversions that
are context determind. An example is the promotion of integers to reals in the context of
arithmetic expressions. The set of implicit casts can be added to by declaring an operator
to be a cast as is shown in the line:

3Vector Pascal allows function results to be of any non-procedural type.

36 CHAPTER 3. ALGORITHMS

interface
type

Complex = record data : array [0..1] of real ;
end ;

var
complexzero, complexone : complex;

function real2cmplx (realpart :real):complex ;
function cmplx (realpart ,imag :real):complex ;
function complex_add (A ,B :Complex):complex ;
function complex_conjugate (A :Complex):complex ;
function complex_subtract (A ,B :Complex):complex ;
function complex_multiply (A ,B :Complex):complex ;
function complex_divide (A ,B :Complex):complex ;

{ Standard operators on complex numbers }
{ symbol function identity element }
operator + = Complex_add , complexzero ;
operator / = complex_divide , complexone ;
operator * = complex_multiply , complexone ;
operator - = complex_subtract , complexzero ;
operator cast = real2cmplx ;

Figure 3.1: Defining operations on complex numbers
Note that only the function headers are given here as this code comes from the interface part of the
system unit. The function bodies and the initialisation of the variables complexone and complexzero
are handled in the implementation part of the unit.

3.2. STATEMENTS 37

operator cast = real2cmplx ;

Given an implict cast from typet0→ t1, the function associated with the implicit cast
is then called on the result of any expressione : t0 whose expression context requires it to
be of typet1.

3.2 Statements

<statement> <variable>’:=’<expression>
<procedure statement>

<empty statement>
’goto’ <label>;

’exit’[’(’<expression>’)’]
’begin’ <statement>[;<statement>]*’end’

’if’<expression>’then’<statement>[’else’<statement>]
<case statement>

’for’ <variable>:= <expression> ’to’ <expression> ’do’ <statement>
’for’ <variable>:= <expression> ’downto’ <expression> ’do’ <statement>

’repeat’ <statement> ’until’ <expression>
’with’ <record variable> ’do’ < statement>

<io statement>
’while’ <expression> ’do’ <statement>

3.2.1 Assignment

An assignment replaces the current value of a variable by a new value specified by an
expression. The assignment operator is :=. Standard Pascalallows assignment of whole
arrays. Vector Pascal extends this to allow consistent use of mixed rank expressions on the
right hand side of an assignment. Given

r0:real; r1:array[0..7] of real;
r2:array[0..7,0..7] of real
then we can write

1. r1:= r2[3]; { supported in standard Pascal }

2. r1:= /2; { assign 0.5 to each element of r1 }

3. r2:= r1*3; { assign 1.5 to every element of r2}

4. r1:= \+ r2; { r1 gets the totals along the rows of r2}

5. r1:= r1+r2[1];{ r1 gets the corresponding elements of row 1 o f r2 added
to it}

The assignment of arrays is a generalisation of what standard Pascal allows. Consider the
first examples above, they are equivalent to:

1. for i:=0 to 7 do r1[i]:=r2[3,i];

2. for i:=0 to 7 do r1[i]:=/2;

3. for i:=0 to 7 do

for j:=0 to 7 do r2[i,j]:=r1[j]*3;

38 CHAPTER 3. ALGORITHMS

4. for i:=0 to 7 do

begin

t:=0;

for j:=7 downto 0 do t:=r2[i,j]+t;

r1[i]:=t;

end;

5. for i:=0 to 7 do r1[i]:=r1[i]+r2[1,i];

In other words the compiler has to generate an implicit loop over the elements of the array
being assigned to and over the elements of the array acting asthe data-source. In the above
i,j,t are assumed to be temporary variables not referred to anywhere else in the program.
The loop variables are called implicit indices and may be accessed usingiota .

The variable on the left hand side of an assignment defines an array context within
which expressions on the right hand side are evaluated. Eacharray context has a rank
given by the number of dimensions of the array on the left handside. A scalar variable has
rank 0. Variables occurring in expressions with an array context of rankr must haver or
fewer dimensions. Then bounds of anyn dimensional array variable, withn≤ r occurring
within an expression evaluated in an array context of rankr must match with the rightmost
n bounds of the array on the left hand side of the assignment statement.

Where a variable is of lower rank than its array context, the variable is replicated to
fill the array context. This is shown in examples 2 and 3 above.Because the rank of
any assignment is constrained by the variable on the left hand side, no temporary arrays,
other than machine registers, need be allocated to store theintermediate array results of
expressions.

3.2.2 Procedure statement

A procedure statement executes a named procedure. A procedure statement may, in the
case where the named procedure has formal parameters, contain a list of actual parame-
ters. These are substituted in place of the formal parameters contained in the declaration.
Parameters may be value parameters or variable parameters.

Semantically the effect of a value parameter is that a copy istaken of the actual pa-
rameter and this copy substituted into the body of the procedure. Value parameters may be
structured values such as records and arrays. For scalar values, expressions may be passed
as actual parameters. Array expressions are not currently allowed as actual parameters.

A variable parameter is passed by reference, and any alteration of the formal parameter
induces a corresponding change in the actual parameter. Actual variable parameters must
be variables.

<parameter> <variable> for formal parameters declared as var
<expression> for other formal parameters

<procedure statement> <identifier>
<identifier> ’(’ <parameter> [’,’<parameter>]* ’)’

Examples

1. printlist;

2. compare(avec,bvec,result);

3.2. STATEMENTS 39

3.2.3 Goto statement

A goto statement transfers control to a labelled statement.The destination label must be
declared in a label declaration. It is illegal to jump into orout of a procedure.

Example goto 99;

3.2.4 Exit Statement

An exit statement transfers control to the calling point of the current procedure or function.
If the exit statement is within a function then the exit statement can have a parameter: an
expression whose value is returned from the function.

Examples

1. exit;

2. exit(5);

3.2.5 Compound statement

A list of statements separated by semicolons may be grouped into a compound statement
by bracketing them withbegin andend .

Example begin a:=x*3; b:=sqrt a end;

3.2.6 If statement

The basic control flow construct is the if statement. If the boolean expression betweenif
and then is true then the statement followingthen is followed. If it is false and an else
part is present, the statement followingelse is executed.

3.2.7 Case statement

The case statement specifies an expression which is evaluated and which must be of inte-
gral or ordinal type. Dependent upon the value of the expression control transfers to the
statement labelled by the matching constant.

<case statement> ’case’<expression>’of’<case actions>’end’

<case actions> <case list>
<case list> ’else’ <statement>

<case list> ’otherwise’ <statement>

<case list> <case list element>[’;’<case list element.]*

<case list element> <case label>[’,’ <case label>]’:’<statement>

<case label> <constant>
<constant> ’..’ <constant>

40 CHAPTER 3. ALGORITHMS

Examples

case i of case c of
1:s:=abs s; ’a’:write(’A’);
2:s:= sqrt s; ’b’,’B’:write(’B’);
3: s:=0 ’A’,’C’..’Z’,’c’..’z’:write(’ ’);
end end

3.2.8 With statement

Within the component statement of the with statement the fields of the record variable can
be referred to without prefixing them by the name of the recordvariable. The effect is to
import the component statement into the scope defined by the record variable declaration
so that the field-names appear as simple variable names.

Example var s:record x,y:real end;

begin

with s do begin x:=0;y:=1 end ;

end

3.2.9 For statement

A for statement executes its component statement repeatedly under the control of an itera-
tion variable. The iteration variable must be of an integralor ordinal type. The variable is
either set to count up through a range or down through a range.

for i:= e1 to e2 do s

is equivalent to
i:=e1; temp:=e2;while i<=temp do s;

whilst
for i:= e1 downto e2 do s

is equivalent to
i:=e1; temp:=e2;while i>= temp do s;

3.2.10 While statement

A while statement executes its component statement whilst its boolean expression is true.
The statement

while e do s

is equivalent to
10: if not e then goto 99; s; goto 10; 99:

3.2.11 Repeat statement

A repeat statement executes its component statement at least once, and then continues to
execute the component statement until its component expression becomes true.

repeat s until e

is equivalent to
10: s;if e then goto 99; goto 10;99:

3.3. INPUT OUTPUT 41

3.3 Input Output

<io statement> ’writeln’[<outparamlist>]
’write’<outparamlist>
’readln’[<inparamlist>]

’read’<inparamlist>

<outparamlist> ’(’<outparam>[’,’<outparam>]*’)’

<outparam> <expression>[’:’ <expression>] [’:’<expression>]

<inparamlist> ’(’<variable>[’,’<variable>]*’)’

Input and output are supported from and to the console and also from and to files.

3.3.1 Input

The basic form of input is theread statement. This takes a list of parameters the first
of which may optionally be a file variable. If this file variable is present it is the input
file. In the absence of a leading file variable the input file is the standard input stream.
The parameters take the form of variables into which appropriate translations of textual
representations of values in the file are read. The statement

read(a,b,c)
wherea,b,care non file parameters is exactly equivalent to the sequenceof statements
read(a);read(b);read(c)
Thereadln statement has the same effect as the read statement but finishes by reading

a new line from the input file. The representation of the new line is operating system
dependent. The statement

readln(a,b,c)
wherea,b,care non file parameters is thus exactly equivalent to the sequence of state-

ments
read(a);read(b);read(c);readln;
Allowed typed for read statements are: integers, reals, strings and enumerated types.

3.3.2 Output

The basic form of output is thewrite statement. This takes a list of parameters the first of
which may optionally be a file variable. If this file variable is present it is the output file. In
the absence of a leading file variable the output file is the console. The parameters take the
form of expressions whose values whose textual representations are written to the output
file. The statement

write(a,b,c)
wherea,b,care non file parameters is exactly equivalent to the sequenceof statements
write(a);write(b);write(c)
Thewriteln statement has the same effect as the write statement but finishes by writ-

ing a new line to the output file. The representation of the newline is operating system
dependent. The statement

writeln(a,b,c)
wherea,b,care non file parameters is thus exactly equivalent to the sequence of state-

ments
write(a);write(b);write(c);writeln;
Allowed types for write statements are integers, reals, strings and enumerated types.

42 CHAPTER 3. ALGORITHMS

Parameter formating

A non file parameter can be followed by up to two integer expressions prefixed by colons
which specify the field widths to be used in the output. The write parameters can thus have
the following forms:

e e:m e:m:n

1. If e is an integral type its decimal expansion will be written preceeded by sufficient
blanks to ensure that the total textual field width produced is not less thanm.

2. If e is a real its decimal expansion will be written preceeded by sufficient blanks to
ensure that the total textual field width produced is not lessthanm. If n is present
the total number of digits after the decimal point will ben. If n is omitted then the
number will be written out in exponent and mantissa form with6 digits after the
decimal point

3. If e is boolean the strings ’true’ or ’false’ will be written intoa field of width not less
than m.

4. If e is a string then the string will be written into a field of widthnot less thanm.

Chapter 4

Programs and Units

Vector Pascal supports the popular system of separate compilation units found in Turbo
Pascal. A compilation unit can be either a program, a unit or alibrary.

<program> ’program’ <identifier>’;’[<uses>’;’]<block>’.’

<invocation> <identifier>[’(’ <type identifier>[’,’<type identifier>]*’)’]

<uses> ’uses’ <invocation>[’,’<invocation>]*

<block> [<decls>’;’]*’begin’ <statement>[’;’<statement>]*’end’

<decls> ’const’ <constant declaration>[’;’<constant declaration>]*
’type’<type definition>[’;’<type definition>]*

’label’ <label>[’,’ <label>]
<procedure declaration>

’var’ <variable declaration>[’;’ <variable declaration>]

<unit> <unit header> <unit body>

<unit body> ’interface’[<uses>][<decls>] ’implementation’<block>’.’
’interface’[<uses>][<decls>] ’in’ <invocation> ’;’

<unit header> <unit type><identifier>
’unit’ <identifier> ’(’ <type identifier> [’,’ <type identifier>]* ’)’

<unit type> ’unit’
’library’

An executable compilation unit must be declared as a program. The program can use
several other compilation units all of which must be either units or libraries. The units or
libraries that it directly uses are specified by a list of identifiers in an optional use list at
the start of the program. A unit or library has two declaration portions and an executable
block.

4.1 The export of identifiers from units

The first declaration portion is the interface part and is preceded by the reserved word
interface .

The definitions in the interface section of unit files constitute a sequence of enclosing
scopes, such that successive units in the with list ever moreclosely contain the program

43

44 CHAPTER 4. PROGRAMS AND UNITS

unit genericsort(t) ;

interface
type

dataarray (n ,m :integer)=array [n ..m] of t ;
procedure sort (var a :dataarray); (see Figure 4.2)

implementation

procedure sort (var a :dataarray); (see Figure 4.2)
begin
end .

Figure 4.1: A polymorphic sorting unit.

itself. Thus when resolving an identifier, if the identifier can not be resolved within the
program scope, the declaration of the identifier within the interface section of the rightmost
unit in the uses list is taken as the defining occurrence. It follows that rightmost occurrence
of an identifier definition within the interface parts of units on the uses list overrides all
occurrences in interface parts of units to its left in the uses list.

The implementation part of a unit consists of declarations,preceded by the reserved
word implementatio n that are private to the unit with the exception that a function or
procedure declared in an interface context can omit the procedure body, provided that the
function or procedure is redeclared in the implementation part of the unit. In that case the
function or procedure heading given in the interface part istaken to refer to the function
or procedure of the same name whose body is declared in the implementation part. The
function or procedure headings sharing the same name in the interface and implementation
parts must correspond with respect to parameter types, parameter order and, in the case of
functions, with respect to return types.

A unit may itself contain a use list, which is treated in the same way as the use lists of
a program. That is to say, the use list of a unit makes accessible identifiers declared within
the interface parts of the units named within the use list to the unit itself.

4.1.1 The export of procedures from libraries.

If a compilation unit is prefixed by the reserved wordlibrary rather than the words
program or unit , then the procedure and function declarations in its interface part are
made accessible to routines written in other languages.

4.1.2 The export of Operators from units

A unit can declare a type and export operators for that type.

4.2 Unit parameterisation and generic functions

Standard Pascal provides es some limited support for polymorphism in itsread andwrite
functions. Vector Pascal allows the writing of polymorphicfunctions and procedures
through the use of parameteric units.

A unit header can include an optional parameter list. The parameters identifiers which
are interepreted as type names. These can be used to declare polymorphic procedures and
functions, parameterised by these type names. This is shownin figure 4.1.

4.3. THE INVOCATION OF PROGRAMS AND UNITS 45

procedure sort (var a :dataarray);
var

Let i, j ∈ integer;
Let temp ∈ t;

begin
for i← a.n to a.m - 1 do

for j← a.n to a.m - 1 do
if aj > aj+1 then begin begin

temp← aj;
aj← aj+1;
aj+1← temp;

end ;
end ;

Figure 4.2: procedure sort

4.3 The invocation of programs and units

Programs and units contain an executable block. The rules for the execution of these are as
follows:

1. When a program is invoked by the operating system, the units or libraries in its use
list are invoked first followed by the executable block of theprogram itself.

2. When a unit or library is invoked, the units or libraries inits use list are invoked first
followed by the executable block of the unit or library itself.

3. The order of invocation of the units or libraries in a use list is left to right with the
exception provided by rule 4.

4. No unit or library may be invoked more than once.

Note that rule 4 implies that a unitx to the right of a unity within a use list, may be invoked
before the unity, if the unity or some other unit toy’s left namesx in its use list.

Note that the executable part of a library will only be invoked if the library in the
context of a Vector Pascal program. If the library is linked to a main program in some
other language, then the library and any units that it uses will not be invoked. Care should
thus be taken to ensure that Vector Pascal libraries to be called from main programs written
in other languages do not depend upon initialisation code contained within the executable
blocks of units.

4.4 The compilation of programs and units.

When the compiler processes the use list of a unit or a programthen, from left to right, for
each identifier in the use list it attempts to find an already compiled unit whose filename
prefix is equal to the identifier. If such a file exists, it then looks for a source file whose
filename prefix is equal to the identifier, and whose suffix is.pas . If such a file exists and
is older than the already compiled file, the already compiledunit, the compiler loads the
definitions contained in the pre-compiled unit. If such a fileexists and is newer than the
pre-compiled unit, then the compiler attempts to re-compile the unit source file. If this re-
compilation proceeds without the detection of any errors the compiler loads the definitions
of the newly compiled unit. The definitions in a unit are savedto a file with the suffix.mpu,

46 CHAPTER 4. PROGRAMS AND UNITS

and prefix given by the unit name. The compiler also generatesan assembler file for each
unit compiled.

4.4.1 Linking to external libraries

It is possible to specify to which external libraries - that is to say libraries written in another
languge, a program should be linked by placing in the main program linkage directives. For
example

{$linklib ncurses}
would cause the program to be linked to the ncurses library.

4.5 Instantiation of parametric units

Instantiation of a parametric unit refers to the process by which the unbound type variables
introduced in the parameter list of the unit are bound to actual types. In Vector Pascal all
instantiation of parametric units and all type polymorphism are resolved at compile time.
Two mechanisms are provided by which a parametric unit may beinstantiated.

4.5.1 Direct instantiation

If a generic unit is invoked in the use list of a program or unit, then the unit name must
be followed by a list of type identifiers. Thus given the generic sort unit in figure 4.1, one
could instantiate it to sort arrays of reals by writing

uses genericsort(real);
at the head of a program. Following this header, the proceduresort would be declared

as operating on arrays of reals.

4.5.2 Indirect instantiation

A named unit file can indirectly instantiate a generic unit where its unit body uses the
syntax

’interface’ <uses><decls> ’in’ <invocation> ’;’
For example

unit intsort ;
interface

in genericsort (integer);

would create a named unit to sort integers. The naming of the parametric units allows more
than one instance of a given parametric unit to be used in a program. The generic sort unit
could be used to provide both integer and real sorting procedures. The different variants of
the procedures would be distinquished by using fully qualified names - e.g.,intsort.sort .

4.6 The System Unit

All programs and units include by default the unit system.pas as an implicit member of
their with list. This contains declarations of private run time routines needed by Vector
Pascal and also the following user accessible routines.

function abs Return absolute value of a real or integer.

4.6. THE SYSTEM UNIT 47

procedure append(var f:file); This opens a file in append mode.

function arctan(x:Real):Real;

procedure assign(var f:file;var fname:string); Associates a file name with a
file. It does not open the file.

procedure blockread(var f:file;var buf;count:integer; v ar resultcount:integer);
Trys to read count bytes from the file into the buffer. Resultcount contains the
number actually read.

LatexCommand \index{blockwrite}procedure blockwrite(v ar f:file;var buf;count:integer;
var resultcount:integer); Write count bytes from the buffer. Result-
count gives the number actually read.

procedure close (var f:file); Closes a file.

function eof (var f:file):boolean; True if we are at the end of file f.

procedure erase (var f:file); Delete file f.

function eoln (var f:file):boolean; True if at the end of a line.

function exp (d:real):real; Returnex

function filesize (var f: fileptr):integer; Return number of bytes in a file.

function filepos (var f:fileptr):integer; Return current position in a file.

procedure freemem(var p:pointer; num:integer); Free num bytes of heap store.
Called by dispose.

bold procedure getmem(var p:pointer; num:integer); Allocate num bytes of heap.
Called by new.

procedure gettime(var hour,min,sec,hundredth:integer) ; Return time of day.

Return the integer part of r as a real.

function ioresult:integer; Returns a code indicating if the previous file operation
completed ok. Zero if no error occurred.

function length(var s:string):integer; Returns the length of s.

procedure pascalexit(code:integer); Terminate the program with code.

Time in 1/100 seconds since program started.

function random:integer; Returns a random integer.

procedure randomize; Assign a new time dependent seed to the random number gener-
ator.

procedure reset(var f:file); Open a file for reading.

procedure rewrite(var f :file); Open a file for writing.

function trunc(r:real):integer; Truncates a real to an integer.

48 CHAPTER 4. PROGRAMS AND UNITS

Chapter 5

Implementation issues

The compiler is implemented in java to ease portability between operating systems.

5.1 Invoking the compiler

The compiler is invoked with the command

vpc filename

where filename is the name of a Pascal program or unit. For example

vpc test

will compile the program test.pas and generate an executable file test , (test.exe under
windows).

The commandvpc is a shell script which invokes the java runtime system to execute a
.jar file containing the compiler classes. Instead of running vpcthe java interpreter can
be directly invoked as follows

java -jar mmpc.jar filename

The vpc script sets various compiler options appropriate to the operating system being
used.

5.1.1 Environment variable

The environment variablemmpcdir must be set to the directory which contains themmpc.jar
file, the runtime libraryrtl.o and thesystem.pas file.

5.1.2 Compiler options

The following flags can be supplied to the compiler :

-L Causes a latex listing to be produced of all files compiled. The level of detail
can be controled using the codes -L1 to -L3, otherwise the maximum detail
level is used.

-OPTn Sets the optimisation level attempted. -OPT0 is no optimisation, -OPT3 is the
maximum level attempted. The default is -OPT1.

-Afilename Defines the assembler file to be created. In the absence of thisoption the
assembler file isp.asm.

49

50 CHAPTER 5. IMPLEMENTATION ISSUES

Table 5.1: Code generators supported
CGFLAG description

IA32 generates code for the Intel 486 instruction-set
uses the NASM assembler

Pentium generates code for the Intel P6 with MMX instruction-set
uses the NASM assembler

gnuPentium generates code for the Intel P6 with MMX instruction-set
using theas assembler in the gcc package

K6 generates code for the AMD K6 instruction-set, use for Athlon
uses the NASM assembler

P3 generates code for the Intel PIII processor family
uses the NASM assembler

P4 generates code for the Intel PIV family and Athlon XP
uses the NASM assembler

-Ddirname Defines the directory in which to findrtl.o andsystem.pas .

-BOEHM Causes the program to be linked with the Boehm conservative garbage collec-
tor.

-V Causes the code generator to produce a verbose diagnostic listing tofoo.lst
when compilingfoo.pas .

-oexefile Causes the linker to output toexefile instead of the default output ofp.exe.

-U Defines whether references to external procedures in the assembler file should
be preceded by an under-bar ’_’. This is required for the coffobject format but
not for elf.

-S Suppresses assembly and linking of the program. An assembler file is still
generated.

-fFORMAT Specifies the object format to be generated by the assembler.The object for-
mats currently used are elf when compiling under Unix or whencompiling
under windows using the cygwin version of the gcc linker, or coff when us-
ing the djgpp version of the gcc linker. for other formats consult the NASM
documentation.

-cpuCGFLAG Specifies the code generator to be used. Currently the code generators shown
in table 5.1 are supported.

5.1.3 Dependencies

The Vector Pascal compiler depends upon a number of other utilities which are usually
pre-installed on Linux systems, and are freely available for Windows systems.

NASM The net-wide assembler. This is used to convert the output of the code genera-
tor to linkable modules. It is freely available on the web forWindows. For the
Pentium processor it is possible to use theas assembler instead.

gcc The GNU C Compiler, used to compile the run time library and to link modules
produced by the assembler to the run time library.

5.2. CALLING CONVENTIONS 51

java The java virtual machine must be available to interpretthe compiler. There are
number of java interpreters and just in time compilers are freely available for
Windows.

5.2 Calling conventions

Procedure parameters are passed using a modified C calling convention to facilitate calls
to external C procedures. Parameters are pushed on to the stack from right to left. Value
parameters are pushed entire onto the stack, var parametersare pushed as addresses.

Example

unit callconv;
interface
type intarr= array[1..8] of integer;
procedure foo(var a:intarr; b:intarr; c:integer);
implementation
procedure foo(var a:intarr; b:intarr; c:integer);
begin
end;
var x,y:intarr;
begin

foo(x,y,3);
end.

This would generate the following code for the procedure foo.

; procedure generated by code generator class ilcg.tree.Pe ntiumCG
le8e68de10c5:
; foo

enter spaceforfoo-4*1,1
;8

le8e68de118a:
spaceforfoo equ 4
;.... code for foo goes here
fooexit:
leave

ret 0

and the calling code is

push DWORD 3 ; push rightmost argument
lea esp,[esp-32] ; create space for the array
mov DWORD [ebp -52],0 ; for loop to copy the array
le8e68de87fd: ; the loop is

; unrolled twice and
cmp DWORD [ebp-52], 7 ; parallelised to copy

; 16 bytes per cycle
jg near le8e68de87fe
mov ebx,DWORD [ebp -52]
imul ebx, 4
movq MM1, [ebx+ le8e68dddaa2-48]
movq [esp+ebx],MM1
mov eax,DWORD [ebp+ -52]
lea ebx,[eax+ 2]
imul ebx, 4
movq MM1, [ebx+ le8e68dddaa2 -48]
movq [esp+ebx],MM1
lea ebx,[ebp+ -52]
add DWORD [ebx], 4
jmp le8e68de87fd
le8e68de87fe: ; end of array

52 CHAPTER 5. IMPLEMENTATION ISSUES

; copying loop
push DWORD le8e68dddaa2-32 ; push the address of the

; var parameter
EMMS ; clear MMX state

call le8e68de10c5 ; call the local
; label for foo

add esp, 40 ; free space on the stack

Function results

Function results are returned in registers for scalars following the C calling convention for
the operating system on which the compiler is implemented. Records, strings and sets are
returned by the caller passing an implicit parameter containing the address of a temporary
buffer in the calling environment into which the result can be assigned. Given the following
program

program
type t1= set of char;
var x,y:t1;
function bar:t1;begin bar:=y;end;

begin
x:=bar;

end.
The call of bar would generate

push ebp
add dword[esp] , -128 ; address of buffer on stack
call le8eb6156ca8 ; call bar to place

; result in buffer
add esp, 4 ; discard the address
mov DWORD [ebp+ -132], 0; for loop to copy

; the set 16 bytes
le8eb615d99f: ; at a time into x using the

; MMX registers
cmp DWORD [ebp+ -132], 31
jg near le8eb615d9910
mov ebx,DWORD [ebp+ -132]
movq MM1, [ebx+ebp + -128]
movq [ebx+ebp + -64],MM1
mov eax,DWORD [ebp+ -132]
lea ebx,[eax+ 8]
movq MM1, [ebx+ebp + -128]
movq [ebx+ebp + -64],MM1
lea ebx,[ebp+ -132]
add DWORD [ebx], 16
jmp le8eb615d99f
le8eb615d9910:

5.3 Array representation

The maximum number of array dimensions supported in the compiler is 5.
A static array is represented simply by the number of bytes required to store the array

being allocated in the global segment or on the stack.
A dynamic array is always represented on the heap. Since its rank is known to the

compiler what needs to be stored at run time are the bounds andthe means to access it.
For simplicity we make the format of dynamic and conformant arrays the same. Thus for
schema

s(a,b,c,d:integer)= array[a..b,c..d] of integer

5.3. ARRAY REPRESENTATION 53

whose run time bounds are evaluated to be 2..4,3..7 we would have the following struc-
ture:

address field value

x base of data address of first integer in the array
x+4 a 2
x+8 b 4
x+12 step 20
x+16 c 3
x+20 d 7

The base address for a schematic array on the heap, will pointat the first byte after the
array header show. For a conformant array, it will point at the first data byte of the array or
array range being passed as a parameter. The step field specifies the length of an element
of the second dimension in bytes. It is included to allow for the case where we have a
conformant array formal parameter

x:array[a..b:integer,c..d:integer] of integer
to which we pass as actual parameter the range
p[2..4,3..7]
as actual parameter, wherep:array[1..10,1..10] of integer
In this case the base address would point at @p[2,3] and the step would be 40 - the

length of 10 integers.

5.3.1 Range checking

When arrays are indexed, the compiler plants run time checksto see if the indices are
within bounds. In many cases the optimiser is able to remove these checks, but in those
cases where it is unable to do so, some performance degradation can occur. Range checks
can be disabled or enabled by the compiler directives.

{$r-} { disable range checks }
{$r+} { enable range checks }
Performance can be further enhanced by the practice of declaring arrays to have lower

bounds of zero. The optimiser is generally able to generate more efficient code for zero
based arrays.

54 CHAPTER 5. IMPLEMENTATION ISSUES

Chapter 6

Compiler porting tools

Vector Pascal is an open-source project. It aims to create a productive an efficient program
development environment for SIMD programming. In order to validate the concepts it has
been developed initially for the Intel family of processorsrunning Linux and Microsoft
Windows. However it has been intended from the outset that the technology should be
portable to other families of CPUs. This chapter addresses some of the issues involved in
porting the compiler to new systems.

6.1 Dependencies

The Vector Pascal compiler tool-set can be divided along twoaxes as shown in figure 6.1.

1. Tools can be divided into (a) those provided as part of the release , versus (b) tools
provided as part of the operating environment.

(a) These are mainly written in Java, the exceptions being a small run-time library
in C, a Pascal System unit, and several machine descriptions.

(b) These are all available as standard under Linux, and Windows versions are
freely downloadable from the web.

2. Tools can further divided into (a) those required for program preparation and docu-
mentation, (b) code translation tools, and (c) code generator preparation tools.

(a) The program preparation tools are the VIPER IDE described in Chapter 8,
along with the standard LATEXdocument prepartion system, DVI viewers, and
the TTH tool to prepare web enabled versions of Vector Pascalprogram de-
scriptions.

(b) The program translation tools are:

i. The ilcg.pascal Java package which contains the Pascal compiler itself
and classes to support Pascal type declarations. This carries out the first
stage of code translation, from Pascal to an ILCG tree[10].

ii. A set of machine generated code generators for CPUs such as the Pentium,
the K6 etc. These carry out the second phase of code translation - into an
assembler file.

iii. The ilcg.tree Java package which supports the internal representation
of ILCG trees (see section 6.3).

iv. The Java system which is need to run all of the above.

v. An assembler, which is necessary to carry out the third phase of code trans-
lation, from an assembler file to a relocatable object file.

55

56 CHAPTER 6. COMPILER PORTING TOOLS

VIPER

VP\TeX

ilcg.Pascal
java package

ILCG CodeGenerator
Generator

Pentium.java

K6.java

 ilcg.tree
 java package

etc

Provided as part of
the Vector Pascal
System

Machine
files

Pentium.m4
MMX.m4
K6.m4 etc

Program Preparation tools Code translation tools Code Generator Preparation
tools

Provided as part of
the operating
environment

Latex

DVIviewer

TTH

Assembler e.g., NASM

C compiler e.g. GCC

Java system

JLex lexical analyser
generator *

m4 macro processor

Sable compiler
generator

Figure 6.1: Vector Pascal toolset

vi. A C compiler and linkage system is needed to compile the C run-time
library and to link the relocatable object files into final executables.

vii. In addition if one wants to alter the reserved words of Vector Pascal or
make other lexical changes one needs the JLex lexical analyser generator.

6.2 Compiler Structure

The structure of the Vector Pascal translation system is shown in figure ??. The main
program class of the compilerilcg.Pascal.PascalCompiler.java translates the source
code of the program into an internal structure called an ILCGtree [10]. A machine gener-
ated code generator then translates this into assembler code. An example would be the class
ilcg.tree.IA32. An assembler and linker specified in descendent class of the code generator
then translate the assembler code into an executable file.

Consider first the path followed from a source file, the phasesthat it goes through are

i. The source file (1) is parsed by a java class PascalCompiler.class (2) a hand written,
recursive descent parser[?], and results in a Java data structure (3), an ILCG tree,
which is basically a semantic tree for the program.

ii. The resulting tree is transformed (4) from sequential toparallel form and machine in-
dependent optimisations are performed. Since ILCG trees are java objects, they can
contain methods to self-optimise. Each class contains for instance a methodeval
which attempts to evaluate a tree at compile time. Another method simplify ap-
plies generic machine independent transpormations to the code. Thus thesimplify
method of the classFor can perform loop unrolling, removal of redundant loops etc.
Other methods allow tree walkers to apply context specific transformations.

6.2. COMPILER STRUCTURE 57

1.HLL program

2.ILCG compliant
front end

3.ILCG program

4.transformations
5.ILCG semantics

6.optimisation rules

7.transformed ILCG program

10.code generator

11.machine code for CPU

9.code generator-
generator

8.ILCG for CPU

In this case PascalCompiler.class

(For example Pentium.ilc)

details of available
parallelism

Figure 6.2: The translation of Vector Pascal to assembler.

{ var i;
for i=1 to 9 step 1 do {

v1[^i]:= +(^(v2[^i]),^(v3[^i]));
};

}

Figure 6.3: Sequential form of array assignment

iii. The resulting ilcg tree (7) is walked over by a class thatencapsulates the semantics
of the target machine’s instructionset (10); for example Pentium.class. During code
generation the tree is futher transformed, as machine specific register optimisations
are performed. The output of this process is an assembler file(11).

iv. This is then fed through an appropriate assembler and linker, assumed to be exter-
nally provided to generate an executable program.

6.2.1 Vectorisation

The parser initially generates serial code for all constructs. It then interogates the cur-
rent code generator class to determine the degree of parallelism possible for the types of
operations performed in a loop, and if these are greater thanone, it vectorises the code.

Given the declaration
var v1,v2,v3:array[1..9] of integer;
then the statement
v1:=v2+v3;
would first be translated to the ILCG sequence shown in figure 6.3 In the example

58 CHAPTER 6. COMPILER PORTING TOOLS

{ var i;
for i= 1 to 8 step 2 do {

(ref int32 vector (2))mem(+(@v1,*(-(^i,1),4))):=
+(^((ref int32 vector (2))mem(+(@v2,*(-(^i,1),4)))),

^((ref int32 vector (2))mem(+(@v3,*(-(^i,1),4)))));
};
for i= 9 to 9 step 1 do {

v1[^i]:= +(^(v2[^i]),^(v3[^i]));
};

}

Figure 6.4: Parallelised loop

above variable names such asv1 andi have been used for clarity. In realityi would be an
addressing expression like:

(ref int32)mem(+(^((ref int32)ebp), -1860)) ,
which encodes both the type and the address of the variable. The code generator is

queried as to the parallelism available on the typeint32 and, since it is a Pentium with
MMX, returns 2. The loop is then split into two, a portion thatcan be executed in parallel
and a residual sequential component, resulting in the ILCG shown in figure 6.4. In the
parallel part of the code, the array subscriptions have beenreplaced by explictly cast mem-
ory addresses. This coerces the locations from their original types to the type required by
the vectorisation. Applying thesimplify method of the For class the following generic
transformations are performed:

1. The second loop is replaced by a single statement.

2. The parallel loop is unrolled twofold.

3. The For class is replaced by a sequence of statements with explicit gotos.

The result is shown in figure 6.5. When theeval method is invoked, constant folding
causes the loop test condition to be evaluated to

if >(^i,8) then goto leb4af11b47f .

6.2.2 Porting strategy

To port the compiler to a new machine, say a G5, it is necessaryto

1. Write a new machine descriptionG5.ilc in ILCG source code.

2. Compile this to a code generator in java with the ilcg compiler generator using a
command of the form

(a) java ilcg.ILCG cpus/G5.ilc ilcg/tree/G5.java G5

3. Write an interface classilcg/tree/G5CG which is a subclass ofG5 and which
invokes the assembler and linker. The linker and assembler used will depend on the
machine but one can assume that at least agcc assembler and linker will be available.
The classG5CGmust take responsibility to handle the translation of procedure calls
from the abstract form provided in ILCG to the concrete form required by the G5
processor.

4. The classG5CGshould also export the methodgetparallelism which specifies to
the vectoriser the degree of parallelism available for given data types. An example

6.2. COMPILER STRUCTURE 59

{ var i:
i:= 1;
leb4af11b47e:
if >(2, 0) then if >(^i,8) then goto leb4af11b47f

else null
fi

else if <(^i, 8) then goto leb4af11b47f
else null
fi

fi;
(ref int32 vector (2))mem(+(@v1,*(-(^i,1),4))):=

+(^((ref int32 vector (2))mem(+(@v2,*(-(^i,1),4)))),
^((ref int32 vector (2))mem(+(@v3,*(-(^i,1),4)))));

i:=+(^i,2);
(ref int32 vector (2))mem(+(@v1,*(-(^i,1),4))):=

+(^((ref int32 vector (2))mem(+(@v2,*(-(^i,1),4)))),
^((ref int32 vector (2))mem(+(@v3,*(-(^i,1),4)))));

i:=+(^i,2);
goto leb4af11b47e;
leb4af11b47f:
i:= 9;
v1[^i]:= +(^(v2[^i]),^(v3[^i]));

}

Figure 6.5: After applyingsimplify to the tree

mov DWORD ecx, 1
leb4b08729615:

cmp DWORD ecx, 8
jg near leb4b08729616
lea edi,[ecx-(1)]; substituting in edi with 3 occurences
movq MM1, [ebp+edi* 4+ -1620]
paddd MM1, [ebp+edi* 4+ -1640]
movq [ebp+edi* 4+ -1600],MM1
lea ecx,[ecx+ 2]
lea edi,[ecx-(1)]; substituting in edi with 3 occurences
movq MM1, [ebp+edi* 4+ -1620]
paddd MM1, [ebp+edi* 4+ -1640]
movq [ebp+edi* 4+ -1600],MM1
lea ecx,[ecx+ 2]
jmp leb4b08729615

leb4b08729616:

Figure 6.6: The result of matching the parallelised loop against the Pentium instruction set

60 CHAPTER 6. COMPILER PORTING TOOLS

public int getParallelism(String elementType)
{ if(elementType.equals(Node.int32)) return 2;

if(elementType.equals(Node.int16)) return 4;
if(elementType.equals(Node.int8)) return 8;
if(elementType.equals(Node.uint32)) return 2;
if(elementType.equals(Node.uint16)) return 4;
if(elementType.equals(Node.uint8)) return 8;
if(elementType.equals(Node.ieee32))return 4;
if(elementType.equals(Node.ieee64))return 1;
return 1;

}

Figure 6.7: The method getParallelism for a P4 processor.

for a P4 is given in figure 6.7. Note that although a P4 is potentially capable of
performing 16 way parallelism on 8 bit operands the measuredspeed when doing
this on is less than that measured for 8 way parallelism. Thisis due to the restriction
placed on un-aligned loads of 16 byte quantities in the P4 architecture. For image
processing operations aligned accesses are the exception.Thus when specifying the
degree of parallelism for a processor one should not simply give the maximal degree
supported by the architecture. The maximal level of parallelism is not necessarily
the fastest.

Sample machine descriptions for the Pentium and 486 are given in chapter 7 to help those
wishing to port the compiler. These are given in the ILCG machine description language,
an outline of which follows.

6.3 ILCG

The purpose of ILCG (Intermediate Language for Code Generation) is to mediate between
CPU instruction sets and high level language programs. It poth provides a representation
to which compilers can translate a variety of source level programming languages and also
a notation for defining the semantics of CPU instructions.

Its purpose is to act as an input to two types of programs:

1. ILCG structures produced by a HLL compiler are input to an automatically con-
structed code generator, working on the syntax matching principles described in [12].
This then generates equivalent sequences of assembler statements.

2. Machine descriptions written as ILCG source files are input to code-generator-generators
which produce java programs which perform function (1) above.

So far one HLL compiler producing ILCG structures as output exists: the Vector Pascal
compiler. There also exists one code-generator-generatorwhich produces code generators
that use a top-down pattern matching technique analogous toProlog unification.

ILCG is intended to be flexible enough to describe a wide variety of machine architec-
tures. In particular it can specify both SISD and SIMD instructions and either stack-based
or register-based machines. However, it does assume certain things about the machine: that
certain basic types are supported and that the machine is addressed at the byte level.

In ILCG all type conversions, dereferences etc have to be made absolutely explicit.
In what follows we will designate terminals of the language in bold thusoctet and

nonterminal in sloping font thusword8.

6.4. SUPPORTED TYPES 61

6.4 Supported types

6.4.1 Data formats

The data in a memory can be distinguished initially in terms of the number of bits in the
individually addressable chunks. The addressable chunks are assumed to be the powers
of two from 3 to 7, so we thus have as allowed formats:word8, word16, word32, word64,
word128. These are treated as non terminals in the grammar of ILCG.

When data is being explicitly operated on without regard to its type, we have terminals
which stand for these formats:octet, halfword, word, doubleword, quadword.

6.4.2 Typed formats

Each of these underlying formats can contain information ofdifferent types, either signed
or unsigned integers, floats etc. ILCG allows the following integer types as terminals :int8,
uint8, int16, uint16, int32, uint32, int64, uint64 to stand for signed and unsigned integers
of the appropriate lengths.

The integers are logically grouped intosignedandunsigned. As non-terminal types
they are represented asbyte, short, integer, longandubyte, ushort, uinteger, ulong.

Floating point numbers are either assumed to be 32 bit or 64 bit with 32 bit numbers
given the nonterminal symbolsfloat,double. If we wish to specify a particular representa-
tion of floats of doubles we can use the terminalsieee32, ieee64.

6.4.3 Ref types

ILCG uses a simplified version of the Algol-68 reference typing model. A value can be a
reference to another type. Thus an integer when used as an address of a 64 bit floating point
number would be aref ieee64. Ref types include registers. An integer register would be a
ref int32 when holding an integer, aref ref int32 when holding the address of an integer
etc.

6.5 Supported operations

6.5.1 Type casts

The syntax for the type casts is C style so we have for example(ieee64) int32 to repre-
sent a conversion of an 32 bit integer to a 64 bit real. These type casts act as constraints on
the pattern matcher during code generation. They do not perform any data transformation.
They are inserted into machine descritions to constrain thetypes of the arguments that will
be matched for an instruction. They are also used by compilers to decorate ILCG trees in
order both to enforce, and to allow limited breaking of, the type rules.

6.5.2 Arithmetic

The allowed dyadic arithmetic operations are addition, saturated addition, multiplication,
saturated multiplication, subtraction, saturated subtraction, division and remainder with
operator symboles+, +:, *, *:, -, -:, div , mod ..

The concrete syntax is prefix with bracketing. Thus the infix operation 3+5÷7 would
be represented as+(3 div (5 7)).

6.5.3 Memory

Memory is explicitly represented. All accesses to memory are represented by array op-
erations on a predefined arraymem. Thus location 100 in memory is represented as

62 CHAPTER 6. COMPILER PORTING TOOLS

mem(100). The type of such an expression isaddress. It can be cast to a reference type of
a given format. Thus we could have

(ref int32)mem(100)

6.5.4 Assignment

We have a set of storage operators corresponding to the word lengths supported. These
have the form of infix operators. The size of the store being performed depends on the size
of the right hand side. A valid storage statement might be

(ref octet)mem(299) :=(int8) 99
The first argument is always a reference and the second argument a value of the appro-

priate format.
If the left hand side is a format the right hand side must be a value of the appropriate

size. If the left hand side is an explicit type rather than a format, the right hand side must
have the same type.

6.5.5 Dereferencing

Dereferencing is done explicitly when a value other than a literal is required. There is a
dereference operator, which converts a reference into the value that it references. A valid
load expression might be:

(octet)↑ ((ref octet)mem(99))
The argument to the load operator must be a reference.

6.6 Machine description

Ilcg can be used to describe the semantics of machine instructions. A machine description
typically consists of a set of register declarations followed by a set of instruction formats
and a set of operations. This approach works well only with machines that have an orthog-
onal instruction set, ie, those that allow addressing modesand operators to be combined in
an independent manner.

6.6.1 Registers

When entering machine descriptions in ilcg registers can bedeclared along with their type
hence

register word EBX assembles[’ebx’] ;
reserved register word ESP assembles[’esp’];
would declareEBX to be of typeref word .

Aliasing

A register can be declared to be a sub-field of another register, hence we could write
alias register octet AL = EAX(0:7) assembles[’al’];
alias register octet BL = EBX(0:7) assembles[’bl’];
to indicate thatBL occupies the bottom 8 bits of registerEBX. In this notation bit zero

is taken to be the least significant bit of a value. There are assumed to be two pregiven
registersFP, GP that are used by compilers to point to areas of memory. These can be
aliased to a particular real register.

register word EBP assembles[’ebp’] ;
alias register word FP = EBP(0:31) assembles [’ebp’];
Additional registers may be reserved, indicating that the code generator must not use

them to hold temporary values:
reserved register word ESP assembles[’esp’];

6.6. MACHINE DESCRIPTION 63

6.6.2 Register sets

A set of registers that are used in the same way by the instructionset can be defined.
pattern reg means [EBP|EBX|ESI|EDI|ECX|EAX|EDX|ESP] ;
pattern breg means[AL|AH|BL|BH|CL|CH|DL|DH];
All registers in an register set should be of the same length.

6.6.3 Register Arrays

Some machine designs have regular arrays of registers. Rather than have these exhaustively
enumerated it is convenient to have a means of providing an array of registers. This can be
declared as:

register vector(8)doubleword MM assembles[’MM’i] ;
This declares the symbol MMX to stand for the entire MMX register set. It implicitly

defines how the register names are to be printed in the assembly language by defining an
indexing variable i that is used in the assembly language definition.

We also need a syntax for explicitly identifying individualregisters in the set. This is
done by using the dyadic subscript operator:

subscript(MM,2)
which would be of typeref doubleword.

6.6.4 Register Stacks

Whilst some machines have registers organised as an array, another class of machines,
those oriented around postfix instructionsets, have register stacks.

The ilcg syntax allows register stacks to be declared:
register stack (8)ieee64 FP assembles[’ ’] ;
Two access operations are supported on stacks:

PUSH is a void dyadic operator taking a stack of type reft as first argument and a value
of typet as the second argument. Thus we might have:

PUSH(FP,↑mem(20))

POP is a monadic operator returningt on stacks of typet. So we might have
mem(20):=POP(FP)In addition there are two predicates on stacks that can be used in

pattern pre-conditions.

FULL is a monadic boolean operator on stacks.

EMPTY is a monadic boolean operator on stacks.

6.6.5 Instruction formats

An instruction format is an abstraction over a class of concrete instructions. It abstracts over
particular operations and types thereof whilst specifyinghow arguments can be combined.

instruction pattern
RR(operator op, anyreg r1, anyreg r2, int t)
means[r1:=(t) op(↑((ref t) r1),↑((ref t) r2))]
assembles[op ’ ’ r1 ’,’ r2];
In the above example, we specify a register to register instruction format that uses the

first register as a source and a destination whilst the secondregister is only a destination.
The result is returned in register r1.

64 CHAPTER 6. COMPILER PORTING TOOLS

We might however wish to have a more powerful abstraction, which was capable of
taking more abstract apecifications for its arguments. For example, many machines allow
arguments to instructions to be addressing modes that can beeither registers or memory
references. For us to be able to specify this in an instruction format we need to be able to
provide grammer non-terminals as arguments to the instruction formats.

For example we might want to be able to say
instruction pattern
RRM(operator op, reg r1, maddrmode rm, int t)
means [r1:=(t) op(↑((ref t)r1),↑((ref t) rm))]
assembles[op ’ ’ r1 ’,’ rm] ;
This implies that addrmode and reg must be non terminals. Since the non terminals

required by different machines will vary, there must be a means of declaring such non-
terminals in ilcg.

An example would be:
pattern regindirf(reg r)
means[↑(r)] assembles[r];
pattern baseplusoffsetf(reg r, signed s)
means[+(↑(r) ,const s)] assembles[r ’+’ s];
pattern addrform means[baseplusoffsetf| regindirf];
pattern maddrmode(addrform f)
means[mem(f)] assembles[’[’ f ’]’];
This gives us a way of including non terminals as parameters to patterns.

6.7 Grammar of ILCG

The following grammar is given in Sable [34] compatible form. The Sable parser gen-
erator is used to generate a parser for ILCG from this grammar. The ILCG parser then
translates a CPU specification into a tree structure which isthen walked by an ILCG-tree-
walk-generator to produce an ILCG-tree-walk Java class specific to that CPU.

If the ILCG grammar is extended, for example to allow new arithmetic operators, then
the ILCG-tree-walk-generator must itself be modified to generate translation rules for the
new operators.

/*

6.8 ILCG grammar
This is a definition of the grammer of ILCG using the Sable grammar specification lanaguage. It is
input to Sable to generate a parser for machine descriptionsin ilcg

*/

Package ilcg;
/*

6.8.1 Helpers
Helpers are regular expressions macros used in the definition of terminal symbols of the grammar.

*/
Helpers

letter = [[’A’..’Z’]+[’a’..’z’]];
digit = [’0’..’9’];

6.8. ILCG GRAMMAR 65

alphanum = [letter+[’0’..’9’]];
cr = 13;
lf = 10;
tab = 9;

digit_sequence = digit+;
fractional_constant = digit_sequence? ’.’ digit_sequenc e | digit_sequence ’.’;
sign = ’+’ | ’-’;
exponent_part = (’e’ | ’E’) sign? digit_sequence;
floating_suffix = ’f’ | ’F’ | ’l’ | ’L’;

eol = cr lf | cr | lf; // This takes care of different platforms
not_cr_lf = [[32..127] - [cr + lf]];
exponent = (’e’|’E’);
quote = ’’’;
all =[0..127];
schar = [all-’’’];
not_star = [all - ’*’];
not_star_slash = [not_star - ’/’];

/*

6.8.2 Tokens
The tokens section defines the terminal symbols of the grammar.

*/
Tokens

floating_constant = fractional_constant exponent_part? floating_suffix? |
digit_sequence exponent_part floating_suffix?;

/*

terminals specifying data formats

*/
void =’void’;
octet = ’octet’; int8 = ’int8’; uint8 = ’uint8’;
halfword = ’halfword’; int16 = ’int16’ ; uint16 = ’uint16’ ;
word = ’word’; int32 = ’int32’ ;
uint32 = ’uint32’ ; ieee32 = ’ieee32’;
doubleword = ’doubleword’; int64 = ’int64’ ;
uint64 = ’uint64’; ieee64 = ’ieee64’;
quadword = ’quadword’;

/*

terminals describing reserved words

*/
function= ’function’;
flag = ’flag’;
location = ’loc’;
procedure=’instruction’;
returns =’returns’;
label = ’label’;
goto=’goto’;
fail =’interrupt’;
for =’for’;
to=’to’;
step=’step’;
do =’do’;
ref=’ref’;
const=’const’;
reg= ’register’;

66 CHAPTER 6. COMPILER PORTING TOOLS

operation = ’operation’;
alias = ’alias’;
instruction = ’instruction’;
address = ’address’;
vector =’vector’;
stack = ’stack’;
sideeffect=’sideeffect’;
if =’if’;
reserved=’reserved’;
precondition =’precondition’;

instructionset=’instructionset’;
/*

terminals for describing new patterns

*/
pattern = ’pattern’;
means = ’means’;
assembles = ’assembles’;

/*

terminals specifying operators

*/
colon = ’:’;
semicolon= ’;’;
comma = ’,’;
dot = ’.’ ;
bra =’(’;

ket =’)’;
plus = ’+’;
satplus = ’+:’;
satminus = ’-:’;
satmult =’*:’;
map=’->’;
equals = ’=’;
le = ’<=’;
ge=’>=’;
ne=’<>’;
shl=’<<’;
shr=’>>’;
lt=’<’;
gt=’>’;
minus = ’-’;
times = ’*’;
exponentiate = ’**’;
divide = ’div’;
replicate = ’rep’;
and = ’AND’;
or = ’OR’ ;
xor = ’XOR’;
not = ’NOT’;
sin=’SIN’;
cos=’COS’;
abs=’ABS’;
tan=’TAN’;
ln=’LN’;

6.8. ILCG GRAMMAR 67

min=’MIN’;
max=’MAX’;
sqrt=’SQRT’;
trunc=’TRUNCATE’;
round=’ROUND’;
float=’FLOAT’;
remainder = ’MOD’;
extend= ’EXTEND’;
store = ’:=’;
deref = ’^’;
push =’PUSH’;
pop =’POP’;
call=’APPLY’;
full=’FULL’;
empty=’EMPTY’;
subscript=’SUBSCRIPT’;
intlit = digit+;

vbar = ’|’;
sket=’]’;
sbra=’[’;
end=’end’;
typetoken=’type’;
mem=’mem’;
string = quote schar+ quote;

/*

identifiers come after reserved words in the grammar

*/
identifier = letter alphanum*;
blank = (’ ’|cr|lf|tab)+;
comment = ’/*’ not_star* ’*’+ (not_star_slash not_star* ’* ’+)* ’/’;

Ignored Tokens
blank,comment;
/*

6.8.3 Non terminal symbols
*/
Productions

program = statementlist instructionlist;
instructionlist =instructionset sbra alternatives sket;

/*

non terminals specifying data formats

*/
format = {octet} octet| {halfword} halfword |

{word} word | {doubleword} doubleword |
{quadword} quadword;

/*

non terminals corresponding to type descriptions

*/

68 CHAPTER 6. COMPILER PORTING TOOLS

reference = ref type ;
array = vector bra number ket;
aggregate={stack} stack bra number ket |{vector}array |{n on};
predeclaredtype = {format} format|{tformat}tformat ;
typeprim= {typeid} typeid| {predeclaredtype}predeclare dtype;

type= {predeclaredtype}predeclaredtype|
{typeid} typeid|
{array}typeprim array|

{cartesian}sbra type cartesian* sket|
{reftype}reference|
{map}bra [arg]:type map [result]:type ket;

cartesian = comma type;

tformat = {signed} signed|{unsigned}unsigned|{ieee32}i eee32|{ieee63}ieee64;
signed = int32 | {int8} int8 | {int16} int16 | {int64} int64;
unsigned = uint32 | {uint8} uint8 | {uint16} uint16 |

{uint64} uint64;

/*

non terminals corresponding to typed values

*/
value = /*{refval}refval | */

{rhs}rhs|
{loc}loc|
{void}void|
{cartval}cartval|

{dyadic} dyadic bra [left]:value comma [right]:value ket|
{monadic}monadic bra value ket;
/*

value corresponding to a cartesian product type e.g. recordinitialisers

*/
cartval=sbra value carttail* sket;
carttail = comma value;

/*

conditions used in defining control structures

*/
condition={dyadic} dyadic bra [left]:condition comma [ri ght]:condition ket|
{monadic}monadic bra condition ket |
{id}identifier|
{number}number;

rhs= {number}number|
{cast}bra type ket value|
{const}const identifier |

{deref}deref bra refval ket;

refval = loc|
{refcast} bra type ket loc;

loc = {id}identifier|
{memory}mem bra value ket ;

/*predeclaredregister = {fp}fp|{gp}gp;*/
number = {reallit} optionalsign reallit|

6.8. ILCG GRAMMAR 69

{integer} optionalsign intlit;
optionalsign = |{plus}plus|{minus}minus;
reallit= floating_constant;

/*

operators

*/
dyadic = {plus} plus|
{minus} minus |
{identifier} identifier|
{exp}exponentiate|

{times} times |
{divide} divide|

{replicate} replicate|
{lt}lt|
{gt}gt|
{call}call|

{le}le|
{ge}ge|
{eq}equals|
{ne}ne|
{min}min|{max}max|
{push}push|
{subscript}subscript|
{satplus}satplus|
{satmult}satmult|
{satminus}satminus|
{shl}shl|
{shr}shr|

{remainder} remainder|
{or}or|
{and}and|
{xor}xor;

monadic={not}not|{full}full|{empty}empty|{pop}pop|{ sin}sin|
{trunc}trunc|{round}round|{float}float| {extend}exte nd|
{cos}cos|{tan}tan|{abs}abs|{sqrt}sqrt |{ln}ln;
/*

register declaration

*/
registerdecl= reservation reg aggregate type identifier a ssembles sbra string sket ;
reservation = {reserved}reserved|{unreserved};

aliasdecl =
alias reg aggregate type

[child]:identifier equals [parent]:identifier bra [lowb it]:intlit colon [highbit]:intlit ket
assembles sbra string sket;

opdecl = operation identifier means operator assembles sbr a string sket;
operator = {plus}plus|
{minus}minus|
{times}times|
{lt}lt|
{gt}gt|
{min}min|
{max}max|
{shl}shl|
{shr}shr|

70 CHAPTER 6. COMPILER PORTING TOOLS

{le}le|
{ge}ge|
{eq}equals|
{ne}ne|
{divide} divide|

{remainder}remainder|
{or}or|
{and}and|
{xor}xor;

/*

pattern declarations

*/
assign = refval store value ;
meaning = {value}value|
{assign}assign|
{goto}goto value|
{fail}fail value|
{if}if bra value ket meaning|
{for} for refval store [start]:value to [stop]:value step [increment]:value do meaning|

{loc}location value;
patterndecl = pattern identifier paramlist means sbra mean ing sket assemblesto sideeffects precond

|
{alternatives} pattern identifier means sbra alternative s sket;

paramlist = bra param paramtail* ket|{nullparam}bra ket;
param = typeid identifier|{typeparam} typetoken identifi er|{label}label identifier;
typeid = identifier;
paramtail = comma param;
alternatives = type alts*;
alts = vbar type;
precond = precondition sbra condition sket|{unconditiona l};
asideeffect= sideeffect returnval;
sideeffects = asideeffect*;
assemblesto=assembles sbra assemblypattern sket;
assemblypattern = assemblertoken*;
assemblertoken = {string} string | {identifier} identifie r;
returnval = returns identifier;
/*

statements

*/
statement = {aliasdecl} aliasdecl|

{registerdecl} registerdecl |
{addressmode} address patterndecl|
{instructionformat}procedure patterndecl|
{opdecl}opdecl|
{flag} flag identifier equals intlit|
{typerename}typetoken predeclaredtype equals identifie r|
{patterndecl} patterndecl;
statementlist = statement semicolon statements*;
statements = statement semicolon;

//

Chapter 7

Sample Machine Descriptions

7.1 Basic 386 architecture
/*

Basic ia32 processor description int ilcg copyright(c) Paul Cockshott, University of Glasgow Feb
2000

7.1.1 Declare types to correspond to internal ilcg types
*/

type word=DWORD;
type uint32=DWORD;
type int32=DWORD;
type ieee64=QWORD;
type doubleword=QWORD;
type uint64=QWORD;
type int64=QWORD;
type octet=BYTE;
type uint8=BYTE;
type int16=WORD;
type uint16=WORD;
type int8=BYTE;
type ieee32=DWORD;
type halfword=WORD;
pattern oplen means[word|halfword|octet];
/*

7.1.2 compiler configuration flags

*/
flag realLitSupported = 0;
/*

7.1.3 Register declarations

*/
register int64 EADX assembles [’eadx’];
alias register int32 EAX= EADX (0:31) assembles [’eax’] ;
alias register int32 EDX= EADX (32:63) assembles [’edx’] ;
alias register uint64 EADXu=EADX(0:63)assembles[’eadx’];
register int32 ECX assembles[’ecx’] ;
register int32 EBX assembles[’ebx’] ;

71

72 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

register int32 EBP assembles[’ebp’] ;
alias register int32 FP = EBP(0:31) assembles [’ebp’];
reserved register int32 ESP assembles[’esp’];
alias register int32 SP = ESP(0:31) assembles[’esp’];
register int32 ESI assembles[’esi’] ;
register int32 EDI assembles[’edi’] ;
/*register int32 fitemp assembles[’dword[fitemp]’];/* n ot a real register */
alias register uint32 uax= EAX (0:31) assembles [’eax’] ;
alias register uint32 ucx= ECX (0:31) assembles [’ecx’] ;
alias register uint32 ubx= EBX (0:31) assembles [’ebx’] ;
alias register uint32 usi= ESI (0:31) assembles [’esi’] ;
alias register uint32 udi= EDI (0:31) assembles [’edi’] ;
alias register uint32 udx= EDX (0:31) assembles [’edx’];

/* use these for signed 8 bit values */
alias register int8 AL = EAX(0:7) assembles[’al’];
alias register int8 BL = EBX(0:7) assembles[’bl’];
alias register int8 CL = ECX(0:7) assembles[’cl’];
alias register int8 DL = EDX(0:7) assembles[’dl’];
alias register int8 iBH = EBX(8:15) assembles[’bh’];
alias register int8 iCH = ECX(8:15) assembles[’ch’];
alias register int8 iDH = EDX(8:15) assembles[’dh’];

/* use these for unsigned 8 bit values */
/* alias register uint8 AH = EAX(8:15) assembles[’ah’]; don t use this*/

alias register uint8 BH = EBX(8:15) assembles[’bh’];
alias register uint8 CH = ECX(8:15) assembles[’ch’];
alias register uint8 DH = EDX(8:15) assembles[’dh’];
alias register uint8 uAL = EAX(0:7) assembles[’al’];
alias register uint8 uBL = EBX(0:7) assembles[’bl’];
alias register uint8 uCL = ECX(0:7) assembles[’cl’];
alias register uint8 uDL = EDX(0:7) assembles[’dl’];

/* use these for untyped 8 bit values */
alias register octet oAL = EAX(0:7) assembles[’al’];
alias register octet oBL = EBX(0:7) assembles[’bl’];
alias register octet oCL = ECX(0:7) assembles[’cl’];
alias register octet oDL = EDX(0:7) assembles[’dl’];

alias register int16 AX =EAX(0:15)assembles[’ax’];
alias register int16 BX =EBX(0:15)assembles[’bx’];

alias register int16 DX =EDX(0:15)assembles[’dx’];
alias register int16 CX =ECX(0:15)assembles[’cx’];
alias register uint16 uAX =EAX(0:15)assembles[’ax’];
alias register uint16 uBX =EBX(0:15)assembles[’bx’];

alias register uint16 uDX =EDX(0:15)assembles[’dx’];
alias register uint16 uCX =ECX(0:15)assembles[’cx’];
alias register halfword SI = ESI(0:15)assembles[’si’];
alias register halfword DI = EDI(0:15)assembles[’di’];

/* treat 2 memory locations as dummy registers to speed
transfer to and from fpu stack */

register word regutil0 assembles [’dword[regutil0]’];
register word regutil1 assembles [’dword[regutil1]’];
alias register int32 rui0 =regutil0(0:31)assembles[’dwo rd[regutil0]’];
alias register int32 rui1 =regutil1(0:31)assembles[’dwo rd[regutil0]’];

7.1. BASIC 386 ARCHITECTURE 73

pattern rug means[regutil0|regutil1];
pattern rui means[rui0|rui1];

ifdef(‘havesse’, pattern ru means[rui|rug];,
alias register ieee32 ru32r1 = regutil1(0:31)assembles[’ dword[regutil0]’];
alias register ieee32 ru32r0 = regutil0(0:31)assembles[’ dword[regutil0]’];
pattern rur means[ru32r1|ru32r0];
pattern ru means[rui|rur|rug];)

register stack(4096)int32 mainSTACK assembles[’mainSTA CK’];
/*

7.1.4 Register sets
There are several intersecting sets of registers defined fordifferent instructions. Note that the ECX
and CL,CH registers are named last in their lists to increasethe chance that they are free for sepecial
instructions that need them.

*/
pattern indexreg means[EDI|ESI|EBX|EBP|ESP|EAX|EDX|EC X];
pattern accumulators means[EAX|EDX|ECX|EBX];
pattern ireg means [indexreg] ;
pattern ureg means [ubx|udi|usi|udx|ESP|ucx|EBP|uax] ;

pattern reg means [ireg|ureg];

/* Note that the order of the byte registers is chosen to keep t he ah and al regs
free for instructions that require themspecifically, part icularly

conditional expressions on the floating point stack, that r eturn boolean
results in al */
pattern bireg means[BL|DL|AL|iBH|iDH|iCH|CL];
pattern bureg means[BH|DH|uAL|uBL|uDL|uCL|CH];
pattern boreg means[oBL|oAL|oDL|oCL];
pattern bacc means[AL];
pattern bnonacc means[BL|CL|DL];
pattern breg means[bireg|bnonacc|bureg|boreg|bacc];
pattern swreg means[BX|CX|DX|AX];
pattern uwreg means[uBX|uCX|uDX];
pattern untypedwreg means[SI|DI];
pattern wreg means[swreg|uwreg|untypedwreg];
pattern pushreg means[reg|wreg]; /* these are directly pus hable */
/*pattern dummyreg means[fitemp];*/
pattern dpushreg means[reg];
pattern anyreg means[breg|wreg|reg];
pattern signedreg means[bireg|swreg|ireg];
pattern unsignedreg means[bureg|ureg|uwreg|ureg];
pattern acc means[EAX];
pattern qacc means[EADX];
pattern dacc means[EDX];
pattern wacc means[AX];
pattern ebxacc means[EBX];
pattern ebxbacc means[BL];
pattern ecxacc means[ECX];
pattern ecxbacc means[CL];
pattern ecxuacc means[ucx];
pattern modreg means [ECX];
pattern sourcereg means [ESI];
pattern destreg means [EDI];
pattern countreg means [ECX];
pattern eadxu means [EADXu];
pattern shiftcountreg means [ecxbacc|ecxacc|ecxuacc];

74 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

/*

7.1.5 Operator definition

This section defines operations that can be used to parameterise functions.

*/
operation add means + assembles [’add’];
/* */operation and means AND assembles[’and’];
operation or means OR assembles[’or’];
operation xor means XOR assembles[’xor’];/* */
operation sub means - assembles [’sub’];
operation mul means * assembles [’mul’];
operation imul means * assembles [’imul ’];
operation bel means < assembles [’b’];
operation lt means < assembles [’l’];
operation ab means > assembles [’a’];
operation gt means > assembles [’g’];
operation eq means = assembles [’z’];
operation be means <= assembles [’be’];
operation le means <= assembles [’le’];
operation ae means >= assembles [’ae’];
operation ge means >= assembles [’ge’];
operation ne means <> assembles [’nz’];
operation shiftleft means << assembles [’l’];
operation shiftright means >> assembles [’r’];

pattern condition means[ne|ge|le|eq|gt|lt];
pattern equals means[eq];
pattern eqcondition means[ne|eq];
pattern unsignedcondition means[ne|ae|be|eq|ab|bel];
pattern operator means[add | sub|imul|and|or|xor];
pattern logoperator means[and|or|xor];

pattern nonmultoperator means[add|sub|logoperator];
pattern saddoperator means[add|imul|and|or|xor];
pattern shiftop means [shiftleft|shiftright];

/*

7.1.6 Data formats

Here we define ilcg symbols for the types that can be used as part of instructions.

*/
pattern unsigned means[uint32|uint8|uint16];
pattern signed means[int8 | int16|int32];
pattern int means[int8 | int16 |int32| uint32|uint8|uint1 6];
pattern double means[ieee64] ;
pattern float means[ieee32];
pattern real means [ieee64|float];
pattern byte means[uint8|int8|octet];

pattern word32 means[int32|uint32|word];
pattern word16 means[int16|uint16|halfword];
pattern wordupto32 means[byte|word16|word32];

7.1. BASIC 386 ARCHITECTURE 75

pattern dataformat means[octet|word];
pattern longint means [int32|uint32];
pattern hiint means[int32|int64|int16];
pattern two(type t)means[2] assembles[’2’];
pattern four(type t)means[4] assembles[’4’];
pattern eight(type t)means[8] assembles[’8’];
pattern integer64 means[int64|uint64];

pattern scale means[two|four|eight];

/*

Define the address forms used in lea instructions these differ from the address forms used in other
instructions as the semantics includes no memory reference. Also of course register and immediate
modes are not present.

*/
pattern labelf(label l)
means [l]
assembles[l];
pattern sconst(signed s)means[const s]assembles[s];
pattern lconstf means[sconst|labelf];
pattern labelconstf(lconstf l,lconstf s)
means [+(l, s)]
assembles[l’+’s];
pattern constf(signed s)
means[const s]
assembles [s];
pattern offset means[constf|labelf|labelconstf];
pattern regindirf(reg r)
means[^(r)]
assembles[r];

pattern simplescaled(reg r1,scale s)
means[*(^(r1),s)]
assembles[r1 ’*’s];

pattern negcompscaled(reg r1,scale s,offset o)
means[*(-(^(r1),o),s)]
assembles[r1 ’*’s’-(’ s’*’o’)’];
pattern compscaled(reg r1,scale s,offset o)
means[*(+(^(r1),o),s)]
assembles[r1 ’*’s’+(’ s’*’o’)’];
pattern scaled means[compscaled|negcompscaled|simples caled];
pattern baseminusoffsetf(reg r, offset s)
means[-(^(r) , s)]
assembles[r ’-(’ s ’)’];
pattern baseplusoffsetf(reg r, offset s)
means[+(^(r) , s)]
assembles[r ’+’ s];
pattern scaledIndexPlusOffsetf(scaled s, offset offs)
means[+(s, offs)]
assembles[s ’+’ offs];
address pattern basePlusScaledIndexf(reg r1,scaled s)
means[+(^(r1),s)]

assembles[r1 ’+’ s];
address pattern basePlusScaledIndexPlusOffsetf(reg r1, scaled s,offset off,longint t)
means[+(^(r1),+(s,off))]

assembles[r1 ’+’ s ’+’off];

76 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

address pattern basePlusScaledIndexPlusOffsetf2(reg r1 ,scaled s,offset off,longint t)
means[+(s,+(^(r1),off))]

assembles[r1 ’+’ s ’+’off];
address pattern basePlusIndexPlusOffsetf(reg r1,reg r2, offset off)
means[+(^(r1),+(^(r2), off))]

assembles[r1 ’+’ r2 ’ +’off];
address pattern basePlusIndexf(reg r1,reg r2)
means [+(^(r1),^(r2))]
assembles[r1 ’+’ r2];
pattern directf(unsigned s)
means[const s]
assembles[s];
pattern udirectf(int s)
means[const s]
assembles[s];

pattern riscaddr means[offset|baseplusoffsetf|regindi rf];
/*

7.1.7 Choice of effective address
This contains the useful formats for the load effective address instruction. The pattern regindirf is
excluded here as it adds nothing we do not have already from mov instructions.

*/
pattern uncasteaform means[directf |udirectf|
labelf| labelconstf|
basePlusScaledIndexPlusOffsetf|
basePlusScaledIndexPlusOffsetf2|
scaledIndexPlusOffsetf|
basePlusScaledIndexf|

scaledIndexPlusOffsetf|
baseplusoffsetf |

basePlusIndexPlusOffsetf|
baseminusoffsetf
|basePlusIndexf
];
pattern eaform(uncasteaform f,longint t) /* allow the addr ess expression to be cast to an integer */
means[(t)f]
assembles[f];
/*

7.1.8 Formats for all memory addresses
*/
pattern addrform means[eaform|regindirf];

/**

define the address patterns used in other instructions

*/

7.1. BASIC 386 ARCHITECTURE 77

pattern maddrmode(addrform f)
means[mem(f)]
assembles[’[’ f ’]’];
pattern memrisc(riscaddr r)
means[mem(r)]
assembles[’[’r’]’];
pattern gmaddrmode means[maddrmode|ru];
pattern immediate(signed s)means [const s] assembles [s];
pattern intimmediate(int s)means [const s] assembles [s];
pattern uimmediate(unsigned s)means[const s] assembles[s];
pattern jumpmode means[labelf|maddrmode];
pattern addrmode means[maddrmode|anyreg];
pattern uwaddrmode means[maddrmode|uwreg];
pattern uaddrmode means[maddrmode|ureg];
pattern baddrmode means[maddrmode|breg];
pattern waddrmode means[maddrmode|reg];
pattern wmemdummy means[maddrmode|ru];
pattern regshift(shiftcountreg r)means[^(r)] assembles [’cl’];
pattern shiftcount means[immediate|regshift];
pattern regaddrop(addrmode r)means[^(r)] assembles[r];
pattern uwregaddrop(uwaddrmode r)means[^(r)]assembles [r];
pattern regaddrimmediate means[intimmediate|maddrmode |regaddrop|ru];
pattern uwregaddrimmediate means[uimmediate|uwregaddr op];
/*

7.1.9 Instruction patterns for the 386

Stack operations

*/

instruction pattern STACKSTORE(reg r1)
means[(ref int32)mem((int32)POP(mainSTACK)):=^(r1)]
assembles[’xchg DWORD[esp],’r1’\n pop DWORD[’r1’]\n ’];
instruction pattern STACKWSTORE(wreg r1)
means[(ref halfword)mem((int32)POP(mainSTACK)):=^(r1)]
assembles[’xchg DWORD[esp],esi\n mov word[esi],’r1’\n p op esi’];
instruction pattern STACKBSTORE(breg r1)
means[(ref octet)mem((int32)POP(mainSTACK)):=^(r1)]
assembles[’xchg DWORD[esp],esi\n mov BYTE[esi],’r1’\n p op esi’];
instruction pattern SMLIT(nonmultoperator op,offset s)

means[PUSH(mainSTACK,(int32)op((int32) POP(mainSTACK), s))]
assembles[op ’ DWORD[esp] ,’ s];

instruction pattern SMULIT(nonmultoperator op,offset s)
means[PUSH(mainSTACK,(int32)*((int32) POP(mainSTACK) , s))]

assembles[’xchg eax,DWORD[esp]\n imul eax ,’ s’\n xchg eax ,DWORD[esp]’];

instruction pattern SADD(saddoperator op)
means [PUSH(mainSTACK,(longint)+((longint)POP(mainST ACK),(longint)POP(mainSTACK)))]
assembles[’xchg eax,DWORD[esp]\n add DWORD[esp+4],eax\ n pop eax’];

instruction pattern SOP(saddoperator op)
means [PUSH(mainSTACK,(longint)op((longint)POP(mainS TACK),(longint)POP(mainSTACK)))]
assembles[’xchg eax,DWORD[esp]\n ’op’ eax,DWORD[esp+4] \n mov DWORD[esp+4],eax\n pop eax’];
instruction pattern SMR(nonmultoperator op,reg r1)

means[PUSH(mainSTACK,(int32)op((longint)POP(mainSTA CK),(longint)^(r1)))]
assembles[op ’ DWORD[esp] ,’ r1];

78 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

instruction pattern SMRSHIFT(shiftop op,shiftcountreg r 1)
means[PUSH(mainSTACK, op((int32)POP(mainSTACK),^(r1)))]

assembles[’xchg eax, [esp]\n’
’sh’op ’ eax ,cl’
’\n xchg eax,[esp]’];

instruction pattern BSMR(nonmultoperator op,breg r1)
means[PUSH(mainSTACK,(octet)op((int8)POP(mainSTACK) ,^(r1)))]

assembles[op ’ byte[esp] ,’ r1];

instruction pattern SMRADD(reg r1)
means[r1:=(int32)+((longint) POP(mainSTACK),^(r1))]

assembles[’add ’r1’,DWORD[esp] \n add esp,4’];

instruction pattern SMRP(nonmultoperator op,reg r1,type t)
means[PUSH(mainSTACK,(ref t)op((longint)POP(mainSTAC K),(longint)^(r1)))]

assembles[op ’ DWORD[esp] ,’ r1];
instruction pattern RPUSH(dpushreg r)
means[PUSH(mainSTACK,^(r))]
assembles[’push ’ r];
instruction pattern RPUSHE(ureg r, integer64 t)
means[PUSH(mainSTACK,(t)EXTEND(^(r)))]
assembles[’ push dword 0 ; extend ’r’ to 64’

’\n push ’ r];
instruction pattern POPEADXu(type t,eadxu r)
means[r:=(uint64)POP(mainSTACK)]
assembles[’pop eax\n pop edx’];
instruction pattern STOREAXDu(eadxu r,destreg d)
means[(ref uint64)mem(^(d)):=^(r)]
assembles[’mov eax,[’d’]\n mov edx,[’d’+4]’];
instruction pattern RPOP(dpushreg r,type t)
means[(ref t)r:=(t)POP(mainSTACK)]
assembles[’pop ’ r];
instruction pattern BPUSH(bureg r)
means[PUSH(mainSTACK,^(r))]
assembles[’push dword 0\n mov BYTE[esp],’r];
instruction pattern BSPUSH(baddrmode r)
means[PUSH(mainSTACK,(int8)^(r))]
assembles[’push esi\n movsx esi,’r’\n xchg esi,[esp]’];
instruction pattern BSPOP(bireg r)
means[r:=(octet)POP(mainSTACK)]
assembles[’mov ’ r’,BYTE[esp]\n add esp,4’];
instruction pattern BPOP(bureg r)
means[r:=(octet)POP(mainSTACK)]
assembles[’mov ’ r’,BYTE[esp]\n add esp,4’];
instruction pattern REFPOP(addrmode r,type t,type t2)
means[(ref ref t)r:=(ref t2)POP(mainSTACK)]
assembles[’pop DWORD ’ r];
instruction pattern WPOP(addrmode r,type t)
means[(ref ref t)r:=(word)POP(mainSTACK)]
assembles[’pop DWORD ’ r];
instruction pattern MEMPOP(maddrmode m)
means[(ref int32)m:=(int32)POP(mainSTACK)]
assembles[’pop DWORD ’m];
instruction pattern LITPUSH(offset s)
means[PUSH(mainSTACK, s)]
assembles[’push DWORD ’ s];
instruction pattern MEMPUSH(maddrmode m)
means[PUSH(mainSTACK,(word)^(m))]

7.1. BASIC 386 ARCHITECTURE 79

assembles[’push DWORD ’ m];
instruction pattern DMEMPUSH(eaform ea)
means[PUSH(mainSTACK,(doubleword)^((ref doubleword)m em(ea)))]
assembles[’push DWORD[’ea’+4]\n push DWORD[’ea’]’];

instruction pattern STACKLOAD(word32 t)
means[PUSH(mainSTACK,^((ref t)mem((int32)POP(mainSTA CK))))]
assembles[’xchg DWORD[esp],eax\n mov eax,DWORD[eax]\n x chg DWORD[esp],eax’];
instruction pattern REFPUSH(maddrmode m,type t)
means[PUSH(mainSTACK,(ref t)^(m))]
assembles[’push DWORD ’ m];
instruction pattern SDEREF(int t)

means[PUSH(mainSTACK,(t)^(mem((int32)POP(mainSTACK))))]
assembles[’xchg esi,[esp]\n mov esi,dword[esi]\n xchg es i,[esp]’];

instruction pattern SDEREFDOUBLEWORD(int t)
means[PUSH(mainSTACK,(doubleword)^(mem((int32)POP(m ainSTACK))))]
assembles[’xchg esi,[esp]\n push dword[esi]\n mov esi,dw ord[esi+4]\n xchg esi,[esp+4]’];

/*

Data movement to and from registers

*/
instruction pattern SELECT(reg r1,reg r2,addrmode r3,wor dupto32 t)
means[(ref t) r1:=OR(AND((t)^(r1),(t)^(r2)),AND((t)^(r3),NOT(^(r2))))]
assembles[
’and ’r1 ’,’ r2 ’\n’

’not ’r2 ’\n’
’and ’r2 ’,’ t ’ ’ r3 ’\n’
’or ’r1 ’,’ r2];
instruction pattern LOAD(maddrmode rm, reg r1, word32 t)

means[(ref t) r1:= (t)^(rm)]
assembles[’mov ’ r1 ’,’ t ’ ’ rm];
instruction pattern LOADW(maddrmode rm, wreg r1, word16 t)

means[(ref t) r1:= (t)^(rm)]
assembles[’mov ’ r1 ’,’ t ’ ’ rm];
instruction pattern LOADB(maddrmode rm, breg r1)

means[r1:= (octet)^(rm)]
assembles[’mov ’ r1 ’,’ ’byte ’ rm];
instruction pattern MOVZXB(reg r1, baddrmode rm)
means[r1:=EXTEND((uint8)^(rm))]
assembles[’movzx ’ r1 ’, BYTE ’rm];
instruction pattern MOVZXB2(reg r1, baddrmode rm)
means[r1:=EXTEND((uint8)^(rm))]
assembles[’movzx ’ r1 ’, BYTE ’rm];

instruction pattern MOVSXB(reg r1,baddrmode rm)
means[r1:=(int32)EXTEND((int8)^(rm))]
assembles[’movsx ’r1’,BYTE ’rm];
instruction pattern MOVZXBW(uwreg r1, baddrmode rm)
means[r1:= EXTEND((uint8)^(rm))]
assembles[’movzx ’ r1 ’, ’rm];
instruction pattern MOVSXBW(swreg r1, baddrmode rm)
means[r1:= EXTEND(^(rm))]
assembles[’movsx ’ r1 ’, ’rm];
instruction pattern MOVZXW(reg r1, uwaddrmode rm)
means[r1:=EXTEND((uint16)^(rm))]
assembles[’movzx ’ r1 ’, word ’rm];
instruction pattern MOVSXW(reg r1, wreg rm)

80 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

means[r1:=(int32)EXTEND(^(rm))]
assembles[’movsx ’ r1 ’, ’rm];
instruction pattern ToBYTE(reg r, breg b)
means[b:= (octet) ^(r)]

assembles[’push ’ r ’\nmov ’ b ’,BYTE[esp]\nadd esp,4 ’];

instruction pattern STOREBR(baddrmode rm, breg r1)
means[(ref octet) rm:= ^(r1)]

assembles[’mov BYTE ’rm’,’ r1];
instruction pattern STORER(maddrmode rm, reg r1, word32 t)

means[(ref t) rm:= ^(r1)]
assembles[’mov ’ t ’ ’rm’,’ r1];

instruction pattern STOREWR(maddrmode rm, wreg r1, word16 t)
means[(ref t) rm:= ^(r1)]

assembles[’mov ’ t ’ ’rm’,’ r1];
instruction pattern NULMOV(reg r3, type t)
means[(ref t)r3:=^((ref t)r3)]

assembles[’;nulmov ’ r3 r3];
instruction pattern STORELIT(addrmode rm, type t, int s)

means[(ref t) rm:= (t)const s]
assembles[’mov ’ t ’ ’rm ’,’ ’ ’ s];
instruction pattern CLEARREG(reg rm, type t, int s)

means[(ref t) rm:= (t)0]
assembles[’xor ’ rm ’,’ rm];
/*

Register to register arithmetic

*/
instruction pattern RMLIT(nonmultoperator op,addrmode r m, type t, offset sm)

means[(ref t) rm:= op(^(rm),(t) sm)]
assembles[op ’ ’ t ’ ’ rm ’,’ sm];
instruction pattern MLIT(nonmultoperator op,maddrmode r m, type t, offset sm)

means[(ref t) rm:= op(^(rm),(t) sm)]
assembles[op ’ ’ t ’ ’ rm ’,’ sm];
instruction pattern INC(addrmode rm,int t)
means[(ref t)rm:= + (^(rm),1)]
assembles[’inc ’ t ’ ’ rm];
instruction pattern DEC(addrmode rm,int t)
means[(ref t)rm:= - ((t)^(rm),1)]
assembles[’dec ’ t ’ ’ rm];
instruction pattern SHIFT(shiftop op, shiftcount s, anyre g r,type t)
means[(ref t) r:= op(^(r),s)]
assembles[’sh’ op’ ’ r ’, ’s];
instruction pattern RMR(nonmultoperator op,maddrmode rm ,anyreg r1,wordupto32 t)

means[(ref t) rm :=op((t) ^(rm),(t)^(r1))]
assembles[op ’ ’ t ’ ’ rm ’,’ r1];

instruction pattern ADDRMR(nonmultoperator op,maddrmod e rm,anyreg r1,wordupto32 t)
means[(ref t) rm :=+((t) ^(rm),(t)^(r1))]

assembles[’add ’ t ’ ’ rm ’,’ r1];
instruction pattern RMRB(nonmultoperator op,addrmode rm ,breg r1,byte t)

means[(ref t) rm :=op((t) ^(rm),(t)^(r1))]
assembles[op ’ ’ t ’ ’ rm ’,’ r1];

instruction pattern nulbass(breg r1,byte t)
means[(ref t)r1:=(t)^(r1)]
assembles[’; nulbas’];
instruction pattern ADDUSB(addrmode fm,breg r1,breg rm)

7.1. BASIC 386 ARCHITECTURE 81

means[rm:= +:((uint8)^(rm),^(r1))]
assembles[’add ’ rm ’,’ r1 ’\n jnc $+4\n mov ’ rm’,255\n nop\n nop’];
instruction pattern SUBUSB(breg r1,breg rm)
means[rm:= -:((uint8)^(rm),^(r1))]
assembles[’sub ’ rm ’,’ r1 ’\n jnc $+4\n mov ’ rm’,0\n nop\n no p’];
instruction pattern ADDSSB(breg r1,breg rm)
means[rm:=(int8) +:((int8)^(rm),^(r1))]
assembles[’add ’ rm ’,’ r1 ’\n jno $+10\n jg $+6\n mov ’rm’ ,-1 28 \n jng $+4\n mov ’ rm’,127\n ’];
instruction pattern MULTSSB(breg r1,bnonacc r2)
means[r2:=*:(^(r2),^(r1))]
assembles[’push ax\n mov al,’r1’\n imul ’r2’\n shr ax,7\n m ov ’r2’,al\n pop ax’];

instruction pattern MULTSSBAL(bacc r1,bnonacc r2)
means[r1:=*:(^(r1),^(r2))]
assembles[’imul ’r2’\n shr ax,7’];

instruction pattern SUBSSB(addrmode fm,breg r1,breg rm)
means[rm:= (int8)-:((int8)^(rm),^(r1))]
assembles[’sub ’ rm ’,’ r1 ’\n jno $+10\n jg $+6\n mov ’rm’ ,-1 28 \n jng $+4\n mov ’ rm’,127\n nop\n nop’];
instruction pattern UINT8MAX(breg r1,breg r2)

means[(ref uint8)r1:=MAX((uint8)^(r1),^(r2))]
assembles[’cmp ’r1’,’r2’\n ja $+4\n mov ’r1’,’r2];
instruction pattern INTMAX(reg r1,reg r2)

means[r1:=MAX(^(r1),^(r2))]
assembles[’cmp ’r1’,’r2’\n jl $+4\n mov ’r1’,’r2];

instruction pattern INTABS(reg r1)
means[r1:=ABS(^(r1))]

assembles[’sub ’ r1 ’,0’ ’\n jns $+4\n neg ’r1];
instruction pattern UINT8MIN(breg r1,breg r2)

means[(ref uint8)r1:=MIN((uint8)^(r1),^(r2))]
assembles[’cmp ’r1’,’r2’\n jna $+4\n mov ’r1’,’r2];
instruction pattern INT8MAX(breg r1,breg r2)

means[(ref int8)r1:=MAX((int8)^(r1),^(r2))]
assembles[’cmp ’r1’,’r2’\n jg $+4\n mov ’r1’,’r2];
instruction pattern INT8MIN(breg r1,breg r2)

means[(ref int8)r1:=MIN((int8)^(r1),^(r2))]
assembles[’cmp ’r1’,’r2’\n jl $+4\n mov ’r1’,’r2];
instruction pattern LEA(reg r1, eaform ea)
means [r1:=ea]

assembles [’lea ’ r1 ’,[’ ea ’]’];
instruction pattern NOTOP(addrmode rm, type t)
means[(ref t)rm:= NOT((t)^(rm))]
assembles[’not ’t ’ ’ rm];
instruction pattern Negate(anyreg r1,type t)
means[(ref t)r1:= -((t)0,(t)^(r1))]
assembles [’neg ’ ’ ’ r1];
instruction pattern MNegate(anyreg r1,type t)
means[(ref t)r1:= *((t)-1,(t)^(r1))]
assembles [’neg ’ ’ ’ r1];
instruction pattern RLIT(operator op,pushreg r0, type t, s igned sm)

means[r0:= op(^(r0), const sm)]
assembles[op ’ ’ r0 ’,’ sm];

instruction pattern RRD(operator op, indexreg r1, indexre g r2)
means[r1:= (int32)op(^(r1),^(r2))]

assembles[op ’ ’ r1 ’,’ r2’;RRD’];

82 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

instruction pattern RR(nonmultoperator op, anyreg r1, any reg r2, int t)
means[r1:=(t) op((t) ^((ref t) r1),(t)^(r2))]

assembles[op ’ ’ r1 ’,’ r2’;RR’];
instruction pattern RRPLUS(anyreg r1, maddrmode r2, int t)

means[r1:=(t) +((t) ^((ref t) r2),(t)^((ref t) r1))]
assembles[’add ’ r1 ’,’ r2];

instruction pattern RRM(operator op, pushreg r1, maddrmod e rm, int t)
means [r1:=(t) op((t) ^(r1),(t)^(rm))]
assembles[op ’ ’ r1 ’,’ rm] ;

pattern bnonacreg means[DH|DL|BH|BL|CH|CL];
pattern baccreg means[AL];
pattern baccregmode means[maddrmode|baccreg];
pattern bnonacregmode means[maddrmode|bnonacreg];
instruction pattern fastBIDIV(baccreg r1,bnonacregmode r2)

means[r1:=div((int8)^(r1),(int8)^(r2))]
assembles[’ movsx ax,’r1’\n idiv BYTE ’r2];
instruction pattern BIDIV(baccreg r1, bnonacregmode r2,b accregmode r3)

means[r3:=div((int8)^(r1),(int8)^(r2))]
assembles[’ movsx ax,’r1’\n idiv BYTE ’r2’\n mov BYTE ’r3’, al’];
instruction pattern BIMUL(baccreg r1, bnonacreg r2)

means[r2:=*((int8)^(r1),(int8)^(r2))]
assembles[’imul BYTE ’r2’\n mov BYTE ’r2’,al’];
instruction pattern fastIMUL(acc a,dacc d)
means[(ref int32)a:=*((int32)^(a),^(d))]
assembles[’imul edx’];
instruction pattern CDQ(qacc r1,acc r2)
means[r1:=EXTEND(^(r2))]
assembles[’cdq’];
instruction pattern IDIV(acc r1, qacc r2, indexreg r3)
means[r1:=div(^(r2),^(r3))]
assembles[’idiv ’r3];
instruction pattern RIDIV(indexreg r1, qacc r2, indexreg r 3)
means[r1:=div(^(r2),^(r3))]
assembles[’idiv ’r3’\n mov ’r1’,eax’];
instruction pattern SIDIV(acc r1,modreg r2)

means[PUSH(mainSTACK,div((int32)^(r1),^(r2)))]
assembles[’push edx\n cdq\n idiv ’ r2 ’\n xchg eax,DWORD[es p]\n xchg eax,edx’];
instruction pattern UDIV(acc r1,modreg r2)

means[PUSH(mainSTACK,div((uint32)^(r1),^(r2)))]
assembles[’push edx\n xor edx,edx\n div ’ r2 ’\n xchg eax,DW ORD[esp]\n xchg eax,edx’];
instruction pattern IMULLIT(pushreg r1,addrmode rm, sign ed s)
means[(ref int32)r1:=*(^(rm),const s)]
assembles[’imul ’r1’,DWORD ’rm’,’s];

instruction pattern IMOD(acc r1, modreg r2)
means[PUSH(mainSTACK,MOD((int32)^(r1),^(r2)))]

assembles[’push edx\n cdq\n idiv ’ r2 ’\n xchg edx,DWORD[es p]’];
instruction pattern UMOD(acc r1, modreg r2)

means[PUSH(mainSTACK,MOD((uint32)^(r1),^(r2)))]
assembles[’push edx\n xor edx,edx\n div ’ r2 ’\n xchg edx,DW ORD[esp]’];
instruction pattern BIMOD(baccreg r1, bnonacreg r2)

means[r2:=MOD((int8)^(r1),(int8)^(r2))]
assembles[’ movsx ax,’r1’\n idiv ’r2’\n mov ’r2’,ah’];

instruction pattern MOD2(reg r)
means[r:=MOD(^(r),2)]
assembles[’and ’r ’,1’];

7.1. BASIC 386 ARCHITECTURE 83

instruction pattern MOD4(reg r)
means[r:=MOD(^(r),4)]
assembles[’and ’r ’,3’];
instruction pattern MOD8(reg r)
means[r:=MOD(^(r),8)]
assembles[’and ’r ’,7’];
instruction pattern DIV8(ureg r)
means[r:=div((uint32)^(r),8)]
assembles[’shr ’r ’,3’];

instruction pattern MOD16(reg r)
means[r:=MOD(^(r),16)]
assembles[’and ’r ’,15’];
instruction pattern PLANT(label l)
means[l]
assembles[l ’:’];
instruction pattern PLANTRCONST(double r,type t)
means[loc (t)r]
assembles[’dq ’ r];
instruction pattern PLANTICONST(longint r,type t)
means[loc (t) r]
assembles[’dd ’ r];

instruction pattern PLANTSCONST(float r,type t)
means[loc (t) r]
assembles[’dd ’ r];
instruction pattern PLANTBCONST(byte r,type t)
means[loc (t) r]
assembles[’db ’ r];
instruction pattern PLANTWCONST(word16 r,type t)
means[loc (t) r]
assembles[’dw ’ r];
/*

Control transfers and tests

*/
instruction pattern FAIL(int i)
means[interrupt i]
assembles[’int ’i];
instruction pattern GOTO(jumpmode l)
means[goto l]
assembles[’jmp ’ l];
instruction pattern IFLITGOTO(label l,addrmode r1,signe d r2,condition c,signed t,int b)
means[if((b)c((t) ^(r1),const r2))goto l]
assembles[’ cmp ’t’ ’ r1 ’, ’ r2 ’\n j’ c ’ near ’ l];

instruction pattern IFULITGOTO(label l,addrmode r1,unsi gned r2,unsignedcondition c,unsigned t,int b)
means[if((b)c((t) ^(r1),(t)const r2))goto l]
assembles[’ cmp ’t’ ’ r1 ’, ’ r2 ’\n j’ c ’ near ’ l];
instruction pattern BIFLITGOTO(label l,baddrmode r1,sig ned arg2,condition c,signed t)
means[if(c((t) ^(r1),const arg2))goto l]
assembles[’ cmp ’t’ ’ r1 ’, ’t arg2 ’\n j’ c ’ near ’ l];
instruction pattern IFGOTOB(label l,bireg r1,regaddrimm ediate r2,condition c,signed t,int b)
means[if((int8)c(^(r1),(int8) r2))goto l]
assembles[’cmp ’ r1 ’,byte’ ’ ’ r2 ’\n j’ c ’ near ’ l];
instruction pattern IFGOTOW(label l,wreg r1,regaddrimme diate r2,condition c,signed t,int b)
means[if((int8)c(^(r1),(int16) r2))goto l]
assembles[’cmp ’ r1 ’,word’ ’ ’ r2 ’\n j’ c ’ near ’ l];

84 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

instruction pattern IFGOTO(label l,ireg r1,regaddrimmed iate r2,condition c,signed t,int b)
means[if((int8)c(^(r1),(int32) r2))goto l]
assembles[’cmp ’ r1 ’,dword’ ’ ’ r2 ’\n j’ c ’ near ’ l];

instruction pattern IFUGOTO(label l,ureg r1,ureg r2,unsi gnedcondition c,signed t,int b)
means[if((int8)c(^(r1),^(r2)))goto l]
assembles[’cmp ’ r1 ’,dword’ ’ ’ r2 ’\n j’ c ’ near ’ l];
instruction pattern IFASSp6(signedreg r1,regaddrimmedi ate r2,condition c,type t2,maddrmode r3,maddrmode rm,
means[if((t2)c((t)^(r1),(t) r2))(ref t)rm:= (t)^(r3)]
assembles[’cmp ’ r1 ’,’t ’ ’ r2
’\n mov ’r1’,’t rm
’\n cmov’c’ ’r1’,’r3’\n mov ’t rm ’,’ r1];
instruction pattern IFASS(signedreg r1,acc r2,maddrmode rm, type t,equals c,type t2)
means[if((t2)c((t)^(rm),(t) r2))(ref t)rm:= (t)^(r1)]
assembles[’cmpxchg ’ t rm ’,’ ’ ’ r1];

instruction pattern SET(condition c,reg r1,reg rm, breg r, signed t,byte b)
means[r:=(b) c((int32)^(r1),(t) rm)]
assembles[’cmp ’r1 ’,’ ’ ’ rm ’\n set’c ’ ’ r’\n sub ’r’,1\n not ’r];
instruction pattern SETU(unsignedcondition c,ureg r1,ur eg rm, breg r,unsigned t)
means[r:= c((t)^(r1),(t) rm)]
assembles[’cmp ’r1 ’,’ ’ ’ rm ’\n set’c ’ ’ r’\n sub ’r’,1\n not ’r];
instruction pattern SETW(condition c,wreg r1,wreg rm, bre g r,signed t,byte b)
means[r:=(b) c((int16)^(r1),(int16) rm)]
assembles[’cmp ’r1 ’,’ ’ ’ rm ’\n set’c ’ ’ r’\n sub ’r’,1\n not ’r];
instruction pattern SETUW(unsignedcondition c,uwreg r1, uwregaddrimmediate rm, breg r,unsigned t)
means[r:= c((t)^(r1),(uint16) rm)]
assembles[’cmp ’r1 ’,’ ’ ’ rm ’\n set’c ’ ’ r’\n sub ’r’,1\n not ’r];
instruction pattern SETB(condition c,bireg r1,bireg rm, b reg r,signed t,byte b)
means[r:=(b) c((t)^(r1),(int8) rm)]
assembles[’cmp ’r1 ’,’ ’ ’ rm ’\n set’c ’ ’ r’\n sub ’r’,1\n not ’r];
instruction pattern SETUB(unsignedcondition c,bureg r1, bureg rm, breg r,unsigned t)
means[r:= c((t)^(r1),(int8) rm)]
assembles[’cmp ’r1 ’,’ ’ ’ rm ’\n set’c ’ ’ r’\n sub ’r’,1\n not ’r];
instruction pattern SETeq(eqcondition c,reg r1,regaddri mmediate rm, breg r,oplen t)
means[r:= c((t)^(r1),(t) rm)]
assembles[’cmp ’r1 ’,’ ’ ’ rm ’\n set’c ’ ’ r’\n sub ’r’,1\n not ’r];
instruction pattern IFBOOL(label l,breg r1)
means[if((int8)^(r1))goto l]
assembles[’test ’ r1 ’,’ r1 ’\n jnz near ’ l];
instruction pattern BOUNDC(reg r1,int lwb,int upb)
means[if(OR(<(^(r1), const lwb), >(^(r1), const upb)))in terrupt 5]

assembles[’boundc ’ r1 ’,’lwb’,’upb];

instruction pattern BOUND0(reg r1,reg r2)
means[if(OR(<(^(r2), ^((ref int32)mem(^(r1)))), >(^(r2), ^((ref int32)mem(+(^(r1), 4))))))interrupt 5]

assembles[’bound ’ r2 ’,[’ r1 ’]’];
instruction pattern BOUND4(reg r1,reg r2)
means[if(OR(<(^(r2),^((ref int32)mem(+(^(r1),4)))),> (^(r2),^((ref int32)mem(+(^(r1), 8))))))interrupt 5]

assembles[’bound ’ r2 ’,[’ r1 ’+4]’];
instruction pattern BOUND16(reg r1,reg r2)
means[if(OR(<(^(r2),^((ref int32)mem(+(^(r1),16)))), >(^(r2),^((ref int32)mem(+(^(r1), 20))))))interrupt 5]

assembles[’bound ’ r2 ’,[’ r1 ’+16]’];
instruction pattern IFIN(reg r1,reg r2, label l)
means[if((int8)AND((uint8)^(mem(r1)) , <<((uint8)1,^(r2))))goto l]
assembles[’bt [’ r1 ’],’ r2 ’\n jc ’l];

instruction pattern TESTIN(reg r1,reg r2, breg r,type t)

7.1. BASIC 386 ARCHITECTURE 85

means[r:=<>(AND((t)^(mem(r1)) , (t)<<(1,^(r2))),0)]
assembles[’bt [’ r1 ’],’ r2 ’\n setc ’r’\n not ’r’\n inc ’r];
instruction pattern BTS(reg r1,reg r2)
means[(ref uint8)mem(r1):=OR((uint8)^(mem(r1)), <<((u int8)1,^(r2)))]
assembles[’bts [’ r1 ’],’ r2];
instruction pattern REPMOVSD(countreg s,maddrmode m1,so urcereg si, destreg di)
means[for (ref int32)m1:=0 to ^(s) step 1 do

(ref int32)mem(+(^(di),*(^((ref int32)m1),4))):=^((re f int32)mem(+(^(si),*(^((ref int32)m1),4))))
]
assembles[’ inc ecx\n rep movsd’];
instruction pattern REPMOVSB(countreg s,maddrmode m1,so urcereg si, destreg di)
means[for (ref int32)m1:=0 to ^(s) step 1 do

(ref octet)mem(+(^(di),^((ref int32)m1))):=^((ref octe t)mem(+(^(si),^((ref int32)m1))))
]
assembles[’ inc ecx\n rep movsb’];

define(IA32codes,IFLITGOTO|LOADB|LOADW|LOAD|MOVZXB| MOVSXB|MOVZXW|MOVSXW|MOVZXB2|MOVZXBW|MOVSXBW|
CLEARREG|STORELIT|LEA|INC|TESTIN|SHIFT|MLIT|
RMLIT|ADDRMR|

/* Note !! the order below is important you must try and match
a 32 bit const before a 16 before an 8

Otherwise you will plant a word where you want to plant
a doubleword if the constant turns out to be small enough
to fit in. Thus PLANTBCONST accepts a value of 13 even
if this is typed to be an int32

*/
PLANTICONST|PLANTWCONST|PLANTBCONST|PLANTRCONST|PLANTSCONST|
DEC|IMULLIT|
MOD2|MOD4|MOD8|MOD16| IMOD|UMOD|INTABS|
Negate|NOTOP|MNegate|BTS|
UINT8MAX|UINT8MIN|INT8MAX|INT8MIN|SELECT|
PLANT|LITPUSH| MEMPUSH|SETUB|SETUW|
SETB|SETW|
SET|SETU|IFASS|SETeq|RMR|
IFLITGOTO|IFULITGOTO|BIFLITGOTO|IFIN|IFGOTO|IFUGOTO |
BIMUL|RLIT|LEA|RRM|fastIMUL|RMRB|RRD|RR|DIV8|IDIV|f astBIDIV|BIDIV|UDIV|CDQ|
RIDIV|SIDIV|
IFGOTOB|IFGOTOW
|GOTO|FAIL|BOUND4|BOUND0|BOUND16|BOUNDC
|REPMOVSB|REPMOVSD |ADDUSB|SUBUSB|ADDSSB|SUBSSB|MULTSSB|MULTSSBAL |

STOREWR|STORER|STOREBR/* stores */)
/* these come last as they are a fallback for having no free reg isters must go after fpu ops*/
define(lastIA32codes, REFPUSH|RPUSH|SDEREF|SDEREFDOU BLEWORD/* pushes */
|IFBOOL|SMLIT|SMRP|SADD|SMULIT|SMRADD|SOP|SMR|BSMR| /* stack ops */
STACKLOAD |REFPOP|MEMPOP|BPOP|BSPOP|BSPUSH|DMEMPUSH|RPUSHE

|IMOD|UMOD
|BPUSH|STACKSTORE|STACKWSTORE|STACKBSTORE|RPOP|ToBYTE|SMRSHIFT|WPOP

|POPEADXu)

/*

*/

86 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

7.2 The MMX instruction-set

/*

7.2.1 MMX registers and instructions

Registers

*/

register doubleword MM0 assembles[’MM0’];
register doubleword MM1 assembles[’MM1’];
register doubleword MM2 assembles[’MM2’];
register doubleword MM3 assembles[’MM3’];
register doubleword MM4 assembles[’MM4’];
alias register uint64 MM1U=MM1(0:63) assembles [’MM1’];
alias register int64 MM1I=MM1(0:63) assembles [’MM1’];

/* reserve for working space */
reserved register doubleword MM7 assembles[’MM7’];
reserved register doubleword MM5 assembles[’MM5’];
reserved register doubleword MM6 assembles[’MM6’];
/** used for operations using half registers */
alias register word MM0L=MM0(0:31) assembles[’MM0’];
alias register word MM1L=MM1(0:31) assembles[’MM1’];
alias register word MM2L=MM2(0:31) assembles[’MM2’];
alias register word MM3L=MM3(0:31) assembles[’MM3’];
alias register word MM4L=MM4(0:31) assembles[’MM4’];
alias register word MM1LU=MM1U(0:31) assembles[’MM1’];
alias register word MM1LI=MM1I(0:31) assembles[’MM1’];

alias register word MM5L=MM5(0:31) assembles[’MM5’];
/* used for 16 bit parallelism */
alias register int16 vector (4) MM016=MM0(0:63) assembles [’MM0’];
alias register int16 vector (4) MM116=MM1(0:63) assembles [’MM1’];
alias register int16 vector (4) MM216=MM2(0:63) assembles [’MM2’];
alias register int16 vector (4) MM316=MM3(0:63) assembles [’MM3’];
alias register int16 vector (4) MM416=MM4(0:63) assembles [’MM4’];
alias register int16 vector (4) MM516=MM5(0:63) assembles [’MM5’];

alias register int32 vector (2) MM032=MM0(0:63) assembles [’MM0’];
alias register int32 vector (2) MM132=MM1(0:63) assembles [’MM1’];
alias register int32 vector (2) MM232=MM2(0:63) assembles [’MM2’];
alias register int32 vector (2) MM332=MM3(0:63) assembles [’MM3’];
alias register int32 vector (2) MM432=MM4(0:63) assembles [’MM4’];
alias register int32 vector (2) MM532=MM5(0:63) assembles [’MM5’];

alias register int8 vector (8) MM08=MM0(0:63) assembles[’ MM0’];
alias register int8 vector (8) MM18=MM1(0:63) assembles[’ MM1’];
alias register int8 vector (8) MM28=MM2(0:63) assembles[’ MM2’];
alias register int8 vector (8) MM38=MM3(0:63) assembles[’ MM3’];
alias register int8 vector (8) MM48=MM4(0:63) assembles[’ MM4’];
alias register int8 vector (8) MM58=MM5(0:63) assembles[’ MM5’];

pattern im8reg means[MM48|MM38|MM58|MM08|MM18|MM28];
pattern im2reg means[MM432|MM332|MM532|MM032|MM132|MM 232];
pattern im4reg means[MM416|MM316|MM516|MM016|MM116|MM 216];
pattern untypedmreg means [MM1|MM3|MM4|MM5|MM2|MM0|MM7 |MM6];

7.2. THE MMX INSTRUCTION-SET 87

pattern lmreg means [MM1L|MM3L|MM4L| MM2L|MM0L| MM5L];
pattern umreg means[MM1U];
pattern iMreg means[MM1I];
pattern ilmreg means[MM1LI];
pattern ulmreg means[MM1LU];
pattern wmreg means[lmreg|ulmreg|ilmreg];
pattern mreg means[im2reg|untypedmreg|umreg|im4reg|im 8reg|iMreg];

/* define m4 macros to generate casts to the desired types */
define(shortquad, (int16 vector(4))$1)
define(refshortquad,(ref int16 vector(4))$1)

define(octoct,(int8 vector(8))$1)
define(octb,(octet vector(8))$1)
define(refoctb,(ref octet vector(8))$1)
define(octuint,(uint8 vector(8))$1)
define(refoctuint,(ref uint8 vector(8))$1)
define(refoctoct,(ref int8 vector(8))$1)
define(intpair, (int32 vector(2))$1)
define(refintpair,(ref int32 vector(2))$1)
/*

Addressing modes

*/
pattern mrmaddrmode means[maddrmode|mreg];
pattern mriscaddrmode means[memrisc|mreg];
/*

MMX instructions

*/
instruction pattern PMULLW(im4reg m, im4reg ma)
means[m := *(^(m),^(ma))]
assembles[’pmullw ’ m ’,’ ma];
instruction pattern PMULLSSB(im8reg m1,mreg m2, mrmaddrm ode ma)
means[m1:= octoct(*:(octoct(^(m1)),octoct(^(ma))))]
assembles[’pxor MM7,MM7’ /* clear regs mm5 and mm7 */

’\n pxor MM5,MM5’
’\n punpckhbw MM7,’ma /* mm7 now has 4 words with the top 4 byte s of ma in them */
’\n pxor MM6,MM6’
’\n punpckhbw MM6,’m1

’\n punpcklbw MM5,’ma
’\n pmulhw MM7,MM6’
’\n psraw MM7,7’

’\n pxor MM6,MM6’
’\n punpcklbw MM6,’m1
’\n pmulhw MM5,MM6’

’\n psraw MM5,7’
’\n packsswb MM5,MM7’
’\n movq ’m1’,MM5’];

instruction pattern MMXPUSH(mreg m)
means[PUSH(mainSTACK,m)]
assembles[’sub esp,8\n movq [esp],’m];
instruction pattern MMXPOP(mreg m)
means[m:=(doubleword)POP(mainSTACK)]
assembles[’movq ’m’,[esp]\n add esp,8’];

88 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

instruction pattern PADDD(mreg m, mrmaddrmode ma)
means[refintpair(m) := intpair(+(intpair(^(m)),intpai r(^(ma))))]
assembles [’paddd ’m ’,’ ma];
instruction pattern PADDW(im4reg m, mrmaddrmode ma)
means[refshortquad(m) := shortquad(+(shortquad(^(m)), shortquad(^(ma))))]
assembles [’paddw ’m ’,’ ma];
instruction pattern PADDB(im8reg m, mrmaddrmode ma)
means[refoctoct(m) := octoct(+(octoct(^(m)),octoct(^(ma))))]
assembles [’paddb ’m ’,’ ma];

operation meq means = assembles [’eq’];
operation mgt means > assembles [’gt’];
pattern mcondition means[meq|mgt];
instruction pattern CMPPB(mreg m,mrmaddrmode ma,mcondit ion cond)
means[refoctb(m):= octb(cond(octb(^(m)),octb(^(ma))))]
assembles[’pcmp’ cond ’b ’m’,’ma];
instruction pattern CMPPBR(mreg m,mrmaddrmode ma,mcondi tion cond)
means[refoctb(m):= octb(<(octb(^(ma)),octb(^(m))))]
assembles[’pcmpgtb ’m’,’ma];

instruction pattern CMPPW(im4reg m,im4reg ma,mcondition cond)
means[m:= EXTEND((int8 vector (4))cond(^(m),^(ma)))]
assembles[’pcmp’ cond ’w ’m’,’ma];

instruction pattern CMPPWR(im4reg m,im4reg ma,mconditio n cond)
means[m:= EXTEND((int8 vector (4))<(^(ma),^(m)))]
assembles[’pcmpgtw ’m’,’ma];

instruction pattern CMPPD(im2reg m,im2reg ma,mcondition cond)
means[m:= EXTEND((int8 vector (2))cond(^(m),^(ma)))]
assembles[’pcmp’ cond ’d ’m’,’ma];

instruction pattern CMPPDR(im2reg m,im2reg ma,mconditio n cond)
means[m:= EXTEND((int8 vector (2))<(^(ma),^(m)))]
assembles[’pcmpgtd ’m’,’ma];

instruction pattern PADDUB(mreg m, mrmaddrmode ma)
means[refoctuint(m) := octuint(+(octuint(^(m)),octuin t(^(ma))))]
assembles [’paddb ’m ’,’ ma];
instruction pattern PADDSB(im8reg m, mrmaddrmode ma)
means[m := octoct(+:(^(m),octoct(^(ma))))]
assembles [’paddsb ’m ’,’ ma];
instruction pattern PADDSB3(im8reg m,im8reg m2, mrmaddrm ode ma)
means[m := octoct(+:(^(m2),octoct(^(ma))))]
assembles [’movq ’m’,’m2’\n paddsb ’m ’,’ ma];

instruction pattern PADDUSB(mreg m, mrmaddrmode ma)
means[refoctuint(m) := octuint(+:(octuint(^(m)),octui nt(^(ma))))]
assembles [’paddusb ’m ’,’ ma];
/* stack add instructions */

instruction pattern SPADDUSB(mreg m)
means[refoctuint(m) := octuint(+:(octuint(POP(mainSTA CK)),octuint(POP(mainSTACK))))]
assembles [’movq ’m’,[esp]\n paddusb ’m ’,[esp+8]\n add es p,16’];
instruction pattern SPADDUB(mreg m)
means[refoctuint(m) := octuint(+(octuint(POP(mainSTAC K)),octuint(POP(mainSTACK))))]
assembles [’movq ’m’,[esp]\n paddb ’m ’,[esp+8]\n add esp, 16’];
instruction pattern SPADDSB(im8reg m)

7.2. THE MMX INSTRUCTION-SET 89

means[m := octoct(+:(octoct(POP(mainSTACK)),octoct(PO P(mainSTACK))))]
assembles [’movq ’m’,[esp]\n paddsb ’m ’,[esp+8]\n add esp ,16’];

instruction pattern SPSUBD(mreg m)
means[refintpair(m) := intpair(-(intpair(^(m)),intpai r(POP(mainSTACK))))]
assembles [’psubd ’m ’,[esp]\n add esp,8’];
instruction pattern PSUBW(im4reg m, mrmaddrmode ma)
means[refshortquad(m) := shortquad(-(shortquad(^(m)), shortquad(^(ma))))]
assembles [’psubw ’m ’,’ ma];
instruction pattern PSUBB(im8reg m, mrmaddrmode ma)
means[refoctoct(m) := octoct(-(octoct(^(m)),octoct(^(ma))))]
assembles [’psubb ’m ’,’ ma];
instruction pattern PSUBUB(mreg m, mrmaddrmode ma)
means[refoctuint(m) := octuint(-(octuint(^(m)),octuin t(^(ma))))]
assembles [’psubb ’m ’,’ ma];
instruction pattern PSUBSB(im8reg m, mrmaddrmode ma)
means[refoctoct(m) := octoct(-:(octoct(^(m)),octoct(^ (ma))))]
assembles [’psubsb ’m ’,’ ma];
instruction pattern PSUBUSB(mreg m, mrmaddrmode ma)
means[refoctuint(m) := octuint(-:(octuint(^(m)),octui nt(^(ma))))]
assembles [’psubusb ’m ’,’ ma];
instruction pattern PAND(mreg m, mrmaddrmode ma)
means[m := AND(^(m),^(ma))]
assembles [’pand ’m ’,’ ma];
instruction pattern PANDN(mreg m, mrmaddrmode ma)
means[m := AND(^(ma),NOT(^(m)))]
assembles [’pandn ’m ’,’ ma];
instruction pattern POR(mreg m, mrmaddrmode ma)
means[m := OR(^(m),^(ma))]
assembles [’por ’m ’,’ ma];
instruction pattern MOVDS(waddrmode rm, wmreg m)
means[(ref word)rm:= ^(m)]
assembles[’movd ’rm ’,’m];
instruction pattern MOVDL(waddrmode rm, wmreg m)
means[m := (word)^(rm)]
assembles[’movd ’m ’,’rm];
instruction pattern MOVOCTUINTL(memrisc rm, mreg m)
means[m := octuint(^(rm))]
assembles[’movq ’ m ’,’ rm];
instruction pattern MOVQS(memrisc rm, mreg m)
means[(ref doubleword)rm:= ^(m)]
assembles[’movq ’rm ’,’m];
instruction pattern MOVQSGEN(maddrmode rm, mreg m)
means[(ref doubleword)rm:= ^(m)]
assembles[’movq ’rm ’,’m];
instruction pattern MOVQR(mreg rm, mreg m)
means[(ref doubleword)rm:= ^(m)]
assembles[’movq ’rm ’,’m];

instruction pattern MOVOCTUINTS(maddrmode rm,mreg m)
means[(ref uint8 vector(8))rm:=^(m)]
assembles[’movq ’rm’,’m];
instruction pattern MOVQL(mrmaddrmode rm, mreg m)
means[m := (doubleword)^(rm)]
assembles[’movq ’ m ’,’ rm];
instruction pattern MOVQLR(im8reg rm, im8reg m)
means[m := ^(rm)]

90 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

assembles[’movq ’ m ’,’ rm];

instruction pattern REP2(mreg m, reg r)
means[m:=rep(^(r),2)]
assembles[’push ’r’\n push ’r’\n movq ’m’,[esp]\n add esp, 8’];

instruction pattern REP4(mreg m, wreg r)
means[m:=rep(^(r),4)]
assembles[’push ’r’\n push ’r’\n push ’r’\n push ’r’\n movq ’m’,[esp]\n add esp,8’];

instruction pattern REP8(mreg m, breg r)
means[m:=rep(^(r),8)]
assembles[’sub esp,2\n mov [esp], ’r’\n mov [esp+1], ’r’\n xchg [esp],ax\npush ax\npush ax\n push ax\nxchg
instruction pattern PACKSSDW(reg r, mreg m)
means[(ref int16 vector(4))m:=^((ref int32 vector(4))me m(r))]
assembles[’movq ’m’,[’r’]\n packssdw ’m’,[’r’+8]’];

instruction pattern PACKSSWB(reg r, im8reg m)
means[(ref int8 vector(8))m:=^((ref int16 vector(8))mem (r))]
assembles[’movq ’m’,[’r’]\n packsswb ’m’,[’r’+8]’];

instruction pattern PACKUSWB(reg r, mreg m)
means[(ref uint8 vector(8))m:=^((ref int16 vector(8))me m(r))]
assembles[’movq ’m’,[’r’]\n packuswb ’m’,[’r’+8]’];

define(mmxcodes,MOVQSGEN|PADDD|PADDW|PADDB|PADDSB|PADDSB3|PADDUSB|PADDUB|SPADDSB|SPADDUSB|SPADDUB|PACKSSDW|P
CMPPB|CMPPBR|CMPPD|CMPPDR|CMPPW|CMPPWR|
SPSUBD|PSUBW|PSUBB|PSUBSB|PSUBUSB|PSUBUB|POR|PAND|PANDN|PMULLSSB|

PMULLW|MOVDS|MOVDL|MOVQS|MOVQL|MOVQLR|MOVOCTUINTS|MOVOCTUINTL|REP2|REP4|REP8|
MMXPUSH|MOVQR)

define(athloncodes,PF2IW)
/*

*/

7.3 The 486 CPU
include(‘cpus/i386base.m4’) include(‘cpus/ifpu.m4’) /*

*/

instructionset [IA32codes|FSET|fpucodes|fpupushes|la stIA32codes]

/*

*/
/*

7.4. PENTIUM 91

7.4 Pentium
/ include(‘cpus/i386base.m4’) include(‘cpus/ifpu.m4’) include(‘cpus/mmx.m4’) /

*/
instructionset [IA32codes |RPUSH|lastIA32codes|fpucod es |fpupushes|mmxcodes|STOREAXDu]

/*

*/

7.4.1 Concrete representation

92 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

Part II

VIPER

Ken Renfrew

93

Chapter 8

Introduction to VIPER

8.1 Rationale

When originally developed, Vector Pascal used a command line compiler operating in the
classical Unix fashion. This interface is documented in section 5.1. However it has been
conventional, at least since the release of UCSD Pascal in the late ’70s for Pascal Compilers
to be provided with an integrated development environment.The Vector Pascal IDE, pro-
vides the usual capabilities of such environments, but withthe additional feature of literate
programming support.

8.1.1 The Literate Programming Tool.

Today’s pace of technological development seems to be rising beyond anything that could
be conceived only a few decades ago. It is a common “joke” thatany piece of modern
technology is six months out of date by the time it reaches theshow room.

Software development is one of the fastest moving areas of this technological stampede.
With development happening at such a rate documentation is often at best a few steps
behind the reality of the code of any system. Thus anyone attempting to maintain a system
is left to their own ingenuity and some out of date documentation.

The constant updating of this documentation would in fact almost certainly be a more
time consuming task than developing the program in the first place and hence time spent in
this area can often be regarded as non productive time.

Several attempts have been made at automating this process.The automation pro-
cess is often termed literate programming. The two most successful of these beingweb
[23] a development of the TEX system which is the forefather of LATEX [25] developed by
Leslie Lamport that is so widely used today, and JAVADOC. TheJAVADOC system was
developed by Sun Microsystems to document programs writtenin JAVA by including the
document details inside specially marked comments [Sch1].

The Vector Pascal literate programming tool will combine these two approaches by
allowing the programmer to embed LATEX commands with in special comment markers.
These will still be able to be parsed by a conventional PascalCompiler allowing the system
to be used for conventional Pascal programming.

The embedding of LATEX commands in the program is not compulsory for those wishing
to use the tool. There is a user selectable scale of detail that will be included automatically
in documentation even from a normal Pascal program.

In addition in an attempt to make the programs idiosyncrasies more readable and to
present the programs arguments more conventionally there is the option of using a “math-
ematical syntax converter” which will change some of the more impenetrable code into

95

96 CHAPTER 8. INTRODUCTION TO VIPER

conventional mathematical symbolism1. The finished document being written, by the sys-
tem in LATEX to allow straight compilation into a postscript or pdf document formats.

To further aid the documentation the variables declared with in the program will be
cross referenced to their instantiation point allowing a reader to cross reference a variable
and thus remind themselves of it’s exact nature.

This brief description clearly show the aids that a literateprogramming tool would bring
to the programmer allowing documentation to be both kept up to date and in fact created
retrospectively from existing code.

8.1.2 The Mathematical Syntax Converter.

A computer program by it’s very nature has a structure which allows it to be read by a ma-
chine. Modern high level languages have abstracted themselves from this very successfully
but never the less due to this underlying requirement the syntax of a program language can
hide the program’s algorithm from a human reader.

Programmers often use psuedo-code to explain algorithmic arguments. Mathemati-
cal notation is usually the most clear and precise way of presenting this argument. The
mathematical converter allows a developer to use this system to convert the Pascal syntax
into something closer to mathematical notation2 and much more presentable to the human
reader.

This feature is unique3 in a programming interface and provides a further level of
documentation. The documentation of the algorithms involved in the program, which are
arguably the program’s most valuable assets.

8.2 A System Overview

As can be seen from the rationale above the system breaks intothree main sections. The
program editor with the compiler, the literate programmingtool and the mathematical syn-
tax converter.

It is hoped that an improvement in performance of the supplied compiler can be achieved
by statically loading the compilers class files for all target processors4 at start up rather than
the dynamic loading currently employed.

The I.D.E. will follow the traditional approach offering similar facilities to that of many
other editors for different languages on the market place.

Among these facilities are a syntax highlighting (for Vector Pascal, LATEX and HTML),
a project manager with automatic make file facility, the ability to run a program in the
environment with redirected input and output, a function & procedure finder linked to the
source code, a error line highlighter for compilation errors, an external process runner for
LATEX compilers, TEX to HTML converters, a mini browser to show approximate results of
the Literate programming tool etc...

The Literate programming tool has been described in it’s rationale and incorporates the
unique mathematical syntax conversion allowing a program to be converted to a mathemat-
ical argument at literally the touch of a button.

8.3 Which VIPER to download?

VIPER is platform independent for the operating systems it supports. These operating
systems are: -

1Refer to separate section of for the rationale of the maths syntax converter.
2Precise mathematical notation although perhaps desirableis a more complex operation than the time allotted

to the project would allow but none the less an interesting development for the future.
3Unique to the best of our knowledge at the time of submission.
4Processors currently supported are the Intel 486,Pentuin ,P3 and The Athalon K6.

8.4. SYSTEM DEPENDENCIES 97

• Linux

• Windows 9x

• Windows NT/2000/XP

The only decision to make on the VIPER download is whether thesource code is re-
quired. The source version although much larger contains the source code for the VIPER
I.D.E. and the Vector Pascal Compiler and all files required for a developer to further de-
velop or adapt any of the systems within VIPER. The class file download provides the
required files to have an operational VIPER installation.

8.4 System dependencies

VIPER depends on several pieces of software all of which are freely available to download
from various sources. The vital dependencies are: -

• Java 1.3 or newer.

• The NASM assembler.

• The gcc linker. Included in Linux installations, for Windows use the cygwin or
DJGPP versions of the gcc linker.

For full functionality the following systems are also required: -

• A LATEX installation. LATEX usually comes with Linux installations. The total MiKTEX
package is recommended for all Windows installations.

• A dvi viewer usually included with a LATEX installation. The YAP viewer included
with MiKTEX is particularly recommended.

• A TEX to HTMLconverter. TTH was used in the development of the system.

It is recommended that all the above programs are set-up as per their own installation
instructions and the appropriate class path established tosuit the host machines operating
system.

8.5 Installing Files

Assuming the VIPER files have been downloaded to a suitable place on the host machine
the actual installation can begin. The only decision that must be made is where to install
VIPER. VIPER can be installed anywhere on the host machine provided that there are no
spaces in the directory path of the target directory.

Once this decision has been made the .zip file should be unzipped using a proprietary
zip tool (e.g. WinZip, zip magic etc.) to the source directory.

When the .zip file has been unzipped there will be a directory called VectorPascal in
the target directory. VectorPascal is the home directory ofthe VIPER system.

VIPER may be launched by : -

• All installations. Open a shell / DOS window change to the VIPER home directory
and type the commandjava viper.Viper taking care of the capital letter.

• Windows installations. The batch file viper.bat is includedin the VIPER home di-
rectory; running this will start VIPER. A shortcut to this batch file should be placed
on the host machines desktop for the easiest start-up.

• Linux installations. The shell script viper.sh is includedin the VIPER home direc-
tory; running this will start VIPER.

98 CHAPTER 8. INTRODUCTION TO VIPER

8.6 Setting up the compiler

VIPER detects the operating system installed at start up andthen moves a suitable run
time library into the ../VectorPascal/ilcg/Pascal directory where it will be available for the
compiler. This is done automatically each time that VIPER isstarted.

The compiler options will need to be set-up along with the personal set-up proffered for
the installation (see Chapter 9). The file type for the linkerwill need set-up. These options
are: -

• For Linux or Windows using the Cygwin gcc use “elf”.

• For Windows using the DJGPP linker use “coff”.

It is important to read through the user guide (see Chapter 9)to avoid learning the
system the painful way!

Chapter 9

VIPER User Guide

9.1 Setting Up the System

VIPER automatically sets the compiler flags to suit the operating system on the host ma-
chine. For those who have used the Vector Pascal compiler with a command line interface
this means that the -U flag is set for Windows 9x and Windows NT installations, and not set
for Linux/UNIX installations, the -o flag is set to produce anexe file with the same name
as the Pascal source file. The .asm file and .o files are similarly named. If these flags mean
nothing then that is not a problem, either ignore the preceding information or see the Vector
Pascal reference manual in the help files of the VIPER system.

VIPER cannot however detect the versions of the gcc linker installed, this is left for the
user. The -f flag of the compiler tells the compiler the file format to be used. To set this go
to Set-Up / Compiler Options / Options and click the -f buttonand enter the file format into
the adjacent text field. The format should be :

• Linux Installations and Windows installations with Cygwingcc linker format iself

• Windows with DJGPP linker format iscoff

Figure 9.1: File Format Entries in Compiler Options

The other options on the Compiler options window are: -

• Smart (Not Yet Implemented on the V.P. compiler) Serializes/ deserializes the code
tree for the processor. This allows the compiler to ‘learn’ how to quickly respond to
a given code segment.

• S suppresses the assembly and linking of the program (an assembler file is still pro-
duced).

• V causes the compiler to produce a verbose output to MyProg.lst when compiling
MyProg.pas.

• CPUtag This option is used in conjunction with the -cpu option. It prefixes the .exe
file with the name of the cpu for which the compiler is set. whenthis option is used
the .exe cannot be run in the I.D.E.

99

100 CHAPTER 9. VIPER USER GUIDE

• -cpu This option allow the source file to be compiled to a rangeof processors. To
produce an exe file for a range of processors the CPUtag shouldbe set. This prevents
the exe file being over written by the next compilation for a different processor. Sub-
sequent compilations for the same processor, however, willbe overwritten. Select
the cpu from the list in the drop down menu adjacent to the -cpubutton.

• -ISO (Not Yet Implemented on the V.P. compiler) Compiles to iso standard Pascal.

9.1.1 Setting System Dependencies

VIPER depends on various other systems for full functionality. These are set in Set-Up /
Compiler Options / Dependencies The fields are: -

Figure 9.2: Dependencies Window

1. Source Compiler this option is only editable if the Default Compiler option is not set.
This is the command that would run the compiler from the VectorPascal directory.

2. This is the command required to run LATEX this is required for VPTEX to work. The
recommended option for this field istexi2dvi .

3. DVI viewer The dvi viewer that is to be used to view the LATEX recommended option
is YAP (Windows installations).

4. Tex to HTML if a converter is installed on the host machine then put the command
in this field.

5. Tex to PDF enter the command used to convert tex to PDF.

6. DVI to PS command to convert DVI files to PostScript (usually dvips).

9.1.2 Personal Set-up

Viper allows the user many options to cater for different tastes and programming styles. It
is not crucial to the system to set these options but it does make for a more comfortable
programming environment.

If your VIPER installation is on a network each user may have adifferent personal
set-up providing each user has a separate home directory. VIPER installs a file called

9.1. SETTING UP THE SYSTEM 101

viper.properties into this directory and updates this file when ever a change ismade to
the system set-up.

NOTE The individual set-up should not be attempted when multiplefiles are open.
If this is done then no harm comes to the system or any of the open files but users may
experience difficulty in closing one or more files. The solution is to use Window / Close
All to close all the files. The system can then be used as normal.

Viper Options

In the Set-up menu there is the Viper Options menu option. In this you will find all the
familiar I.D.E. options such as font size and style, icons sizes, syntax colours, look and feel
etc.

Figure 9.3: The Viper Option Windows

The different Windows shown above allow the control of the VIPER I.D.E. The indi-
vidual windows control: -

• Editor This controls the look and feel (see Colour Plates) the font size and style, the
tab size and auto indentation.

• ConsoleThis controls the Font style and size and the background colour of the con-
sole window.

• PreferencesThis allows the individual set-up of the menu icon sizes and the tool bar
sizes.

• Syntax Colours This allows the Syntax Highlighting colours to be altered toper-
sonal taste. These can be adjusted for each supported language (Vector Pascal, LATEX,
HTML) independently.

9.1.3 Dynamic Compiler Options

NOTE This is for advanced use only.

This feature is intended to allow VIPER to handle: -

• New processors as the class files become available (Dynamic class loading only).

• New options for the compiler / new versions of the compiler.

102 CHAPTER 9. VIPER USER GUIDE

The dynamically created options pages are added in the form of a new tabbed pane to the
Compiler Options window. To create a new options pane the user must: -

1. Open the file ../VectorPascal/viper/resources/dynamicOption.properties

2. Edit the file to suit the new options.

3. Save the file.

Editing to add a processor

In the file dynamicoptions.properties in the ../VectorPascal/viper/resources directory there
is a list of the current processors.. This list can be extended simply by adding another to
the end of the list. It is best if the list ends with “others”.

Note The appropriate code generator files must be written for the Vector Pascal com-
piler and placed in the ../VectorPascal/ilcg/tree directory.

Editing to add compiler options

The dynamicoptions.properties file can be edited to producea new compiler option. This
is done by entering a new line at the end of the file following the in the line above. For
example: -

Figure 9.4: Dynamic Option Window

CPUFLAGS: P3:K6:Pentium:IA32
#
#This is to set flags for the compiler
#NB DO NOT EDIT THIS FILE BEFORE AFTER READING THE HELP FILE
#IT IS IMPORTANT THAT THE FIELDS COME IN THE FOLLOWING ORDER
#FLAG(Type:String),DESCRIPTION(Type:String),TEXTFIE LD(Type:int),
#BROWSEBUTTON(Type: boolean)
#Any comments must be but in this area.

FLAG:DESCRIPTION :TEXTFIELD: BROWSEBUTTON
-TEST:Test description: 20 : true:

9.2. MOVING VIPER 103

9.1.4 VIPER Option Buttons

The VIPER options are set in their respective panels with theVIPER Option Buttons these
have three states: -

• Grey The item is not selected.

• RedThe mouse is over the correct areas to select the item.

• Blue The item is selected.

9.2 Moving VIPER

Ideally VIPER should be installed from the downloaded zip file on any new system. If this
is not possible then it is still possible to move VIPER onto a new system even if the new
host machine has a different operating system.

Moving a VIPER installation from any Windows host to any other Windows host, or
from one Linux installation to another is straight forward.

1. Move the entire VectorPascal directory and all sub-directories to the new system.

2. Run VIPER and in the File menu click clear recent files and then click clear recent
projects.

3. Import all projects that have been moved and are to be used on the new system.

If the operating systems are different (i.e. moving from Linux to Windows or vice versa)
then the system must be reset: -

1. open a shell/DOS prompt window and change directories to the VectorPascal direc-
tory.

2. Type java ViperSystemReset in the console window.

The system is now reset and the new installation of VIPER can be used normally.

9.3 Programming with VIPER

This section assumes that the I.D.E. is now set-up to the user’s taste. To open a file click
the open file menu option and use the dialogue box to open the file in the usual way.

Familiarity with the basic editing functions of an I.D.E. are assumed.

9.3.1 Single Files

The file will open with the syntax highlighter associated with the file suffix of the target
file. The file can be edited with all the usual I.D.E. functions. (Cut, Paste, Copy, Save, Save
As, Find and Replace, etc.).

VIPER features a “right click menu” to offer another method of quickly editing files.
Line numbers can be viewed either by using the statistics on the status bar at the bottom

right hand corner of the I.D.E. or by double clicking the darkgrey panel on the left of the
editor window, this line number panel can then be adjusted insize to suit the user’s needs.

A new file can be opened from the file menu. Clicking on the New Document option
allows the user to choose between the three types of file that VIPER supports (.Pascal,
LATEX, HTML). A new file is then opened in the editor window. The fileis un-named until
it has been saved.

When a file has been changed since it was last saved the name tagat the top of the
editor window appears in red, otherwise it is black.

104 CHAPTER 9. VIPER USER GUIDE

Figure 9.5: The Right Click Menu

If the user attempts to close the editor before a file is saved the option to save the file is
offered before the I.D.E. closes.

If a file has functions and / or procedures the function finder automatically displays
these in the left most editor window. Clicking on the icon by afunction or procedure takes
the editor to the start of that section.

9.3.2 Projects

The VIPER Project Manager allows the user to construct software projects in Vector Pascal.
An existing project can be opened using the Project / Open Project menu option or icon.

The project will then appear in the project window. The files names are in a tree structure
which can be clicked to open the file in the editor window.

To create a new project the user clicks on the new project iconand the Project properties
dialogue box will appear.

The text fields are then filled in to create the empty project. The directory path should
be the parent directory for the project’s home directory. This home directory will be given
the project’s name.

Once the project has been created the files can be added and removed as required.

• Adding Click the add files icon and enter or browse for the required file. This copies
the file to the project directory.

• RemovingHighlight the file too be removed and click the remove files icon. Warn-
ing This deletes the file from the project directory.

Other files may be placed in the project directory but if they are not added to the project
they will not be a member of the project.

The makefile for the project is automatically created as ProjectName.mke. The user
should not edit either this or the .prj file directly.

9.4. COMPILING FILES IN VIPER 105

Figure 9.6: The Project Properties Window

Importing Projects

Projects can be imported from other VIPER installations by the import project facility. This
can be found in Project / Import Project. Any project coming from another VIPER must be
imported via this facility.

Backing-Up Projects

The import project facility can be used to move an existing project to another directory
of the same machine. This Back-Up project is not just a copy ofthe project but is fully
functional with all the facilities of the VIPER system.

9.3.3 Embedding LATEX in Vector Pascal

The special comment (*! comment body *) is used to embed LATEX in the Vector Pascal
source file. Anything in within these comments will be treated as if it were LATEX both by
the VPTEX system and the syntax highlighter.

There is no need to put LATEX commands in the special comments unless a specific
result is required. (See section 9.9)

9.4 Compiling Files in VIPER

9.4.1 Compiling Single Files

Assuming the compiler has been set-up the compilation of a file is very simple. Simply
click the compile icon (or menu option) and the compiler willcompile the file in the editor
window with the options selected.

The resulting files are placed in the same directory as the source file and are named the
same as the source file with the corresponding suffix.

106 CHAPTER 9. VIPER USER GUIDE

Compiling a file to executable for several processors

If a file is to be compiled for several different processors the CPUTAG and -CPU options
must be set in the Set-Up / Compiler Options / Options panel. The file MyProg.pas would
then be compiled to ProcessorNameMyProg.exe. This processcan be done for each pro-
cessor on the available processor list.

NoteA file compiled in this manner cannot be run within the I.D.E.

9.4.2 Compiling Projects

Projects can be compiled in two ways: -

• Make a project. This compiles the files that are not up to date but does not compile
any file that is up to date.

• Build a project. This compiles all the files in the project regardless of whether the
files are up to date.

The Vector Pascal compiler used in the traditional command line interface mode will
check one level of dependency in a project. If there are more levels of dependency the
VIPER project manager will automatically make amakefile and recursively check all
levels of dependency in the project.

As VIPER compiles a file, the file is opened in the I.D.E. if an error is found compilation
stops and the error is highlighted.

9.5 Running Programs in VIPER

NoteProjects requiring input from the userMUST have the input redirected.
When a program has been compiled the resulting executable can be run in the I.D.E. by

clicking on the Run icon. A redirect input box then appears. If the program requires input
from the user then an input file must be set. This file should contain all the data that the
program requires to run to completion.

Figure 9.7: The Run Options Panel

Similarly the output may be redirected. This, however is notcompulsory if the output
is not redirected the output of the program appears in the console window. If the output is
redirected then the output is written to the file set-up in therun dialogue window.

9.6. MAKING VPTEX 107

9.6 Making VPTEX

Making VPTEX is as simple as clicking the Build VPTEX icon or menu option. If a project
is open then the VPTEX is made for the whole project, otherwise the VPTEX is made for
the file in the editor window.

9.6.1 VPTEXOptions

The level of documentation is set by the user in the VPTEX Options panel. This panel can
be found in the TeX / VP-TeX Options menu item. There are five levels of detail that can
be chosen :-

• Function and Procedure headings only.

• Level 1 plus all special comments.

• Program bodies and interfaces.

• Selected text

• All source code.

In addition to the above options the user can choose whether acontents page is to be
included or not. This is set by clicking the create contents page button.

Figure 9.8: The VPTEX Options Panel

9.6.2 VPMath

The VPMath system converts Vector Pascal code to mathematical syntax. This makes the
program more human readable and in general more concise.

The VPMath system is invoked automatically when the VPTeX ismade if the Use Math
Converter is set in the Tex/VP-TeX Options menu item.

108 CHAPTER 9. VIPER USER GUIDE

9.7 LATEX in VIPER

Most of the features of the VIPER editor used in the creation /editing of Vector Pascal files
can also be used for creating / editing LATEX documents.

Opening a LATEX document in VIPER automatically invokes the LATEX syntax high-
lighter and the Function Methods finder automatically changes to a Section / Sub-Section
finder.

This allows the user to click on a Section icon in the left handwindow and the editor
will jump to that section.

9.8 HTML in VIPER

VIPER allows the user to edit/write HTML pages. The system for HTML is very straight
forward. Create a new HTML file or open an existing file to be edited. Once the file has
been altered click on the run button just as if to run a Vector Pascal executable.

When a new HTML file is created or an existing one opened the HTML syntax high-
lighter is automatically loaded.

The default browser that is installed on the host machine will open with the HTML
page displayed.

9.9 Writing Code to Generate Good VPTEX

VPTeX is a tool included in the VIPER Integrated DevelopmentEnvironment for Vector
Pascal. It automatically produces and formats a LaTeX listing of the source file or files
on which it is called. By defining three distinct types of comments, VPTeX also allows
the programmer to add extensive descriptions of their code to the listing, creating full La-
TeX documentation for their Vector Pascal programs or projects. Mathematical translation
can also be performed on the source code listing to produce a more generic and succinct
description of the program’s algorithms and structures.

The three types of comments available are:

Special Comments :A special comment is started in the source code with the comment
command (*! and terminated with *). Special comments appearin the LaTeX as run-
ning prose and are of most use in giving extensive comments and descriptions of the
program. Special comments can include LaTeX commands, withsome limitations,
to further imrove the readability of the documentation.

Margin Comments : Normal Pascal {...} comments which appear immediately at the end
of a line of code are placed in the left-hand margin adjacent to their source code line
in the LaTeX documentation. These are of principal use when asmall description of
the content of a single line is required.

Normal Comments : Normal Pascal {...} comments which appear on a line of their own
will appear in the LaTeX in typewriter font.

9.9.1 Use of Special Comments

As outlined above, special comments are the principal meansof describing a program in the
documentation. To maximise the effectiveness of the literate programming facility source
code should be written with large amounts of special comments and with the program’s
documentation in mind. The ability to include LaTeX commandwithin special comments
allows the programmer to directly affect the look of the LaTeX documentation, but there
are some limits to the use of LaTeX commands within special comments:

9.9. WRITING CODE TO GENERATE GOOD VPTEX 109

• Do not include any preamble within special comments. The preamble for the LaTeX
documents is automatically produced by VPTeX.

• Always use full text series altering commands such as\textbf{..} rather than
their shorthand equivalents such as\bf{...} .

• Bear in mind that any text entered in special comments must becompilable LaTeX
for the documentation to compile. This means that the following characters are con-
trol characters and should not be entered verbatim into special comments; & $ % _ {
} ˆ ˜ \.

Special comments can be particularly useful for controlling the structure of your LaTeX
document. The following are guidelines as to how to structure your documentation.

• For an individual program or unit file, the LaTeX document produced by VPTeX
will be an article, so sections are the highest level description that can be applied to
a block of text.

• It is usually useful to include an introduction to the program at the start of the Pascal
source file using the\section{Introduction} comand at the start of an opening
special comment.

• A special comment containing just a structure command (\section, \subsection
etc.) can be extremely useful in sectioning off different parts of the source code to
add structure to the code listing. For example, the declarations could be prefaced with
(*! \section{Declarations} *) or the main program could be prefaced with a
similar command. Each procedure or function is automatically placed within its own
section by VPTeX so do not add structuring special comments to these sections of
code.

To produce a well documented program, it is important that special comments are reg-
ularly employed to add verbose descriptions of the source code. It is not uncommon for a
LaTeX documentation file to contain many pages of special comments split into sections
and subsections between small sections of code. VPTeX also automatically creates a con-
tent page so the structure of your special comments will be reflected in the content page.

Note: With the current release of the Vector Pascal compiler, special comments contain-
ing *’s other than at the opening (*! and closing *) tags will not compile.

9.9.2 Use of Margin Comments

Margin comments are useful for providing short descriptions of the purpose of individual
lines of code. If the meaning of a particular code line is especially cryptic, or the signif-
icance of the line needs to be emphasised, a margin comment stating the purpose of that
line may be useful. Please be aware that because margin comments necessarily reside in
the left-hand margin of the finished document, lengthy comments will spill onto many lines
and break up the flow of the code. It is advised that margin comments should not be more
than 10 or so words, with the other types of comments available if a longer description is
required.

The VPTeX tool automatically breaks lines following thevar and const keywords.
Therefore, the declaration following these keywords will be placed on a new line, but any
margin comment for this line will not. It is recommended thatthe programmer takes a new
line after thevar andconst keywords.

110 CHAPTER 9. VIPER USER GUIDE

9.9.3 Use of Ordinary Pascal Comments

The function of normal Pascal comments has been superceded in most cases by VPTeX’s
Special Comments. However, normal comments can still be useful in a number of circum-
stances. The following list details the recommended usage of normal Pascal comments, but
the user is, of course, free to make use of them in any circumstances he wishes.

• Firstly, because normal comments are displayed in typewriter font, any spacing
within these comments set out by the programmer will be preserved in the documen-
tation. This is not the case for special comments which are displayed in a serifed,
variable width font. This property of normal comments makesthem particulary suit-
able for laying out tables and arrays simply, although a special comment can make
use of LaTeX’s ability to typeset tables for a more advanced layout.

• Secondly, normal comments do not break up the flow of a code listing to the same
extent as special comments and so are more useful for offering a running commentary
on code lines, without the space limitations of margin comments.

• If a comment is reasonably short, the programmer may find thata normal comment
will have a better appearance than a special comment. Since special comment are
offset from the program listing a small special comment may constitute a waste of
the space set aside for it.

9.9.4 Levels of Detail within Documentation

Depending on the sort of documentation you want to produce, VPTeX allows the program-
mer to specify the detail of their program documentation. The five levels are:

1. Procedure and Function Headings Only:For documentation of ADT’s it is often
useful to simply provide a list of the functions and procedures by which a program-
mer may make use of the ADT. VPTeX supports this by providing the option to create
documentation consisting of only function and procedure headings. It is advised that
a contents page is not included with this level of detail.

2. Special Comments with Function and Procedure Headings:To add commentary
and descriptions to the above level of detail, option 2 will add any special comments
to the documentation. This allows the programmer to providedescriptions of their
procedures and functions and to add structure to the documentation. A contents page
is advised for this level of detail.

3. Program Bodies and Unit Interfaces:This level of detail includes all comments. It
is again very useful for documenting ADT’s as the interfacesprovided by units will
be documented, but none of the implementation will be included. A contents page is
recommended.

4. Selected Text:Special VPTeX comments commands have been defined to allow the
programmer to select which sections of their program to document. The commands
are (*!begin*) to mark the start of a selected region, and(*!end*) to mark the
end. Any text, including special comments, not contained within these tags will be
ignored by VPTeX if this level of detail is selected. The start and end of the main
program file will always be included in the documentation regardless of selection.
This feature is of particular use when preparing reports regarding particular sections
of code within long projects as only the sections of interestwill be documented.
Again, a contents page is recommended.

5. All Code and Comments:For a completely documented code listing, of particular
use for system maintenance, VPTeX can produce a complete listing of a program or

9.9. WRITING CODE TO GENERATE GOOD VPTEX 111

project’s source code, including special and normal comments. A contents page is
strongly recommended, particularly for long programs or projects.

Note: All levels of detail support margin comments.

9.9.5 Mathematical Translation: Motivation and Guidelines

VPTeX has the option of automatically translating the program code into conventional
mathematical notation. Complex VectorPascal expressionslike:

myVariable:= if (iota 0 div 2 pow (dim-iota 1)) mod 2 = 0 then 1 else -1;

are translated into more tidy and comprehensible mathematical representations like.

myVariable←
{

1 if (ι0
2dim−ι1

) mod 2 = 0

−1 otherwise
;

No action is required to get mathematical translation, so long as it is turned on (VP-TeX Op-
tions), however the benefits of using it increse with the number of mathematical structures
in the document. In particular, the following will benefit from mathematical translation:

• Array indexing/slicing, e.g thisArrayi, j / thatArraylow..high

• Assignments, e.g. myVarable← yourVariable

• Reduction operations on arrays, e.g myVariable← ΣoneDArray

• Conditional updates (as shown above)

• A number of standard mathematical function such as square root

• Mathematical operations, e.g. xy, a
b, i× j

• English names of Greek letters (lower case only), e.g.α, β, γ, δ

Mathematical translation is particularly useful if the documentation is for people without
knowledge of Pascal or a similar language. The only time mathematical translation is not
advisable is when the reader is maintaining the code itself,in which case the need for cross
reference will usually dominate the need for clarity and conventional notation.

9.9.6 LaTeX Packages

All VPTeX documents only include packagesgraphicx andepsfig . These packages are
included to allow the programmer to include graphics and diagrams to help document their
programs. Any LaTeX commands the programmer may wish to use which are specific to
other packages cannot be included in VPTeX special comments.

112 CHAPTER 9. VIPER USER GUIDE

Bibliography

[1] 3L Limited, Parallel C V2.2, Software Product Description, 1995.

[2] Advanced Micro Devices, 3DNow! Technology Manual, 1999.

[3] Aho, A.V., Ganapathi, M, TJiang S.W.K., Code GenerationUsing Tree Matching and
Dynamic Programming, ACM Trans, Programming Languages andSystems 11, no.4,
1989, pp.491-516.

[4] Blelloch, G. E., NESL: A Nested Data-Parallel Language, Carnegie Mellon Univer-
sity, CMU-CS-95-170, Sept 1995.

[5] Burke, Chris, J User Manual, ISI, 1995.

[6] Cattell R. G. G., Automatic derivation of code generators from machine descriptions,
ACM Transactions on Programming Languages and Systems, 2(2), pp. 173-190, April
1980.

[7] Chaitin. G., Elegant Lisp Programs, in The Limits of Mathematics, pp. 29-56,
Springer, 1997.

[8] Cheong, G., and Lam, M., An Optimizer for Multimedia Instruction Sets, 2nd SUIF
Workshop, Stanford University, August 1997.

[9] Cherry, G., W., Pascal Programming Structures, Reston Publishing, Reston, 1980.

[10] Cockshott, Paul, Direct Compilation of High Level Languages for Multi-media
Instruction-sets, Department of Computer Science, University of Glasgow, Nov 2000.

[11] Ewing, A. K., Richardson, H., Simpson, A. D., Kulkarni,R., Writing Data Parallel
Programs with High Performance Fortran, Edinburgh Parallel Computing Centre, Ver
1.3.1.

[12] Susan L. Graham, Table Driven Code Generation, IEEE Computer, Vol 13, No. 8,
August 1980, pp 25..37.

[13] Intel, Intel Architecture Software Developers ManualVolumes 1 and 2, 1999.

[14] Intel, Willamette Processor Software Developer’s Guide, February, 2000.

[15] ISO, Extended Pascal ISO 10206:1990, 1991.

[16] ISO, Pascal, ISO 7185:1990, 1991.

[17] K. E. Iverson, A Programming Language, John Wiley & Sons, Inc., New York (1962),
p. 16.

[18] Iverson, K. E. . Notation as a tool of thought. Communications of the ACM, 23(8),
444-465, 1980.

113

114 BIBLIOGRAPHY

[19] Iverson K. E, A personal View of APL, IBM Systems Journal, Vol 30, No 4, 1991.

[20] Iverson, Kenneth E., J Introduction and Dictionary, Iverson Software Inc. (ISI),
Toronto, Ontario, 1995. 4, pp 347-361, 2000.

[21] Jensen, K., Wirth, N., PASCAL User Manual and Report, Springer 1978.

[22] Johnston, D., C++ Parallel Systems, ECH: Engineering Computing Newsletter, No.
55, Daresbury Laboratory/Rutherford Appleton Laboratory, March 1995,pp 6-7.

[23] Knuth, D., Computers and Typesetting, Addison Wesley,1994.

[24] Krall, A., and Lelait, S., Compilation Techniques for Multimedia Processors, Interna-
tional Journal of Parallel Programming, Vol. 28, No. 4, pp 347-361, 2000.

[25] Lamport, L., LATEXa document preparation system, Addison Wesley, 1994.

[26] Leupers, R., Compiler Optimization for Media Processors, EMMSEC 99/Sweden
1999.

[27] Marx, K., 1976,Capital, Volume I, Harmondsworth: Penguin/New Left Review.

[28] Metcalf, M., and Reid., J., The F Programming Language,OUP, 1996.

[29] Peleg, A., Wilke S., Weiser U., Intel MMX for MultimediaPCs, Comm. ACM, vol
40, no. 1 1997.

[30] Shannon, C., A Mathematical Theory of Communication, The Bell System Technical
Journal, Vol 27, pp 379-423 and 623-656, 1948.

[31] Snyder, L., A Programmer’s Guide to ZPL, MIT Press, Cambridge, Mass, 1999.

[32] Srereman, N., and Govindarajan, G., A Vectorizing Compiler for Multimedia Exten-
sions, International Journal of Parallel Programming, Vol. 28, No. 4, pp 363-400,
2000.

[33] Strachey, C., Fundamental Concepts of Programming Languages, University of Ox-
ford, 1967.

[34] Étienne Gagnon, SABLECC, AN OBJECT-ORIENTED COMPILERFRAME-
WORK, School of Computer Science McGill University, Montreal, March 1998.

[35] Texas Instruments, TMS320C62xx CPU and Instruction Set Reference Guide, 1998.

[36] Wirth, N., Recollections about the development of Pascal, inHistory of Programming
Languages-II, ACM-Press, pp 97-111, 1996.

