Vector Pascal

Paul Cockshott and Ken Renfrew

October 31, 2005






Contents

| Language Reference Manual

Paul Cockshott 9
1 Elements of the language 11
1.1 Alphabet. . . . . . . 11
1.1.1 Extendedalphabet .. ... ... .................. 11
1.2 Reservedwords . . . . . . . . .. e 11
1.3 Comments . . . . . . . . e 12
1.4 Identifiers . . . . . . . . 12
15 Literals . . . . . . e 12
1.5.1 Integernumbers . ... ... ... ... ... 12
152 Realnumbers . . . . . .. ... ... 13
1.5.3 Characterstrings . . . . . . . . .. . ... e 13
2 Declarations 15
21 Constants . . . . . . . 15
21.1 Arrayconstants . . . . . . ... 16
2.1.2 Pre-declaredconstants . . .. ... ... ... ... ....... 6. 1
2.2 Labels . . . . . 16
2.3 TYPES . .o 17
2.3.1 Simpletypes . . . . . ... 17
2.3.2 Structuredtypes . . . . . . ... 20
2.3.3 Dynamictypes . . . . . . . . . 21
2.4 Filetypes . . . . .. 23
25 Variables . . . .. 23
2.5.1 ExternalVariables . . . ... ... ... . ... . .. 24
252 EntireVariables. . . . . ... ... 24
253 IndexedVariables . . . . . .. .. ... 24
254 FieldDesignators . . . . . . . . . . 26
255 ReferencedVariables . . . . . .. ... ... ... . 26
2.6 ProceduresandFunctions . . . .. .. .. .. ... ... .. ... .. 26
3 Algorithms 27
3.1 EXpressions . . . ... 27
3.1.1 Mixedtype eXpressions. . . . . . . . .o 27
3.1.2 Primary expressions . . . . . . .. ... e 27
3.1.3 Unaryexpressions . . . . . . . ... i 28
3.1.4 Operator Reduction . . . . .. .. .. ... ... ... .. ..., 31
3.1.5 Complexconversion . .. .. ... .. ... ... ... 32
3.1.6 Conditional expressions . . . . ... ... ... ... 2 3
3.1.7 Factor . . . . ... 33
3.1.8 Multiplicative expressions . . . . . . . ... 33

3



CONTENTS

3.1.9 Additiveexpressions . . . . . ...
3.1.10 EXPressions . . . . .o oo
3.1.11 Operatoroverloading . . . . ... .. .. ... ... ....... 53
3.2 Statements. . . . . ... e
3.21 Assignment . . ...
3.2.2 Procedurestatement . . . ... ... ... ...
3.2.3 Gotostatement . . . . .. ...
3.24 ExitStatement . . .. .. .. ..
3.25 Compoundstatement . . . .. .. .. ... ... .
3.26 Ifstatement . . . . .. .. ..
3.2.7 Casestatement . .. .. ... .. ... ...
3.2.8 Withstatement . . . . .. .. ... ... ... ...
3.29 Forstatement . . . .. ... ..
3.2.10 Whilestatement . . . .. ... ...
3.2.11 Repeatstatement . . . . ... .. .. ...
3.3 InputOutput . . . . . ..
3.3.1 Input ... 41
3.3.2 0utput . ...
Programs and Units 43
4.1 The export of identifiers fromunits . . . . . . . ... ... .. ... .. 43
4.1.1 The export of procedures from libraries. . . . .. ... ....... 44
4.1.2 The exportof Operators fromunits . . . . ... ........ 44

4.2 Unit parameterisation and generic functions . . . . . . ...... . . ... 44
4.3 Theinvocation of programsandunits . ... ................ 45
4.4 The compilation of programsandunits. . . . ... ............. 45
4.4.1 Linkingtoexternallibraries . ... ... ... ... ... .... 46
4.5 Instantiation of parametricunits . . . . ... ... ... ..o .. 46
451 Directinstantiation . . . . .. .. ... Lo o 6 4
4.5.2 Indirectinstantiation . . . .. ... ... ... ... L. 46
46 TheSystemUnit . . .. ... ... ... ...

Implementation issues 49
5.1 Invokingthecompiler. . . .. .. .. ... ... .. ... .. ... ... 49
5.1.1 Environmentvariable . . . .. .. ... oL
5.1.2 Compileroptions . . . . . ... ...
5.1.3 Dependencies . . . . . . . ...
5.2 Callingconventions . . . . . .. ... ... .. ... .. 51
5.3 Arrayrepresentation . . . . . ... ... 52
5.3.1 Rangechecking. ... ........ ... ... ... ... ...,

Compiler porting tools 55
6.1 Dependencies . . . . . . . .. e e
6.2 CompilerStructure . . . . . . ... 65
6.2.1 Vectorisation . . . . . .. .. ...
6.2.2 Portingstrategy . . . . . . . . ...

6.3 ILCG . . . . e 60

6.4 Supportedtypes . . . . . ...
6.4.1 Dataformats . . ... .. .. ... ...
6.4.2 Typedformats . .. ... ... ... . ... ... ... ...
6.4.3 Reftypes . . . . . . . .

6.5 Supportedoperations . . ... .. ... 61
6.5.1 Typecasts. .. . . .. . . . e

6.5.2 Arithmetic . . . . .. .. . . . ... 61



CONTENTS 5

6.5.3 Memory. . . . . ... 61
6.5.4 Assignment . . ... ... 62
6.5.5 Dereferencing . ... .. ... ... .. .. e 62
6.6 Machinedescription. . . . . . . ... ... L 62
6.6.1 Reqgisters . . . . . . ... e 62
6.6.2 Registersets . . . .. ... e 63
6.6.3 Register Arrays . . . . . . . . e 63
6.6.4 RegisterStacks . . . . .. ... 63
6.6.5 Instructionformats . . ... ... ... ... ... ... 63
6.7 Grammarof ILCG . ... .. .. ... . ... 64
6.8 ILCGgrammar . . . . . . . . e e e 64
6.8.1 Helpers . . . . . . .. 64
6.8.2 Tokens . .. . ... 65
6.8.3 Nonterminalsymbols . ... ... ................. 67
7 Sample Machine Descriptions 71
7.1 Basic386architecture. . . . . . ... ... 71
7.1.1 Declare types to correspond to internal ilcg types ...... . . .. 71
7.1.2 compiler configurationflags . . .. .. ... ... ........ 17
7.1.3 Registerdeclarations . . . . ... ... ... L 17
7.1.4 Reqgistersets . . ... ... .. e 73
7.1.5 Operator definition . . . . . . ... ... ... L 74
7.1.6 Dataformats . . ... .. .. ... ... 74
7.1.7 Choice of effectiveaddress . . . . .. ... ........... 176
7.1.8 Formatsforallmemoryaddresses . . . .. ... ........ 76.
7.1.9 Instruction patternsforthe386 . . . . . .. .. ... ... ... 77
7.2 The MMXinstruction-set . . . . . . . . . . . ... ... ... 86
7.2.1 MMXregisters and instructions . . . . ... ... ... L. 86
7.3 Thed86CPU . . . . . . . . . . e 90
7.4 Pentium . .. .. 91
7.4.1 Concrete representation . . . . ... .. ... L 19
I VIPER
Ken Renfrew 93
8 Introduction to VIPER 95
8.1 Rationale . ... ... . . ... 95
8.1.1 The Literate ProgrammingTool. . . . . . ... ... ... .... 95
8.1.2 The Mathematical Syntax Converter.. . . . .. ... ... ..... 96
8.2 ASysStemOVEIVIEW . . . . . . . o o 96
8.3 WhichVIPERtodownload? . . . ... ... ... .. .. .. ....... 96
8.4 Systemdependencies . . . . . . ... ..o 7. 9
85 InstallingFiles . .. .. ... ... ... 79
8.6 Settingupthecompiler . . . . ... ... ... ... .. L. 98
9 VIPER User Guide 99
9.1 SettingUptheSystem . ... .. ... ... .. ... .. .. ... ... 99
9.1.1 Setting System Dependencies . . . .. .. .. ... ... ... Q0.1
9.1.2 PersonalSet-up . . . .. ... ... .. ... 100
9.1.3 Dynamic Compiler Options . . . . . ... ... ... ....... 101
9.1.4 VIPEROptionButtons . . . . .. ... .. ... ... ....... 103
9.2 MovingVIPER . . . . . . .. 103



9.3

9.4

9.5
9.6

9.7
9.8
9.9

CONTENTS

Programmingwith VIPER . . . . . . . . . . ... ... ... ... 310
9.3.1 SingleFiles . . . ... .. ... . ... 103
9.3.2 Projects . . . . . . ... e 104
9.3.3 Embedding®IX in Vector Pascal . . . . . ... 105
Compiling FilesinVIPER . . . . . ... ... ... .. ... .. ..., 03
9.4.1 CompilingSingleFiles . . . . ... ... ... ... ... ... 510
9.4.2 CompilingProjects . . . . . . . ... ... ... 106
Running ProgramsinVIPER . . . . . . . ... ... ... ........ 061
Making VPEX . . . . . . 107
9.6.1 VPEXOptions . . . ... .. .. ... ... 107
9.6.2 VPMath. .. ... ... .. ... .. .. ... 107
BTEXInVIPER . . . . . . o 108
HTMLIN VIPER . . . . . . . . e e 108
Writing Code to Generate GOod MEXT . . . . . . . . .. .. ... .... 108
9.9.1 UseofSpecialComments . .. ... ................ 108
9.9.2 UseofMarginComments . . ... ................. 109
9.9.3 Use of Ordinary PascalComments . . . . . .. ... ...... 101
9.9.4 Levels of Detail within Documentation . . . ... .. ... .. 110
9.9.5 Mathematical Translation: Motivation and Guidedne . . . . . . 111

9.9.6 LaTeXPackages .. .. .. ... ... .. ... .. .. .. ..., 111



Introduction

Vector Pascal is a dialect of Pascal designed to make effiaenof the multi-media in-
structionsets of recent procesors. It supports data paaerations and saturated arith-
metic. This manual describes the Vector Pascal language.

A number of widely used contemporary processors have ictitnset extensions for
improved performance in multi-media applications. The & allow operations to pro-
ceed on multiple pixels each clock cycle. Such instructtsmbave been incorporated both
in specialist DSP chips like the Texas C62xx[35] and in gahpurpose CPU chips like
the Intel IA32[14] or the AMD K6 [2].

These instructionset extensions are typically based orsthgle Instruction-stream
Multiple Data-stream (SIMD) model in which a single insttioo causes the same math-
ematical operation to be carried out on several operangsios of operands at the same
time. The level or parallelism supported ranges from 2 flmgpioint operations at a time on
the AMD K6 architecture to 16 byte operations at a time ontitel P4 architecture. Whilst
processor architectures are moving towards greater le¥glarallelism, the most widely
used programming languages like C, Java and Delphi ardgtascaround a model of com-
putation in which operations take place on a single valuetahe. This was appropriate
when processors worked this way, but has become an impetlimprogrammers seeking
to make use of the performance offered by multi-media isibnsets. The introduction of
SIMD instruction sets[13][29] to Personal Computers ptigdly provides substantial per-
formance increases, but the ability of most programmeratodss this performance is held
back by two factors. The first is the limited availability afropilers that make effective use
of these instructionsets in a machine independent manhérr@mains the case despite the
research efforts to develop compilers for multi-mediarindionsets[8][26][24][32]. The
second is the fact that most popular programming languages elesigned on the word at
a time model of the classic von Neumann computer.

Vector Pascal aims to provide an efficient and concise rmotdtir programmers using
Multi-Media enhanced CPUs. In doing so it borrows concepiskpressing data paral-
lelism that have a long history, dating back to Iverson’sknam APL in the early '60s[17].

Define a vector of typ&@ as having typd []. Then if we have a binary operator X:(T ,
T)— T, inlanguages derived from APL we automatically have anaioeiX:(T[] ,T[]) —

T[] . Thusiif x,y are arrays of integets= x+ y is the array of integers whekg= x +V;.

The basic concept is simple, there are complications to dothe semantics of oper-
ations between arrays of different lengths and differemtagtisions, but Iverson provides a
consistent treatment of these. The most recent languagedaoilt round this model are J,
an interpretive language[19][5][20], and F[28] a modeedig-ortran. In principle though
any language with array types can be extended in a similar agrson’s approach to
data parallelism is machine independent. It can be impléedensing scalar instructions
or using the SIMD model. The only difference is speed.

Vector Pascal incorporates Iverson’s approach to datdl@igswm. Its aim is to provide
a notation that allows the natural and elegant expressidatafparallel algorithms within a
base language that is already familiar to a considerablg bbprogrammers and combine
this with modern compilation techniques.

By an elegant algorithm | mean one which is expressed as sglgas possible. El-

7



8 CONTENTS

egance is a goal that one approaches asymptotically, agpngpbut never attaining[7].
APL and J allow the construction of very elegant programs,aba cost. An inevitable
consequence of elegance is the loss of redundancy. APLaragare as concise, or even
more concise than conventional mathematical notatiordh8]use a special character-set.
This makes them hard for the uninitiated to understand. ehmgits to remedy this by
restricting itself to the ASCII character-set, but stilbks dauntingly unfamiliar to pro-
grammers brought up on more conventional languages. Bothakid J are interpretive
which makes them ill suited to many of the applications forahlSIMD speed is required.
The aim of Vector Pascal is to provide the conceptual gaingeybon’s notation within a
framework familiar to imperative programmers.

Pascal[21]was chosen as a base language over the altemati€ and Java. C was
rejected because notations likey for x andy declared ast x[4] , y[4] , already have
the meaning of adding the addresses of the arrays togethexr.whs rejected because of
the difficulty of efficiently transmitting data parallel ogions via its intermediate code to
a just in time code generator.

Iverson’s approach to data parallelism is machine independt can be implemented
using scalar instructions or using the SIMD model. The oriffiecence is speed. Vector
Pascal incorporates lverson’s approach to data paratielis



Part |

Language Reference Manual

Paul Cockshott






Chapter 1

Elements of the language

1.1 Alphabet

The Vector Pascal compiler accepts files in the UTF-8 engpdinUnicode as source.
Since ASCII is a subset of this, ASCII files are valid input.

Vector Pascal programs are made up of letter, digits andamaenbols. The letters
digits and special symbols are draw either from a base ctearset or from an extended
character set. The base character set is drawn from ASCltesidcts the letters to be
from the Latin alphabet. The extended character set alletters from other alphabets.

The special symbols used in the base alphabet are showredi thb

1.1.1 Extended alphabet
The extended alphabet is described in Using Unicode withovdtascal.

1.2 Reserved words

The reserved words are
ABS, ADDR, AND, ARRAY,
BEGIN, BYTE2PIXEL,
CASE, CAST, CDECL, CHR, CONST, COS,
DIV, DO, DOWNTO,
END, ELSE, EXIT, EXTERNAL,

Table 1.1: Special symbols

+ (
- )
* = [
[ ] <> ]
= < {
<=1}
1 >= A
; >
+ | @ |
- $ |

11



12 CHAPTER 1. ELEMENTS OF THE LANGUAGE

FALSE, FILE, FOR, FUNCTION,

GOTO,

IF, IMPLEMENTATION, IN, INTERFACE, IOTA,

LABEL, LIBRARY, LN,

MAX, MIN, MOD,

NAME, NDX, NOT,

OF, OR, ORD, OTHERWISE,

PACKED, PERM, PIXEL2BYTE, POW, PRED,
PROCEDURE, PROGRAM, PROTECTED |,

RDU, RECORD, REPEAT, ROUND,

SET, SHL, SHR, SIN, SIZEOF, STRING, SQRT, SUCC,

TAN, THEN, TO, TRANS, TRUE, TYPE,

VAR,

WITH, WHILE, UNIT, UNTIL, USES

Reserved words may be written in either lower case or upps ledters, or any com-
bination of the two.

1.3 Comments

The comment construct

{ <any sequence of characters not containing “} >

may be inserted between any two identifiers, special symimoisibers or reserved
words without altering the semantics or syntactic corressrof the program. The brack-
eting pair(* *) may substitute fof } . Where a comment starts wifhit continues until
the next} . Where it starts witlf* it must be terminated b¥) 1.

1.4 Identifiers

Identifiers are used to name values, storage locationsrgoreg program modules, types,
procedures and functions. An identifier starts with a Idtilowed by zero or more letters,
digits or the special symbol Case is not significant in identifiers. 1ISO Pascal allows the
Latin letters A-Z to be used in identifiers. Vector Pascakaxs this by allowing symbols
from the Greek, Cyrillic, Katakana and Hiragana, or CJK elatar sets

1.5 Literals

1.5.1 Integer numbers

Integer numbers are formed of a sequence of decimal digiis 1t, 23, 9976 etc, or as
hexadecimal numbers, or as numbers of any base between BaAd8xadecimal number
takes the form of & followed by a sequence of hexadecimal digits thdts $3ff, $5A
The letters in a hexadecimal number may be upper or loweraraserawn from the range
a.f orA.F

A based integer is written with the base first followed by a #relcter and then a
sequence of letters or digits. Th2#1101 is a binary numbe8#67 an octal number and
20#7i a base 20 number.

The default precision for integers is 32 Bits

INote this differs from 1SO Pascal which allows a commenttistgiwith { to terminate with *) and vice versa.

2The notation used for grammar definition is a tabularised BERch boxed table defines a production, with
the production name in the left column. Each line in the righitmn is an alternative for the production. The
metasymbol + indicates one or more repetitions of what iniately preceeds it. The Kleene star * is used for
zero or more repetitions. Terminal symbols are in singleegioSequences in brackets [ ] are optional.



1.5. LITERALS 13

Table 1.2: The hexadecimal digits of Vector Pascal.

Value 0|1{2|3|4|5|6|7|8|9|10|11|12|13| 14| 15
Notaton1|{0|1|2|3|4|5|6|7|8|9|A| B | C|D]|E
Notation 2 a|lb|c|d|e]|f

| <digit sequence3 <digit> + |

| <decimal integer> <digit sequence3}

| <hexinteger>| ‘$'<hexdigit>+ |

| <based integer} <digit sequence>'#<alphanumeric3+

<unsigned integerxs <decimal integer>
<hex integer>
<based integer>

1.5.2 Real numbers

Real numbers are supported in floating point notation, 1Ars, 9.99e5 , 38E3, 3.6e-4

are all valid denotations for real numbers. The defaultigiec for real numbers is also
32 bit, though intermediate calculations may use highetipien. The choice of 32 bits as
the default precision is influenced by the fact that 32 bittifagpoint vector operations are
well supported in multi-media instructions.

<exp>| ‘e

=

| <scale factor>] [<sign>] <unsigned integer}

<sign>| ‘-

<unsigned real> <decimal integer> ‘. <digit sequence>
<decimal integer>‘ " <digit sequence> <exp><scale faetpr
<decimal integer><exp> <scale factor>

Fixed point numbers

In Vector Pascal pixels are represented as signed fixed fsattions in the range -1.0 to
1.0. Within this range, fixed point literals have the samdagtic form as real numbers.

1.5.3 Character strings

Sequences of characters enclosed by quotes are callediditéngs. Literal strings consist-
ing of a single character are constants of the standard tyge K the string is to contain a
guote character this quote character must be written twice.



14 CHAPTER 1. ELEMENTS OF THE LANGUAGE

‘A’ X' 'hello’ "John”s house’

are all valid literal strings. The allowable charactersitaral strings are any of the
Unicode characters above u0020. The character stringsheusiput to the compiler in
UTF-8 format.



Chapter 2

Declarations

Vector Pascal is a language supporting nested declaratimexis. A declaration context
is either a program context, and unit interface or implemgon context, or a procedure
or function context. A resolution context determines thenieg of an identifier. Within a
resolution context, identifiers can be declared to standdostants, types, variables, pro-
cedures or functions. When an identifier is used, the meégaken on by the identifier is
that given in the closest containing resolution contextsdRgtion contexts are any decla-
ration context or avith statement context. The ordering of these contexts wheiviego
an identifier is:

1. The declaration context identified by awith statements which nest the current
occurrence of the identifier. Theséh statement contexts are searched from the
innermost to the outermost.

2. The declaration context of the currently nested proaedaclarations. These proce-
dure contexts are searched from the innermost to the ousérmo

3. The declaration context of the current unit or program.

4. The interface declaration contexts of the units mentonghe use list of the current
unit or program. These contexts are searched from the riggttomit mentioned in
the use list to the leftmost identifier in the use list.

5. The interface declaration context of the System unit.

6. The pre-declared identifiers of the language.

2.1 Constants

A constant definition introduces an identifier as a synonynafoonstant.

<constant declaration® <identifier>=<expression>
<identifier>":'<type>'="<typed constant>

Constants can be simple constants or typed constants. Aesgmpstant must be a con-
stant expression whose value is known at compile time. HsSicts it to expressions for
which all component identifiers are other constants, anevfoch the permitted operators
are given in table2.1 . This restricts simple constants toflsealar or string types.

Typed constants provide the program with initialised Jalea which may hold array

types.

<typed constanty <expression>
<array constant>

15



16 CHAPTER 2. DECLARATIONS

Table 2.1: The operators permitted in Vector Pascal cohetqressions.
[+][-]*]/][div] mod]shr]|shi]|and]| or]

2.1.1 Array constants

Array constants are comma separated lists of constant &iprs enclosed by brackets.
Thus

trarray[1..3] of real =(1.0,1.0,2.0);

is a valid array constant declaration, as is:

t2:array[1..2,1..3] of real=((1.0,2.0,4.0),(1.0,3.0,9 .0));

The array constant must structurally match the type givaheddentifier. That is to
say it must match with respect to number of dimensions, ken§tach dimension, and
type of the array elements.

| <array constant>| '(’ <typed constant> [,<typed constant>]* ")’

2.1.2 Pre-declared constants

maxint The largest supported integer value.

pi A real numbered approximation o

maxchar ~ The highest character in the character set.

maxstring  The maximum number of characters allowed in a string.

maxreal The highest representable real.

minreal The smallest representable positive real number.
epsreal The smallest real number which when added to 1.0 yields a\dikiinguish-
able from 1.0.

maxdouble The highest representable double precision real number.
mindouble  The smallest representable positive double precisiomuaaber.
complexzero A complex number with zero real and imaginary parts.

complexone A complex number with real part 1 and imaginary part 0.

2.2 Labels

Labels are written as digit sequences. Labels must be @edisfore they are used. They
can be used to label the start of a statement and can be tlieadiest of agoto statement.
A goto statement must have as its destination a label declarethwhid current innermost
declaration context. A statement can be prefixed by a laliielded by a colon.

Example

label 99;

begin read(x); if x>9 goto 99; write(x*2);99: end;



2.3. TYPES 17

Table 2.2: Categorisation of the standard types.
| type | category |

real floating point
double | floating point
byte integral
pixel fixed point
shortint integral
word integral
integer integral
cardinal integral
boolean scalar
char scalar

2.3 Types

A type declaration determines the set of values that exjpressf this type may assume
and associates with this set an identifier.

<type>| <simple type>
<structured type>
<pointer type>

[ <type definition>] <identifier>'="<type> |

2.3.1 Simple types

Simple types are either scalar, standard, subrange or dioread types.

<simple type> <scalar type>
<integral type>
<subrange type>

<dimensioned type>

<floating point type>

Scalar types

A scalar type defines an ordered set of identifier by listirgéhidentifiers. The declaration
takes the form of a comma separated list of identifiers eedliby brackets. The identifiers
in the list are declared simultaneously with the declaredbsdype to be constants of this
declared scalar type. Thus

colour = (red,green,blue);
day=(monday,tuesday,wednesday,thursday,
friday,saturday,sunday);

are valid scalar type declarations.

Standard types

The following types are provided as standard in Vector Hasca

integer The numbers are in the range -maxint to +maxint.



18 CHAPTER 2. DECLARATIONS

real These are a subset of the reals constrained by the IEEE 32iint point
format.
double These are a subset of the real numbers constrained by theGEBEfloating

point format.

pixel These are represented as fixed point binary fractions iretiger-1.0 to 1.0.
boolean These take on the valufslse,true) which are ordered such thiate<false
char These include the characters frahm(0) to charmax . All the allowed char-

acters for string literals are in the type char, but the otteraset may include
other characters whose printable form is country specific.

pchar Defined ag'char .

byte These take on the positive integers between 0 and 255.
shortint These take on the signed values between -128 and 127.
word These take on the positive integers from 0 to 65535.

cardinal These take on the positive integers form 0 to 4292967295 the most that
can be represented in a 32 bit unsigned number.

longint A 32 bit integer, retained for compatibility with Turbo Patc
int64 A 64 bit integer.

complex A complex number with the real and imaginary parts held toi8ptecision.

Subrange types

A type may be declared as a subrange of another scalar oemigae by indicating the
largest and smallest value in the subrange. These valugdmesnstants known at com-
pile time.

| <subrange type3} <constant>'.. <constant}

Examples: 1..10, 'a’..f’, monday..thursday.

Pixels

The conceptual modeadf pixels in Vector Pascal is that they are real numbers indinge
—1.0..1.0. As a signed representation it lends itself to subtractisan unbiased repre-
sentation, it makes the adjustment of contrast easier.>@&mple, one can reduce contrast
50% simply by multiplying an image by 05 Assignment to pixel variables in Vector
Pascal is defined to be saturating - real numbers outsidettgee+1..1 are clipped to it.
The multiplications involved in convolution operationd faaturally into place.

Theimplementation modedf pixels used in Vector Pascal is of 8 bit signed integers
treated as fixed point binary fractions. All the conversinasessary to preserve the mono-
tonicity of addition, the range of multiplication etc, arelegated to the code generator
which, where possible, will implement the semantics usifigient, saturated multi-media
arithmetic instructions.

1when pixels are represented as integers in the range 0aZ&B) contrast reduction has to be expressed as
((p—128 +2)+128.



2.3. TYPES 19

Dimensioned types

These provide a means by which floating point types can beajsed to represent dimen-
sioned numbers as is required in physics calculations. ¥amgple:

kms =(mass,distance,time);

meter=real of distance;

kilo=real of mass;

second=real of time;

newton=real of mass * distance * time POW -2

meterpersecond = real of distance *time POW -1;

The grammar is given by:

| <dimensioned type3 <real type> <dimension >["*’ <dimension>]}

<real type>| 'real
'double’

| <dimension>] <identifier> [POW’ [<sign>] <unsigned integer>]

The identifier must be a member of a scalar type, and thatrsiygla is then referred
to as the basis space of the dimensioned type. The identificte basis space are re-
ferred to as the dimensions of the dimensioned type. Aswatigith each dimension of
a dimensioned type there is an integer number referred toeggdwer of that dimension.
This is either introduced explicitly at type declaratiandi, or determined implicitly for the
dimensional type of expressions.

Avalue of a dimensioned type is a dimensioned value. Leftlofa dimensioned type
t be the power to which the dimensiahof typet is raised. Thus fot =newton in the
example above, amdi=time, logyt = -2

If x andy are values of dimensioned typgandtyrespectively, then the following op-
erators are only permissibletjf =t

|+|-|<|>|<>|:|<:|>:|

For + and -, the dimensional type of the result is the samea®ftthe arguments. The
operations

are permitted if the typegandty, share the same basis space, or if the basis space of

one of the types is a subrange of the basis space of the other.
The operatioPOWSs permitted between dimensioned types and integers.

Dimension deduction rules

1. If x=yxzforx:ty,y:t2,z: t3 with basis spac8 then

Vdelogyts = logyta +logyts

2. Ifx=y/zforx:t1,y:tp,z: t3 with basis spac8 then

Vdeloggts = logytz —logyts

3. Ifx=yPOWzfor x:ty,y:t2,z: integerwith basis space fdp, B then

Vdeslogyts =logyts x z



20 CHAPTER 2. DECLARATIONS

2.3.2 Structured types
Static Array types

An array type is a structure consisting of a fixed number aielets all of which are the
same type. The type of the elements is referred to as the ptagpe. The elements of an
array value are indicated by bracketed indexing expressibime definition of an array type
simultaneously defines the permitted type of indexing esgiom and the element type.

The index type of a static array must be a scalar or subramge his implies that the
bounds of a static array are known at compile time.

| <array type>| ‘array’ [ <index type>[,<index type>]* T 'of’ <type> |

<index type>| <subrange type>
<scalar type>
<integral type>

Examples

array[colour] of boolean;

array[1..100] of integer;

array[1..2,4..6] of byte;

array[1..2] of array[4..6] of byte;

The notationp,c] in an array declaration is shorthand for the notatiojof array [
¢ ]. The number of dimensions of an array type is referred tésasink. Scalar types have
rank 0.

String types

A string type denotes the set of all sequences of characpets some finite length and
must have the syntactic form:

<string-type>| 'string[’ <integer constant>"]’
'string’
'string(’ <ingeger constant>’)’

the integer constant indicates the maximum number of ctemsathat may be held
in the string type. The maximum number of characters thatteamheld in any string
is indicated by the pre-declared constamistring . The typestring is shorthand for
string[maxstring]

Record types

A record type defines a set of similar data structures. Eaahbee of this set, a record
instance, is a Cartesian product of number of componeriieldsspecified in the record
type definition. Each field has an identifier and a type. Theead these identifiers is the
record itself.

A record type may have as a final componentagiant part The variant part, if a
variant part exists, is a union of several variants, eachto€lwmay itself be a Cartesian
product of a set of fields. If a variant part exists there mayakiag field whose value
indicates which variant is assumed by the record instance.

All field identifiers even if they occur within different vamt parts, must be unique
within the record type.



2.3. TYPES 21

| <record type>| 'record’ <field list>"end’ |

<field list> <fixed part>
<fixed part>’;’ <variant part>
<variant part>

| <fixed part>] <record section>[’;’ <record section.]f

<record section> <identifier>[', <identifier>]* .’ <type>
<empty>

<variant part>| 'case’ [<tag field> "] <type identifier> 'of <variant>[";<variant>]* |

<variant>| <constant> [, <constant>]*:" (' <field list>")’
<empty>

Set types

A set type defines the range of values which is the power-stt bése type. The base type
must be an ordered type, that is a type on which the operatiprsand > are defineél
Thus sets may be declared whose base types are charactalsmyordinals, or strings.
Any user defined type on which the comparison operators hega befined can also be
the base type of a set.

| <settype>| 'set’ 'of <base type>|

2.3.3 Dynamic types

Variables declared within the program are accessed byittesitifier. These variables exist
throughout the existence of the scope within which they artaded, be this unit, program
or procedure. These variables are assigned storage losatioose addresses, either ab-
solute or relative to some register, can be determined apidertime. Such locations a
referred to as stafic Storage locations may also be allocated dynamically. Gavgypet ,
the type of a pointer to an instance of tytpis t .

A pointer of type can be initialised to point to a new store location of type ubg
of the built in procedureew. Thus ifp:At ,

new(p);

cause9 to point at a store location of type

Pointers to dynamic arrays

The types pointed to by pointer types can be any of the typegiamed so far, that is to
say, any of the types allowed for static variables. In additiowever, pointer types can

21SO Pascal requires the base type to be a scalar type, a Erarge, integer type or a subrange thereof.
When the base type is one of these, Vector Pascal implentenget using bitmaps. When the type is other than
these, balanced binary trees are used. It is strongly revdedethat use be made of Boehm garbage collector (see
section 5.1.2) if non-bitmapped sets are used in a program.

3The Pascal concept of static variables should not be equatedhe notion of static variables in some other
languages such as C or Java. In Pascal a variable is conbistate if its offset either relative to the stack base
or relative to the start of the global segment can be detenét compile/link time. In C a variable is static only
if its location relative to the start of the global segmerirswn at compile time.



22 CHAPTER 2. DECLARATIONS

be declared to point at dynamic arrays. A dynamic array isreayavhose bounds are
determined at run time.

Pascal 90[15] introduced the notion of schematic or pararised types as a means of
creating dynamic arrays. Thus wheré some integral or ordinal type one can write

type z(ab:r)=array[a..b] of t;

If p:Az |, then

new(p,n,m)

wherenm:r initialisesp to point to an array of bounds.m . The bounds of the array
can then be accessed@s, p*b . Inthis case, b are the formal parameters of the

array type. Vector Pascal currently only allows paramséetitypes to be allocated on the
heap vianew. The extended form of the procedumesv must be passed an actual parameter
for each formal parameter in the array type.

Dynamic arrays

Vector Pascal also allows the use of Delphi style declamatior dynamic arrays. Thus one
can declare:

type vector = array of real;
matrix = array of array of real;

The size of such arrays has to be explicitly initialised attime by a call to the library
proceduresetlength . Thus one might have:

function readtotal:real;

var len:integer;
v.vector;

begin

readin(len);

setlength(v,len);

readin(v);

readtotal = \+ v;

end;

The functiorreadtotal ~ reads the number of elements in a vector from the standaud.inp
It then callssetlength  to initialise the vector length. Next it reads in the vectada
computes its total using the reduction operater.

In the example, the variable denotes an array of reals not a pointer to an array of
reals. However, since the array size is not known at comipile getlength  will allocate
space for the array on the heap not in the local stack frame uBe ofsetlength  is
thus restricted to programs which have been compiled wighglirbage collection flag
enabled (see section 5.1.2). The procedwetiength must be passed a parameter for
each dimension of the dynamic array. The bounds of the arfagmed by
setlength(a,i,},k)
would then bé..i-1, 0.j-1, 0.k-1

Low and High

The build in functiondsow andhigh return the lower and upper bounds of an array respec-
tively. They work with both static and dynamic arrays. Caesithe following examples.

program arrays;
type z(a,biinteger)=array[a..b] of real;
vec = array of real;
line= array [1..80] of char;
matrix = array of array of real;



2.4. FILETYPES 23

var i"z; vivec; lline; m:matrix;
begin
setlength(v,10);setlength(m,5,4);
new(i,11,13);

writeln(low(v), high(v));
writeln(low(m), high(m));
writeln(low(m[0]),high(m[0]));
writeln(low(line),high(line));
writeln(low(i*),high(i");

end.

0
0

would print

PRk ooo
o'
w3 wb©

[EY

2.4 File types

A type may be declared to be a file of a type. This form of definiis kept only for back-
ward compatibility. All file types are treated as being eqlewt. A file type correspondsto
a handle to an operating system file. A file variable must becated with the operating
system file by using the procedurssign, rewrite, append , andreset provided by
the system unit. A pre-declared file tyat exists.

Text files are assumed to be in Unicode UTF-8 format. Coneessare performed
between the internal representation of characters and&dirinput/output from/to a text
file.

2.5 Variables

Variable declarations consist of a list of identifiers démgpthe new variables, followed by
their types.

| <variable declaration} <identifier> [, <identifier>]*":" <type><extmod>|

Variables are abstractions over values. They can be eittmglesidentifiers, compo-
nents or ranges of components of arrays, fields of record=ferenced dynamic variables.

<variable> <identifier>
<indexed variable>
<indexed range>
<field designator>
<referenced variables

\4

Examples

x,y-real;

i:integer;

point:*real;

dataset:array[1..n]of integer;
twoDdata:array[1..n,4..7] of real;



24 CHAPTER 2. DECLARATIONS

2.5.1 External Variables

A variable may be declared to be external by appending trerxtmodifier.

| <extmod>| ’;" 'external’ 'name’ <stringlit> |

This indicates that the variable is declared in a hon Vec&scBl external library. The
name by which the variable is known in the external librargpecified in a string literal.

Example

countinteger; external name ’'_count’;

2.5.2 Entire Variables

An entire variable is denoted by its identifier. Examplggoint

2.5.3 Indexed Variables

A component of am dimensional array variable is denoted by the variable fedid byn
index expressions in brackets.

| <indexed variable> <variable>[' <expression>['/<expression>]*T]

The type of the indexing expression must conform to the irtgipe of the array vari-
able. The type of the indexed variable is the component typieecarray.

Examples

twoDdata[2,6]

dataset[i]

Given the declaration

a=array[p] of q

then the elements of arrays of typewill have typeq and will be identified by indices
of typep thus:

bli]

whereip , ba .

Given the declaration

z = string[x]

for some integer x<maxstring , then the characters within strings of typewill be
identified by indices in the randex, thus:

ylil

wherey:z , j:1.X

Indexed Ranges

A range of components of an array variable are denoted byatiable followed by a range
expression in brackets.

| <indexed range> <variable> ' <range expression>['; <range expressipni} |

| <range expression} <expression>’..’ <expressionp

The expressions within the range expression must confortheandex type of the
array variable. The type of a range expressifj wherea: array[p..q] of t is
array[0..j-i] of t.

Examples:

dataset]i..i+2]:=blank;

twoDdata[2..3,5..6]:=twoDdata[4..5,11..12]*0.5;



2.5. VARIABLES 25

Subranges may be passed in as actual parameters to precadaorge corresponding
formal parameters are declared as variables of a scheyagiciience given the following
declarations:

type image(miny,maxy,minx,maxx:integer)=array[miny.. maxy,minx..maxx]
of byte;

procedure invert(var im:image);begin im:=255-im; end;

var screen:array[0..319,0..199] of byte;

then the following statement would be valid:

invert(screen[40..60,20..30]);

Indexing arrays with arrays

If an array variable occurs on the right hand side of an ass@y statement, there is a fur-
ther form of indexing possible. An array may be indexed bytheoarray. If:array|[t0]

of t1 andy:array[tl] of t2 , theny[x] denotes the virtual array of typeeray|t0]

of 2 such thay[x][il=y[X[i]] . This construct is useful for performing permutations.
To fully understand the following example refer to secti@nk.3,3.2.1.

Example Given the declarations
const perm:array[0..3] of integer=(3,1,2,0);
var ma,m0:array[0..3] of integer;
then the statements
m0:= (iota 0)+1;
write(m0=");for j;=0 to 3 do write(mOJ[j]);writeln;
ma:=mO0[perm];
write(perm=");for j:=0 to 3 do write(perm]j]);writeln;
writeln('ma:=mO[perm]’);for j:=0 to 3 do write(malj]);wr iteln;
would produce the output

mo=1234
perm= 3120
ma:=m0[perm]
4231

This basic method can also be applied to multi-dimensiomayaConsider the follow-
ing example of an image warp:

type pos = 0..255;

image = array[pos,pos] of pixel;

warper = array[pos,pos,0..1] of pos;
var iml ,im2 :image;

warp :warper;

begin
getbackwardswarp(warp);

im2 := iml [ warp ];

The procedurgetbackwardswarp determines for each pixel position y in an image
the position in the source image from which it is to be obtdinkfter the assignment we
have the postcondition

im2[x,y] = im1[warp[x,y,0],warp[x,y, 1]]Vx,y € pos



26 CHAPTER 2. DECLARATIONS

2.5.4 Field Designators

A component of an instance of a record type, or the parameftarsinstance of a schematic
type are denoted by the record or schematic type instanogvied by the field or parameter
name.

| <field designator>] <variable>' <identifier>|

2.5.5 Referenced Variables

If p:At , thenp® denotes the dynamic variable of typeeferenced by.

| <referenced variable> <variable> """ |

2.6 Procedures and Functions

Procedure and function declarations allow algorithms tadeatified by name and have
arguments associated with them so that they may be invokgutdnedure statements or
function calls.

| <procedure declaration} <procedure heading>';'[<proc tail>]

| <proc tail> | 'forward’ | must be followed by definition of procedure bo¢|y

‘external’ imports a non Pascal procedure
<block> procedure implemented here

| <param|ist>| '('<formal parameter section>[";'<formal parameter seat-]*')’ |

<procedure heading® ’'procedure’ <identifier> [<paramlist>]
‘function’<identifier> [<paramlist>]".’<type>

| <formal parameter sectionp['var']<identifier>[", <identifier>]':'<type> |

The parameters declared in the procedure heading are ttaétscope of the pro-
cedure. The parameters in the procedure heading are teomadlfparameters. If the
identifiers in a formal parameter section are preceded bwdndvar , then the formal pa-
rameters are termed variable parameters. The bloick procedure or function constitutes
a scope local to its executable compound statement. Witlfiimetion declaration there
must be at least one statement assigning a value to the darickentifier. This assign-
ment determines the result of a function, but assignmeihisadentifier does not cause an
immediate return from the function.

Function return values can be scalars, pointers, recdrdgys or sets. Arrays may not
be returned from a function.

Examples The function sba is the mirror image of the abs function.
function sba(i:integer):integer;
begin if i>0 then sba:=-i else sha:=i end,
type stack:array[0..100] of integer;
procedure push(var s:stack;i:integer);
begin s[s[0]]:=i;s[0]:=s[0]+1; end;

4see section 4.



Chapter 3

Algorithms

3.1 Expressions

An expression is a rule for computing a value by the appleceadif operators and functions
to other values. These operators camimnadic- taking a single argument, atyadic-
taking two arguments.

3.1.1 Mixed type expressions

The arithmetic operators are defined over the base typegeingad real. If a dyadic op-
erator that can take either real or integer arguments iseaptd arguments one of which
is an integer and the other a real, the integer argumentisrfigicitly converted to a real
before the operator is applied. Similarly, if a dyadic operas applied to two integral
numbers of different precision, the number of lower prexids initially converted to the
higher precisions, and the result is of the higher precisidigher precision of typesu
is defined such that the type with the greater precision iotieewhich can represent the
largest range of numbers. Hence reals are taken to be higbasion than longints even
though the number of significant bits in a real may be less itharlongint.

When performing mixed type arithmetic between pixels anutlaer numeric data type,
the values of both types are converted to reals before tttenaatic is performed. If the
result of such a mixed type expression is subsequently rasgitp a pixel variable, all
values greater than 1.0 are mapped to 1.0 and all values b&l6wre mapped to -1.0.

3.1.2 Primary expressions

<primary expressionx ’'(’ <expression>’)’
<literal string>
‘true’

'false’
<unsigned integer>
<unsigned real>
<variable>
<constant id>
<function call>
<set construction>

The most primitive expressions are instances of the Igedafined in the language:
literal strings, boolean literals, literal reals and liteintegers. 'Salernotjue , 12, $ea8f,
1.2e9 are all primary expressions. The next level of abstradcs provided by symbolic

27



28 CHAPTER 3. ALGORITHMS

identifiers for values.X, left , a.max, pMnext , z[1] , image[4..200,100..150] are
all primary expressions provided that the identifiers hagerbdeclared as variables or
constants.

An expression surrounded by brackets is also a primary expression. Thuseiis an
expressionsoige).

| <function call>| <function id>['(’ <expression> [,<expression>]*")']

<element> <expression>
<range expression®

Let e be an expression of typge and if f is an identifier of typdunction( t; ): to,
thenf( e) is a primary expression of tyge. A function which takes no parameters is
invoked without following its identifier by brackets. It wibe an error if any of the actual
parameters supplied to a function are incompatible wittidh@al parameters declared for
the function.

| <set constructiony ' [<element>[,<element>]*] T

Finally a primary expression may be a set construction. Aaes$truction is written as a
sequence of zero or more elements enclosed in bracketnd separated by commas. The
elements themselves are either expressions evaluatiiiggle salues or range expressions
denoting a sequence of consecutive values. The type of asstraction is deduced by
the compiler from the context in which it occurs. A set couastion occurring on the right
hand side of an assignment inherits the type of the variabehich it is being assigned.
The following are all valid set constructions:

0, [1.9], [z.4,9], [ab,c)]

[[ denotesthe empty set.

3.1.3 Unary expressions

A unary expression is formed by applying a unary operatontiitger unary or primary ex-
pression. The unary operators supported+are * /, div, mod, and, or, not,

round, sqrt, sin, cos, tan, abs, In, ord, chr, byte2pixel, pi xel2byte, succ,
pred, iota, trans, addr and@

Thus the following are valid unary expressionsl , +b, not true , sgrt abs x
sin theta. In standard Pascal some of these operators are treatedctisfisn Syntacti-
cally this means that their arguments must be enclosed akbts, as irsin(theta) . This
usage remains syntactically correct in Vector Pascal.

The dyadic operators, -, *, /, div, mod , and or are all extended to unary
context by the insertion of an implicit value under the ofiera Thus justasa = 0-a so
too/2 = 1/2 . For sets the notatio's means the complement of the setThe implicit
value inserted are given below.

| type | operatos | implicit value |

number +- 0

string + "

set + empty set

number| */ div,mod 1

number max lowest representable number of the type
number min highest representable number of the type
boolean and true
boolean or false




3.1. EXPRESSIONS 29

Table 3.1: Unary operators

Ihs rhs meaning
<unaryop> + +x = 0+X identity operator
) -X = 0-X,
note: this is defined on integer, real and complex
w X! *x=1*x identity operator
'’ /x=1.0/x
note: this is defined on integer, real and complex
div’, T+ div x =1 div X
'mod’ mod x = 1 mod X
‘and’ and x = true and x
‘or’ or x = false or x
‘not’, ' ' complements booleans
‘round’ rounds a real to the closest integer
'sgrt’, ’\/’ returns square root as a real number.
'sin’ sine of its argument. Argument in radians. Result is real.
‘cos’ cosine of its argument. Argument in radians. Result is regl.
‘tan’ tangent of its argument. Argument in radians. Result is real
"abs’ if x<0 then abs x = -x else abs x= x
I’ log, of its argument. Result is real.
‘ord’ argument scalar type, returns ordinal
number of the argument.
‘chr’ converts an integer into a character.
'succ’ argument scalar type,
returns the next scalar in the type.
‘pred’ argument scalar type,
returns the previous scalar in the type.
‘iota’, "1’ iota i returns the ith current index
‘trans’ transposes a matrix or vector

'pixel2byte’ || convert pixel in range -1.0..1.0 to byte in range 0..255
‘byte2pixel’ || convert a byte in range 0..255 to a pixel in

the range -1.0..1.0

‘@’',addr’ Given a variable, this returns an

untyped pointer to the variable.

A unary operator can be applied to an array argument anchisetur array result. Sim-
ilarly any user declared function over a scalar type can liegto an array type and
return an array. If is a function or unary operator mapping from typéo typet then
if x is an array of, anda an array oft, thena:=f(x) assigns an array df such that

afi]=f(x{i)

<unary expression» <unaryop> <unary expression>
'sizeof’ '(’ <type>"')
<operator reduction>
<primary expression>

'if’<expression>then’ <expression>'else’ <expression

sizeof

The construcsizeof( t) wheret is a type, returns the number of bytes occupied by an
instance of the type.



30 CHAPTER 3. ALGORITHMS

iota

The operator iota i returns the ith current implicit index

Examples Thus given the definitions
var vl:array[l..3]of integer;
v2:array[0..4] of integer;
then the program fragment
vl:=iota O;
v2:=iota 0 *2;

for i:=1 to 3 do write( VA[i]); writeln;
writeln('v2);

for i:=0 to 4 do write( V2[i]); writeln;
would produce the output

vl

123
V2
02468

whilst given the definitions
ml:array[1..3,0..4] of integer;m2:array[0..4,1..3]of i nteger;
then the program fragment
m2:= ijota 0 +2*ota 1,
writeln(m2:= iota 0 +2*iota 1 );
for i:=0 to 4 do begin for j;=1 to 3 do write(m2[i,j]); writeln ;end;

would produce the output

= iota 0 +2%ota 1

The argumenttmta must be an integer known at compile time within the range ofiicit
indices in the current context. The reserved waixl is a synonym foiota .

perm A generalised permutation of the implicit indices is penfied using the syntactic
form:

perm[ i ndex-sel [, i ndex-sel]* ]expression

The index-se$ are integers known at compile time which specify a perrartain the
implicit indices. Thus ire evaluated in contexterm|[ i, j,K] e, then:

iota 0 = iota i,iota 1= iota |, iota 2= iota Kk

This is particularly useful in converting between differenage formats. Hardware frame
buffers typically representimages with the pixels in the green, blue, and alpha channels
adjacent in memory. For image processing it is conveniehbtd them in distinct planes.
Theperm operator provides a concise notation for translation beitwbese formats:

1See section 3.2.1.



3.1. EXPRESSIONS 31

type rowindex=0..479;
colindex=0..639;

var channel=red..alpha;
screen:array[rowindex,colindex,channel] of pixel;
img:array[channel,colindex,rowindex] of pixel;

screen:=perm[2,0,1]img;

trans anddiag provide shorthand notions for expressions in termgeafi. Thus in
an assignment context of rankt@ns = perm[1,0] anddiag = perm[0,0]

trans

The operator trans transposes a vector or matrix. It achidws by cyclic rotation of the
implicitindices. Thus itrans eis evaluated in a context with implicit indices

iota O..iota n

then the expression e is evaluated in a context with imphdiices

iota '0..iota 'n

where

iota 'x=iota ((Xx+1)modn+1)

It should be noted that transposition is generalised to/amérank greater than 2.

Examples Given the definitions used above in section 3.1.3, the progragment:
ml:= (trans v1)*v2;
writeln('(trans  v1)*v2’);
for i:=1 to 3 do begin for j;=0 to 4 do write(m1[i,j]); writeln ;end;

m2 = trans mil;

writeln('transpose 1..3,0..4 matrix’);

for i:=0 to 4 do begin for j;=1 to 3 do write(m2[i,j]); writeln ;end;
will produce the output:

—
=
o)
>
w

v1)*v2

> oo

4 6

8121
12 18 2
pose 1..3,0..4 matrix

Q
>
OO PPOLOPEPDN
N

N
N

0
6
2
8

oo PR~RNO T OOOS

= =

3.1.4 Operator Reduction

Any dyadic operator can be converted to a monadic reducpenator by the functional \.
Thus ifa is an array)\+ta denotes the sum over the array. More generedix for some
dyadic operato® meansqo®(x1®P..(xn®1)) wheret is the implicit value given the operator
and the type. Thus we can write for summationy* for nary product etc. The dot product
of two vectors can thus be written as

x= oy



32 CHAPTER 3. ALGORITHMS

instead of

x:=0;

for i:=0 to n do x:= x+ y[iJ*zi];

A reduction operation takes an argument of rarmd returns an argument of rani
except in the case where its argument is of rank 0, in whicle @aacts as the identity
operation. Reduction is always performed along the lastyatimension of its argument.

The operations of summation and product can be be writtbteeis the two functional
forms\ + and\ x or as the prefix operatofs (Unicode 2211) angf] (Unicode 220f).

<operator reduction> '\'<dyadic op> <multiplicative expressions
'S’ <mutliplicative expression>
"I’ < multiplicative expression>

<dyadic op>| <expop>
<multop>
<addop>

The reserved worddu is available as a lexical alternative to \, so \+ is equivaten
rdu +.

3.1.5 Complex conversion

Complex numbers can be produced from reals using the funatiplx . cmplx( re,im) is
the complex number with real pad, and imaginaray parin.

The real and imaginary parts of a complex number can be adutdip the functionse
andim. re (c) is the real part of the complex numberim(c) is the imaginary part of the
complex numbec.

3.1.6 Conditional expressions

The conditional expression allows two different values &rbturned depenent upon a
boolean expression.

var a:array[0..63] of real;

a:=if a>0 then a else -a;

Theif expression can be compiled in two ways:

1. Where the two arms of the if expression are parallelisahke condition and both
arms are evaluated and then merged under a boolean mask.tAidavove assign-
ment would be equivalent to:

a= (a and (& >0)or(not (@ >0) and -a);
were the above legal Pastal
2. If the code is not paralleliseable it is translated as\sdent to a standard if state-
ment. Thus, the previous example would be equivalent to:
for i:=0 to 63 do if afi] >0 then afi]:=a[i] else a]i]:=-a[i];
Expressions are non parallelisable if they include fumctialls.

2This compilation strategy requires that true is equivatertl and false to 0. This is typically the represen-
tation of booleans returned by vector comparison instastion SIMD instruction sets. In Vector Pascal this
representation is used generally and in consequémee<false .



3.1. EXPRESSIONS 33

Table 3.2: Multiplicative operators

Operator Left Right Result Effect @op b
X integer integer integer multiply
real real real multiply
complex complex complex multiply
/ integer integer real division
real real real division
complex complex complex division
div, integer integer integer division
mod integer integer integer remainder
and boolean  boolean  boolean logical and
shr integer integer integer shiét by b bits right
shl integer integer integer shiét by b bits left
in, € t set of t boolean true ifais member ob

The dual compilation strategy allows the same linguisticstauct to be used in recursive
function definitions and parallel data selection.

Use of boolean mask vectors

In array programming many operations can be efficiently gessed in terms of boolean
mask vectors. Given the declarations:

i:array[1..4] of integer;
rarray[1..4] of real,
c.array[1..4] of complex;
b:array[1..4] of boolean;
s:array[1..4] of string;

and if

3.1.7 Factor

A factor is an expression that optionally performs expoiagion. Vector Pascal supports
exponentiation either by integer exponents or by real egpts A numbexk can be raised
to an integral powey by using the constructior pow y. A number can be raised to an
arbitrary real power by th&# operator. The result ¢f is always real valued.

<expop>| 'pow’

Thk?

| <factor>| <unary expression> [ <expop> <unary expressioh>]

3.1.8 Multiplicative expressions

Multiplicative expressions consist of factors linked by thultiplicative operatory  x,
[, div, -+,, mod, shr, shl and . The use of these operators is summarised in table
3.2.



34 CHAPTER 3. ALGORITHMS

Table 3.3: Addition operations

Left Right Result Effect ohhop b
+ integer integer integer sum afandb
real real real sum of andb
complex complex complex sum afandb
set set set union o andb
string string string concatenagewith b 'ac’+'de’="acde’
integer integer integer result of subtractindgrom a
real real real result of subtractingfrom a
complex complex complex result of subtractibdrom a
set set set complement bfrelative toa
+ 0..255 0..255 0..255 saturated + clipped to 0..255
-128..127 -128..127  -128..127 saturated + clipped to -123.
0..255 0..255 0..255 saturated - clipped to 0..255
-128..127 -128..127  -128..127 saturated - clipped to -128.
min integer integer integer returns the lesser of the numbers
real real real returns the lesser of the numbers
max integer integer integer returns the greater of the numbers
real real real returns the greater of the numbers
or boolean boolean boolean logical or
>< set set set symetric difference

<multop>| ¥

.
div’
'shr’
'shl’
‘and’
mod’

<multiplicative expression> <factor> [ <multop> <factor> |*
<factor>'in’<multiplicative expression>

3.1.9 Additive expressions

An additive expression allows multiplicative expressitmbe combined using the addition
operatorst, -, or, +;max, min, - , ><. The additive operations are summarised in
table3.3.

<addop>| '+

<additive expression>| <multiplicative expression> [ <addop> <multiplicativepegssion> ]*




3.1. EXPRESSIONS 35

Table 3.4: Relational operators

< Less than

> Greater than

= Less than or equal to
>=  Greater than or equal to
<> Not equal to

= Equal to

| <expression>| <additive expression> <relational operator> <expressi¢n

3.1.10 Expressions

An expression can optionally involve the use of a relatiaparator to compare the results
of two additive expressions. Relational operators alwaysrn boolean results and are
listed in table 3.4.

3.1.11 Operator overloading

The dyadic operators can be extended to operate on new typegeator overloading.
Figure 3.1 shows how arithmetic on the tyqmplex required by Extended Pascal [15] is
defined in Vector Pascal. Each operator is associated wigmastic function and if it is a
non-relational operator, an identity element. The opestmbols must be drawn from the
set of predefined Vector Pascal operators, and when expnssaivolving them are parsed,
priorities are inherited from the predefined operators. fJbe signature of the operator is
deduced from the type of the functidn

<operator-declaration> ‘operator’ 'cast’ '=’ <identifier>
‘operator’ <dyadicop> "=’ <identifier>’,<identifier>

‘operator’ <relational operator> '=’ <identifier>

When parsing expressions, the compiler first tries to resolyerations in terms of
the predefined operators of the language, taking into ad¢dbenstandard mechanisms
allowing operators to work on arrays. Only if these fail ddesearch for an overloaded
operator whose type signature matches the context.

In the example in figure 3.1, complex numbers are defined teeberds containing
an array of reals, rather than simply as an array of reals. thieyl been so defined, the
operatorst,*,-/  on reals would have masked the corresponding operatorsropler
numbers.

The provision of an identity element for complex additioml aubtraction ensures that
unary minus, as in-x for x :complex, is well defined, and correspondingly that unary /
denotes complex reciprocal. Overloaded operators can dx insarray maps and array
reductions.

Implicit casts

The Vector Pascal language already contains a number ofciinfgipe conversions that
are context determind. An example is the promotion of inte¢e reals in the context of
arithmetic expressions. The set of implicit casts can beddad by declaring an operator
to be a cast as is shown in the line:

SVector Pascal allows function results to be of any non-piacal type.



36 CHAPTER 3. ALGORITHMS

interface
type
Complex = record data : array [0..1] of real ;
end ;
var
complexzero, complexone : complex;

function real2cmplx ( realpart :real ):complex ;
function cmplx ( realpart ,imag :real ):complex ;
function complex_add ( A ,B :Complex ):.complex ;
function complex_conjugate ( A :Complex ):complex ;
function complex_subtract ( A ,B :Complex ):complex ;
function complex_multiply ( A ,B :Complex ):complex ;
function complex_divide ( A ,B :Complex ):complex ;
{ Standard operators on complex numbers }
{ symbol function identity element }
operator + = Complex_add , complexzero ;
operator / = complex_divide , complexone ;
operator * = complex_multiply , complexone ;
operator - = complex_subtract , complexzero ;
operator cast = real2cmplx ;

Figure 3.1: Defining operations on complex numbers
Note that only the function headers are given here as this cothes from the interface part of the
system unit. The function bodies and the initialisationhef variables complexone and complexzero
are handled in the implementation part of the unit.



3.2. STATEMENTS 37

operat or cast = real 2cnpl x ;

Given an implict cast from typty — t1, the function associated with the implicit cast
is then called on the result of any expresseary whose expression context requires it to
be of typet;.

3.2 Statements

<statement> <variable>":='<expression>
<procedure statement>
<empty statement>
‘goto’ <label>;
‘exit’['('<expression>')"]
‘begin’ <statement>[;<statement>]*end’
'if’<expression>'then’<statement>['else’<statemeht>
<case statement>
'for’ <variable>:= <expression> 'to’ <expression> 'do’ taéement>
‘for’ <variable>:= <expression>'downto’ <expression>o'cstatement>
‘repeat’ <statement> 'until’ <expression>
‘with’ <record variable> 'do’ < statement>
<io statement>
‘'while’ <expression> 'do’ <statement>

3.2.1 Assignment

An assignment replaces the current value of a variable bywavadue specified by an
expression. The assignment operator is :=. Standard Paltmak assignment of whole
arrays. Vector Pascal extends this to allow consistent Lisgxed rank expressions on the
right hand side of an assignment. Given

rO:real; rl:array[0..7] of real;

r2:array[0..7,0..7] of real

then we can write

1. rl:= r2[3]; { supported in standard Pascal }

2. rl:= [2; { assign 0.5 to each element of rl }

3. r2:= r1*3; { assign 1.5 to every element of r2}

4. rl:= \+ r2; { rl gets the totals along the rows of r2}

5. rLl:= r1+r2[1]{ r1 gets the corresponding elements of row 1 o f r2 added
to it}

The assignment of arrays is a generalisation of what stdrféf@scal allows. Consider the
first examples above, they are equivalent to:

1. for i:=0 to 7 do ri[i]:=r2[3,i];
2. for ;=0 to 7 do rl[i]:=/2;

3. for i:=0 to 7 do
for ;=0 to 7 do r2]ij]:=r1[j*3;



38 CHAPTER 3. ALGORITHMS

4. for =0 to 7 do
begin
t:=0;
for ;=7 downto O do t:=r2[ijJ+t;
rifi:=t;
end;

5. for =0 to 7 do ri[i]:=r1[i]+r2[1,i];

In other words the compiler has to generate an implicit loogr the elements of the array
being assigned to and over the elements of the array actithg @ata-source. In the above
it~ areassumed to be temporary variables not referred to amgwelse in the program.
The loop variables are called implicit indices and may beeased usin@ta .

The variable on the left hand side of an assignment definesrag eontext within
which expressions on the right hand side are evaluated. Baaly context has a rank
given by the number of dimensions of the array on the left leael. A scalar variable has
rank 0. Variables occurring in expressions with an arraytexrof rankr must have or
fewer dimensions. The bounds of any dimensional array variable, with<r occurring
within an expression evaluated in an array context of ramkist match with the rightmost
n bounds of the array on the left hand side of the assignmetenséant.

Where a variable is of lower rank than its array context, thgable is replicated to
fill the array context. This is shown in examples 2 and 3 abdBecause the rank of
any assignment is constrained by the variable on the lefd lsate, no temporary arrays,
other than machine registers, need be allocated to storatdrenediate array results of
expressions.

3.2.2 Procedure statement

A procedure statement executes a hamed procedure. A precs@iiement may, in the
case where the named procedure has formal parametersincarist of actual parame-
ters. These are substituted in place of the formal parametertained in the declaration.
Parameters may be value parameters or variable parameters.

Semantically the effect of a value parameter is that a copgkien of the actual pa-
rameter and this copy substituted into the body of the praed/alue parameters may be
structured values such as records and arrays. For scalesya&xpressions may be passed
as actual parameters. Array expressions are not currdiiyel as actual parameters.

A variable parameter is passed by reference, and any #terHtthe formal parameter
induces a corresponding change in the actual parametesalAariable parameters must
be variables.

<parameter> <variable> || for formal parameters declared as var
<expression> for other formal parameters

<procedure statementp <identifier>
<identifier>'(" <parameter> [',/<parameter>]*")’

Examples
1. printlist;

2. compare(avec,bvec,result);



3.2. STATEMENTS 39

3.2.3 Goto statement
A goto statement transfers control to a labelled statemEné destination label must be
declared in a label declaration. It is illegal to jump intocomit of a procedure.

Example goto 99;

3.2.4 Exit Statement

An exit statement transfers control to the calling pointraf turrent procedure or function.
If the exit statement is within a function then the exit sta¢émt can have a parameter: an
expression whose value is returned from the function.

Examples

1. exit;

2. exit(5);

3.2.5 Compound statement
A list of statements separated by semicolons may be groupecdicompound statement
by bracketing them withegin andend .

Example begin a:=x*3; b:=sqrt a end;

3.2.6 If statement

The basic control flow construct is the if statement. If thelban expression betweén
andthen is true then the statement followirtigen is followed. If it is false and an else
part is present, the statement followielge is executed.

3.2.7 Case statement

The case statement specifies an expression which is evélaadewhich must be of inte-
gral or ordinal type. Dependent upon the value of the expesntrol transfers to the
statement labelled by the matching constant.

| <case statement}> 'case’<expression>'of'<case actions>'end’

<case actions> <case list>
<case list> 'else’ <statement>
<case list> 'otherwise’ <statement

\Y

| <case list>] <case list element>[";'<case list element.*

| <case list element} <case label>[',; <case label>]'I'<statement>

<case label> <constant>
<constant>'.. <constant>




40 CHAPTER 3. ALGORITHMS

case i of case cof
lis:=abs s; ‘awrite(A’);
Examples 2:s:= sqrt s;  'b’,’B write('B);
3 s=0 ‘ANCLUZe 2 write( ),
end end

3.2.8 With statement

Within the component statement of the with statement thddief the record variable can
be referred to without prefixing them by the name of the rec@mibble. The effect is to

import the component statement into the scope defined byettwd variable declaration
so that the field-names appear as simple variable names.

Example var sirecord x,y:real end;
begin
with s do begin x:=0;y:=1 end ;
end

3.2.9 For statement

A for statement executes its component statement repgateder the control of an itera-
tion variable. The iteration variable must be of an integrabrdinal type. The variable is
either set to count up through a range or down through a range.

for ii= el to e2 do s

is equivalent to

i:=el; temp:=e2;while i<=temp do s;

whilst

for i:= el downto e2 do s

is equivalent to

i:=el; temp:=e2;while i>= temp do s;

3.2.10 While statement

A while statement executes its component statement wksl§icolean expression is true.
The statement

while e do s
is equivalent to
10: if not e then goto 99; s; goto 10; 99:

3.2.11 Repeat statement

A repeat statement executes its component statement aibleaes and then continues to
execute the component statement until its component esipreBecomes true.

repeat s until e
is equivalent to
10: s;if e then goto 99; goto 10;99:



3.3. INPUT OUTPUT 41

3.3 Input Output

<io statement>| 'writeln’[<outparamlist>]
‘write'<outparamlist>

‘readIn’[<inparamlist>]
‘read’<inparamlist>

| <outparamlist>| '('<outparam>[',<outparam>]*")’ |

| <outparam>| <expression>[:’ <expression>] [''<expression?]

| <inparamlist>] '('<variable>[',<variable>]*)’ ]

Input and output are supported from and to the console andrals and to files.

3.3.1 Input

The basic form of input is theead statement. This takes a list of parameters the first
of which may optionally be a file variable. If this file varigbis present it is the input
file. In the absence of a leading file variable the input filehis standard input stream.
The parameters take the form of variables into which appatgptranslations of textual
representations of values in the file are read. The statement

read( a,b,9

wherea,b,care non file parameters is exactly equivalent to the sequefrstatements

read( a);read( b);read( ©)

Thereadln statement has the same effect as the read statement bugsitigheading
a new line from the input file. The representation of the new lis operating system
dependent. The statement

readin( a,b,q

wherea,b,care non file parameters is thus exactly equivalent to theesempuof state-
ments

read( a);read( b);read( c);readin;

Allowed typed for read statements are: integers, reaisgstiand enumerated types.

3.3.2 Output

The basic form of output is therite  statement. This takes a list of parameters the first of
which may optionally be a file variable. If this file variabtegresent it is the output file. In
the absence of a leading file variable the output file is thesalen The parameters take the
form of expressions whose values whose textual represemsadre written to the output
file. The statement

write(  a,b,q

wherea,b,care non file parameters is exactly equivalent to the sequerstatements

write(  a);write(  b);write(  ¢)

Thewriteln ~ statement has the same effect as the write statement binefiniy writ-
ing a new line to the output file. The representation of the fiegvis operating system
dependent. The statement

writeln(  a,b,q

wherea,b,care non file parameters is thus exactly equivalent to theesempuof state-
ments

write(  a);write(  b);write(  c);writeln;

Allowed types for write statements are integers, realg)gtrand enumerated types.



42 CHAPTER 3. ALGORITHMS

Parameter formating

A non file parameter can be followed by up to two integer exgicess prefixed by colons
which specify the field widths to be used in the output. Theexparameters can thus have
the following forms:

eememn

1. If eis an integral type its decimal expansion will be writtenqaeded by sufficient
blanks to ensure that the total textual field width produsetbit less tham.

2. If eis areal its decimal expansion will be written preceededuificient blanks to
ensure that the total textual field width produced is not taasm. If n is present
the total number of digits after the decimal point will belf nis omitted then the
number will be written out in exponent and mantissa form vétdigits after the
decimal point

3. If eis boolean the strings 'true’ or 'false’ will be written intofield of width not less
than m.

4. If eis a string then the string will be written into a field of widtbt less tham.



Chapter 4

Programs and Units

Vector Pascal supports the popular system of separate tadiopiunits found in Turbo
Pascal. A compilation unit can be either a program, a unitldorary.

| <program>| 'program’ <identifier>";’[<uses>’;"]<block>" |

| <invocation>] <identifier>['( <type identifier>[', <type identifier>]*) |

| <uses>| 'uses’ <invocation>[',<invocation>]*|

| <block> | [<decls>";T"begin’ <statement>[";'<statement>]*ed

<decls>| ’const’ <constant declaration>[";’<constant declarati*
‘type’<type definition>[";’<type definition>]*
‘label’ <label>[', <label>]
<procedure declaration>
'var’ <variable declaration>[’;’ <variable declaratiof}>

| <unit> | <unit header> <unit body

<unit body> | ’'interface’[<uses>][<decls>] implementation’<block>
'interface’[ <uses>][<decls>]’in’ <invocation>";’

<unit header> <unit type><identifier>
‘unit’ <identifier> (' <type identifier> [, <type identifer>]* ")’

<unit type>| ’unit’
library’

An executable compilation unit must be declared as a progfidm program can use
several other compilation units all of which must be eitheitsior libraries. The units or
libraries that it directly uses are specified by a list of idférs in an optional use list at
the start of the program. A unit or library has two declamafiortions and an executable
block.

4.1 The export of identifiers from units
The first declaration portion is the interface part and ixpded by the reserved word
interface

The definitions in the interface section of unit files congéta sequence of enclosing
scopes, such that successive units in the with list ever wlosely contain the program

43



44 CHAPTER 4. PROGRAMS AND UNITS

unit genericsort(t) ;
interface
type
dataarray ( n,m :integer )=array [n..m] of t ;
procedure sort ( var a :dataarray ); (see Figure 4.2)

implementation

procedure sort ( var a :dataarray ); (see Figure 4.2)
begin
end .

Figure 4.1: A polymorphic sorting unit.

itself. Thus when resolving an identifier, if the identifiemncnot be resolved within the
program scope, the declaration of the identifier within titeriface section of the rightmost
unit in the uses list is taken as the defining occurrencelltivie that rightmost occurrence
of an identifier definition within the interface parts of unin the uses list overrides all
occurrences in interface parts of units to its left in thesuss.

The implementation part of a unit consists of declaratigmeceded by the reserved
word implementatio  n that are private to the unit with the exception that a fuorctr
procedure declared in an interface context can omit thegghae body, provided that the
function or procedure is redeclared in the implementaten pf the unit. In that case the
function or procedure heading given in the interface pataken to refer to the function
or procedure of the same name whose body is declared in tHermeptation part. The
function or procedure headings sharing the same name intirdcice and implementation
parts must correspond with respect to parameter typesngdea order and, in the case of
functions, with respect to return types.

A unit may itself contain a use list, which is treated in theneavay as the use lists of
a program. That is to say, the use list of a unit makes acdesdimtifiers declared within
the interface parts of the units named within the use lishéounit itself.

4.1.1 The export of procedures from libraries.

If a compilation unit is prefixed by the reserved wditttary ~ rather than the words
program or unit , then the procedure and function declarations in its iatarfpart are
made accessible to routines written in other languages.

4.1.2 The export of Operators from units

A unit can declare a type and export operators for that type.

4.2 Unit parameterisation and generic functions

Standard Pascal provides es some limited support for pafyiniem in itsread andwrite
functions. Vector Pascal allows the writing of polymorplimctions and procedures
through the use of parameteric units.

A unit header can include an optional parameter list. Thaipaters identifiers which
are interepreted as type names. These can be used to deslarephic procedures and
functions, parameterised by these type names. This is shofigure 4.1.



4.3. THE INVOCATION OF PROGRAMS AND UNITS 45

procedure sort ( var a:dataarray );

var
Leti, j € integer;
Lettemp € t;
begin

for i«<—a.n to am-1 do

for j«—a.n to am-1 do

if aj > aj, then begin begin
temp«— aj;
aj <~ &g,
aj, 1 < temp;

end ;
end ;

Figure 4.2: procedure sort

4.3 The invocation of programs and units

Programs and units contain an executable block. The rutdbdexecution of these are as
follows:

1. When a program is invoked by the operating system, tha onilibraries in its use
list are invoked first followed by the executable block of gregram itself.

2. When a unit or library is invoked, the units or librariestgsuse list are invoked first
followed by the executable block of the unit or library ifsel

3. The order of invocation of the units or libraries in a use i left to right with the
exception provided by rule 4.

4. No unit or library may be invoked more than once.

Note that rule 4 implies that a unitto the right of a uniy within a use list, may be invoked
before the uniy, if the unity or some other unit tg’s left namesxin its use list.

Note that the executable part of a library will only be invdkié the library in the
context of a Vector Pascal program. If the library is linkedat main program in some
other language, then the library and any units that it usésai be invoked. Care should
thus be taken to ensure that Vector Pascal libraries to beddabm main programs written
in other languages do not depend upon initialisation coaéatoed within the executable
blocks of units.

4.4 The compilation of programs and units.

When the compiler processes the use list of a unit or a program from left to right, for
each identifier in the use list it attempts to find an alreadymited unit whose filename
prefix is equal to the identifier. If such a file exists, it thewokls for a source file whose
filename prefix is equal to the identifier, and whose suffigas . If such a file exists and
is older than the already compiled file, the already compiled, the compiler loads the
definitions contained in the pre-compiled unit. If such a &iksts and is newer than the
pre-compiled unit, then the compiler attempts to re-coebie unit source file. If this re-
compilation proceeds without the detection of any erroescbmpiler loads the definitions
of the newly compiled unit. The definitions in a unit are sateed file with the suffixmpu,



46 CHAPTER 4. PROGRAMS AND UNITS

and prefix given by the unit name. The compiler also genemtesssembler file for each
unit compiled.

4.4.1 Linking to external libraries

Itis possible to specify to which external libraries - treata say libraries written in another
languge, a program should be linked by placing in the maigraim linkage directives. For
example

{$linklib ncurses}

would cause the program to be linked to the ncurses library.

4.5 Instantiation of parametric units

Instantiation of a parametric unit refers to the process bigivthe unbound type variables
introduced in the parameter list of the unit are bound toadipes. In Vector Pascal all
instantiation of parametric units and all type polymorphigre resolved at compile time.
Two mechanisms are provided by which a parametric unit magdiantiated.

45.1 Directinstantiation

If a generic unit is invoked in the use list of a program or ptfien the unit name must
be followed by a list of type identifiers. Thus given the gémeort unit in figure 4.1, one
could instantiate it to sort arrays of reals by writing

uses genericsort(real);

at the head of a program. Following this header, the proeesur would be declared
as operating on arrays of reals.

4.5.2 Indirect instantiation

A named unit file can indirectly instantiate a generic unitenhits unit body uses the
syntax

'interface’ <uses><decls>'in’ <invocation>";’

For example

unit intsort ;
interface
in genericsort (integer);

would create a named unit to sort integers. The naming ofdharpetric units allows more
than one instance of a given parametric unit to be used ingrano. The generic sort unit
could be used to provide both integer and real sorting prareed The different variants of
the procedures would be distinquished by using fully quedifiames - e.g.intsort.sort.

4.6 The System Unit

All programs and units include by default the unit systera.pa an implicit member of
their with list. This contains declarations of private rume routines needed by Vector
Pascal and also the following user accessible routines.

function abs  Return absolute value of a real or integer.



4.6. THE SYSTEM UNIT 47

procedure append(var ffile); This opens a file in append mode.
function  arctan(x:Real):Real;

procedure assign(var f:file;var fname:string); Associates a file name with a
file. It does not open the file.

procedure blockread(var f:file;var buf;count:integer; v ar resultcount:integer);
Trys to read count bytes from the file into the buffer. Resulttt contains the
number actually read.

LatexCommand \index{blockwrite}procedure blockwrite(v ar ffile;var buf;countinteger;
var resultcountinteger); Write count bytes from the buffer. Result-
count gives the number actually read.

procedure close (var f:file); Closes a file.

function eof (var f:file):boolean; True if we are at the end of file f.
procedure erase (var f:file); Delete file f.

function eoln  (var f:file):boolean; True if at the end of a line.

function exp (d:real):real; Reture*

function filesize (var f: fileptr):integer; Return number of bytes in a file.

function  filepos (var f:fileptr):integer; Return current position in a file.

procedure freemem(var p:pointer; num:integer); Free num bytes of heap store.
Called by dispose.

bold procedure getmem(var p:pointer; num:integer); Adtecnum bytes of heap.
Called by new.

procedure gettime(var hour,min,sec,hundredth:integer) ; Return time of day.

Return the integer part of r as a real.

function ioresult:integer; Returns a code indicating if the previous file operation
completed ok. Zero if no error occurred.

function length(var s:string):integer; Returns the length of s.

procedure pascalexit(code:integer); Terminate the program with code.

Time in 1/100 seconds since program started.
function random:integer; Returns a random integer.

procedure randomize; Assign a new time dependent seed to the random number gener-

ator.
procedure reset(var fifile); Open a file for reading.
procedure rewrite(var f :file); Open a file for writing.

function  trunc(r:real):integer; Truncates a real to an integer.



48

CHAPTER 4. PROGRAMS AND UNITS



Chapter 5

Implementation issues

The compiler is implemented in java to ease portability leetwoperating systems.

5.1 Invoking the compiler

The compiler is invoked with the command
vpc filename

where filename is the name of a Pascal program or unit. For geam
vpc test

will compile the program test.pas and generate an exeaufibdotest , (test.exe under
windows).

The commandpc is a shell script which invokes the java runtime system tacaiea
Jar file containing the compiler classes. Instead of runningthgcjava interpreter can
be directly invoked as follows

java -jar mmpc.jar filename

Thevpc script sets various compiler options appropriate to theraipey system being
used.

5.1.1 Environment variable

The environment variablempcdir must be set to the directory which containsitimepc.jar
file, the runtime libraryt.o  and thesystem.pas file.

5.1.2 Compiler options

The following flags can be supplied to the compiler :

-L Causes a latex listing to be produced of all files compilecke [Elel of detail
can be controled using the codes -L1 to -L3, otherwise theirmam detail
level is used.

-OPTn Sets the optimisation level attempted. -OPTO is no optitiwiea-OPT3 is the
maximum level attempted. The default is -OPT1.

-Afilename  Defines the assembler file to be created. In the absence abglicn the
assembler file ip.asm.

49



50 CHAPTER 5. IMPLEMENTATION ISSUES

Table 5.1: Code generators supported
| CGFLAG | description

IA32 generates code for the Intel 486 instruction-set
uses the NASM assembler
Pentium generates code for the Intel P6 with MMX instruction-set

uses the NASM assembler
gnuPentium generates code for the Intel P6 with MMX instruction-set
using theas assembler in the gcc package

K6 generates code for the AMD K6 instruction-set, use for Ath|o
uses the NASM assembler

P3 generates code for the Intel Plll processor family
uses the NASM assembler

P4 generates code for the Intel PIV family and Athlon XP

uses the NASM assembler

-Ddirname  Defines the directory in which to fimtl.o  andsystem.pas

-BOEHM  Causes the program to be linked with the Boehm conservatiseage collec-
tor.

-V Causes the code generator to produce a verbose diagnsttig tiofoo.Ist
when compilingoo.pas

-oexefile Causes the linker to output ézefile  instead of the default output pfexe.

-U Defines whether references to external procedures in tieendssr file should
be preceded by an under-bar’_'. This is required for the abféct format but
not for elf.

-S Suppresses assembly and linking of the program. An assefilblés still
generated.

-fFORMAT  Specifies the object format to be generated by the assenililerobject for-
mats currently used are elf when compiling under Unix or whempiling
under windows using the cygwin version of the gcc linker, off gvhen us-
ing the djgpp version of the gcc linker. for other formats shthe NASM
documentation.

-cpUCGFLAG Specifies the code generator to be used. Currently the codgagers shown
in table 5.1 are supported.

5.1.3 Dependencies

The Vector Pascal compiler depends upon a number of otHérestiwhich are usually
pre-installed on Linux systems, and are freely availablé¥odows systems.

NASM The net-wide assembler. This is used to convert theudwtfthe code genera-
tor to linkable modules. It is freely available on the web¥Wéindows. For the
Pentium processor it is possible to use dbeassembler instead.

gce The GNU C Compiler, used to compile the run time librarg arlink modules
produced by the assembler to the run time library.



5.2. CALLING CONVENTIONS 51

java The java virtual machine must be available to intergirecompiler. There are
number of java interpreters and just in time compilers agelfr available for
Windows.

5.2 Calling conventions

Procedure parameters are passed using a modified C callimgmtion to facilitate calls
to external C procedures. Parameters are pushed on to thefisim right to left. Value
parameters are pushed entire onto the stack, var pararastgrashed as addresses.

Example

unit callconv;

interface

type intarr="array[1..8] of integer;

procedure foo(var a:intarr; b:intarr; c:integer);

implementation
procedure foo(var a:intarr; bintarr; c:integer);
begin
end;
var x,y:intarr;
begin
foo(x,y,3);
end.

This would generate the following code for the procedure foo

; procedure generated by code generator class ilcg.tree.Pe ntiumCG
le8e68de10c5:
; foo

enter  spaceforfoo-4*1,1
8

le8e68del18a:
spaceforfoo equ 4

;... code for foo goes here
fooexit:
leave

ret 0

and the calling code is

push DWORD 3 ; push rightmost argument
lea esp,[ esp-32] ; Create space for the array
mov DWORD [ ebp -52],0 ; for loop to copy the array
le8e68de87fd: ; the loop is

; unrolled twice and
cmp DWORD [ ebp-52], 7 ; parallelised to copy
; 16 bytes per cycle
jg near le8e68de87fe
mov ebx,DWORD [ ebp -52]
imul  ebx, 4
movg MM1, [ ebx+ le8e68dddaa2-48]
movq [ esp+ebx],MM1

mov eax,DIWORD [ ebp+ -52]
lea ebx,[ eax+ 2]
imul  ebx, 4

movg MM1, [ ebx+ le8e68dddaa2 -48]

movq [ esp+ebx],MM1

lea ebx,[ ebp+ -52]

add DWORD [ ebx], 4

jmp  le8e68de87fd

le8e68de87fe: ; end of array



52 CHAPTER 5. IMPLEMENTATION ISSUES

; copying loop
push DWORD le8e68dddaa2-32 ; push the address of the
; var parameter

EMMS ; Clear MMX state
call le8e68del0c5 ; call the local
; label for foo
add esp, 40 ; free space on the stack

Function results

Function results are returned in registers for scalarsvioiig the C calling convention for
the operating system on which the compiler is implementestoRds, strings and sets are
returned by the caller passing an implicit parameter cairtgithe address of a temporary
buffer in the calling environment into which the result carassigned. Given the following
program

program

type tl= set of char;

var x,y:tl;

function bar:tl;begin bar:=y;end;

begin
X:=bar;
end.
The call of bar would generate

push ebp
add dword[esp] , -128 ; address of buffer on stack
call le8ebh6156ca8 ; call bar to place
; result in buffer
add esp, 4 ; discard the address

mov DWORD [ ebp+ -132], O; for loop to copy
; the set 16 bytes

|e8eb615d99f: ; at a time into x using the
; MMX  registers
cmp DWORD [ ebpt -132], 31

jg near le8eb615d9910
mov ebx,DWORD [ ebp+ -132]

movg MM1, [ ebx+ebp + -128]
movq [ ebx+ebp + -64],MM1
mov eax,DIWORD [ ebp+ -132]
lea ebx,[ eax+ 8]

movg MM1, [ ebxtebp + -128]
movg [ ebx+ebp + -64],MM1
lea ebx,[ ebp+ -132]

add DWORD [ ebx], 16
jmp  le8eb615d99f
le8eh615d9910:

5.3 Array representation

The maximum number of array dimensions supported in the denip 5.

A static array is represented simply by the number of bytgaired to store the array
being allocated in the global segment or on the stack.

A dynamic array is always represented on the heap. Sincaurits is known to the
compiler what needs to be stored at run time are the boundthaneheans to access it.
For simplicity we make the format of dynamic and conformanays the same. Thus for
schema

s(a,b,c,d:integer)= array[a..b,c..d] of integer



5.3. ARRAY REPRESENTATION 53

whose run time bounds are evaluated to be 2..4,3..7 we wawklthe following struc-
ture:

| address]  field | value
X base of datg address of first integer in the array
xX+4 a 2
x+8 b 4
X+12 step 20
X+16 c 3
x+20 d 7

The base address for a schematic array on the heap, will gidiiné first byte after the
array header show. For a conformant array, it will point atfilst data byte of the array or
array range being passed as a parameter. The step field spédilength of an element
of the second dimension in bytes. It is included to allow fog tase where we have a
conformant array formal parameter

x:array[a..:integer,c..d:integer] of integer

to which we pass as actual parameter the range

p[2..4,3..7]

as actual parameter, wherarray[1..10,1..10] of integer

In this case the base address would point at @p[2,3] and ¢fpevaduld be 40 - the
length of 10 integers.

5.3.1 Range checking

When arrays are indexed, the compiler plants run time chexlsee if the indices are
within bounds. In many cases the optimiser is able to remeset checks, but in those
cases where it is unable to do so, some performance degradati occur. Range checks
can be disabled or enabled by the compiler directives.

{$r-} { disable range checks }

{$r+} { enable range checks }

Performance can be further enhanced by the practice ofrilegkrrays to have lower
bounds of zero. The optimiser is generally able to generate refficient code for zero
based arrays.



54

CHAPTER 5. IMPLEMENTATION ISSUES



Chapter 6

Compiler porting tools

Vector Pascal is an open-source project. It aims to createduptive an efficient program
development environment for SIMD programming. In orderatidate the concepts it has
been developed initially for the Intel family of processousining Linux and Microsoft
Windows. However it has been intended from the outset thatebhnology should be
portable to other families of CPUs. This chapter addresse® ©f the issues involved in
porting the compiler to new systems.

6.1 Dependencies

The Vector Pascal compiler tool-set can be divided alongewes as shown in figure 6.1.

1. Tools can be divided into (a) those provided as part of ¢éfease , versus (b) tools
provided as part of the operating environment.

(a) These are mainly written in Java, the exceptions beimgadl sun-time library
in C, a Pascal System unit, and several machine descriptions

(b) These are all available as standard under Linux, and dWedversions are
freely downloadable from the web.

2. Tools can further divided into (a) those required for pemg preparation and docu-
mentation, (b) code translation tools, and (c) code geaepagparation tools.

(@) The program preparation tools are the VIPER IDE desdrineChapter 8,
along with the standardTeXdocument prepartion system, DVI viewers, and
the TTH tool to prepare web enabled versions of Vector Pgaeajram de-
scriptions.

(b) The program translation tools are:

i. Theilcg.pascal Java package which contains the Pascal compiler itself
and classes to support Pascal type declarations. Thigsait the first
stage of code translation, from Pascal to an ILCG tree[10].

ii. A setof machine generated code generators for CPUs suitfedentium,
the K6 etc. These carry out the second phase of code tramslatito an
assembler file.

iii. The ilcg.tree Java package which supports the internal representation
of ILCG trees (see section 6.3).
iv. The Java system which is need to run all of the above.

v. An assembler, which is necessary to carry out the third@bécode trans-

lation, from an assembler file to a relocatable object file.

55



56 CHAPTER 6. COMPILER PORTING TOOLS

Program Preparation tools | Code translation tools | Code Generator Preparation

| tools
VIPER ilcg.Pascal ILCG CodeGenerator
| java package | Generator
VP\TeX | / \
| Pentium.java | Machine
| Kéjava  etc | files
Pentium.m4
| | MMX.m4
) K6.m4 etc
ilcg.tree
Provided as part of | java package |
the Vector Pascal
System | |
Provided as part of
the operating | Java system | m4 macro processor
environment
Latex | Assembler e.g., NASM | Sable compiler
generator
DVliviewer | C compiler e.g. GCC |
TTH | |
ULex lexical analyser
| generator * |

Figure 6.1: Vector Pascal toolset

vi. A C compiler and linkage system is needed to compile thauGtime
library and to link the relocatable object files into final extables.

vii. In addition if one wants to alter the reserved words ottt Pascal or
make other lexical changes one needs the JLex lexical arajgserator.

6.2 Compiler Structure

The structure of the Vector Pascal translation system isvshao figure ??. The main
program class of the compiléey.Pascal.PascalCompiler.java translates the source
code of the program into an internal structure called an ILi@&® [10]. A machine gener-
ated code generator then translates this into assembler Aocexample would be the class
ilcg.tree.lA32. An assembler and linker specified in dedeaclass of the code generator
then translate the assembler code into an executable file.

Consider first the path followed from a source file, the ph#satsit goes through are

i. The source file (1) is parsed by a java class PascalCongpéles (2) a hand written,
recursive descent pars@}[ and results in a Java data structure (3), an ILCG tree,
which is basically a semantic tree for the program.

ii. The resulting tree is transformed (4) from sequentigddcallel form and machine in-
dependent optimisations are performed. Since ILCG tre=fasa objects, they can
contain methods to self-optimise. Each class containsnfetance a methoelal
which attempts to evaluate a tree at compile time. Anothehausimplify — ap-
plies generic machine independent transpormations todtie. cThus thaimplify
method of the clasBor can perform loop unrolling, removal of redundant loops etc.
Other methods allow tree walkers to apply context spec#iiegformations.



6.2. COMPILER STRUCTURE 57

1.HLL program

2.ILCG compliant In this case PascalCompiler.class

front end

3.ILCG program

l«5.ILCG semantics
4 transformations

l«——=6.optimisation rules

detajfs of available
pardllelism

7 transformed ILCG program 8.ILCG for CPU

(For example Pentium.ilc)

10.code generato 9.code generator-
generator

11.machine code for CPU

Figure 6.2: The translation of Vector Pascal to assembler.

{ var i

for i=1 to 9 step 1 do {
vIPL= +(A(v2[N]),N(VBMND));
3
}

Figure 6.3: Sequential form of array assignment

iii. The resulting ilcg tree (7) is walked over by a class thatapsulates the semantics
of the target machine’s instructionset (10); for exampletRen.class. During code
generation the tree is futher transformed, as machinefgpeagister optimisations
are performed. The output of this process is an assemblét file

iv. This is then fed through an appropriate assembler arkegdjrassumed to be exter-
nally provided to generate an executable program.

6.2.1 \ectorisation

The parser initially generates serial code for all consgrudt then interogates the cur-
rent code generator class to determine the degree of gamallpossible for the types of
operations performed in a loop, and if these are greaterdghanit vectorises the code.

Given the declaration

var vl,v2,v3:array[1..9] of integer;

then the statement

v1:=v2+v3;

would first be translated to the ILCG sequence shown in figudelit the example



58 CHAPTER 6. COMPILER PORTING TOOLS

{ var i;
for i= 1to 8 step 2 do {
(ref int32 vector ( 2 ))mem(+(@v1,*(-(",1),4))):=
+(™((ref int32 vector ( 2 ))mem(+(@v2,*(-(",1),4)))),
M(ref int32 vector (2 ))mem(+(@v3,*(-("i,1),4)))));

3

for i= 9to 9 step 1 do {
vIPl= +(N(V2[N]),MVBPMND);

3

Figure 6.4: Parallelised loop

above variable names suchvdsandi have been used for clarity. In realitywould be an
addressing expression like:
(ref int32)mem(+(*((ref int32)ebp), -1860)) ,

which encodes both the type and the address of the varialile.cdde generator is
gueried as to the parallelism available on the tyi@2 and, since it is a Pentium with
MMX, returns 2. The loop is then split into two, a portion tltain be executed in parallel
and a residual sequential component, resulting in the ILE@&vs in figure 6.4. In the
parallel part of the code, the array subscriptions have begaced by explictly cast mem-
ory addresses. This coerces the locations from their @igypes to the type required by
the vectorisation. Applying themplify method of the For class the following generic
transformations are performed:

1. The second loop is replaced by a single statement.
2. The parallel loop is unrolled twofold.
3. The For class is replaced by a sequence of statementsxpiibiegotos.

The result is shown in figure 6.5. When teeal method is invoked, constant folding
causes the loop test condition to be evaluated to
if >(",8) then goto leb4afllb47f

6.2.2 Porting strategy

To port the compiler to a new machine, say a G5, it is neceseary

1. Write a new machine descripti@b.ilc  in ILCG source code.

2. Compile this to a code generator in java with the ilcg cderpjenerator using a
command of the form

(a) java ilcg.ILCG cpus/G5.ilc ilcgl/tree/G5.java G5

3. Write an interface clasicg/tree/G5CG which is a subclass d&5 and which
invokes the assembler and linker. The linker and assembéat will depend on the
machine but one can assume that at legst aassembler and linker will be available.
The clas€G5CGmust take responsibility to handle the translation of pduce calls
from the abstract form provided in ILCG to the concrete foequired by the G5
processor.

4. The clas$s5CGshould also export the methagdtparallelism which specifies to
the vectoriser the degree of parallelism available for gigata types. An example



6.2. COMPILER STRUCTURE 59

{ var i
i= 1
leb4afllb47e:
if >( 2, 0) then if >("i,8) then goto leb4afl1lb47f
else null
fi
else if <(", 8) then goto leb4afllb47f

else null
fi
fi;
(ref int32 vector ( 2 ))mem(+(@v1,*(-(",1),4))):=
+("((ref int32 vector ( 2 ))mem(+(@v2,*(-("i,1),4)))),
A(ref int32 vector ( 2 ))mem(+(@v3,*(-("i,1),4)))));
i:=+(",2);
(ref int32 vector ( 2 ))mem(+(@v1,*(-(",1),4))):=
+("((ref int32 vector ( 2 ))mem(+(@v2,*(-("i,1),4)))),
A(ref int32 vector ( 2 ))mem(+(@v3,*(-("i,1),4)))));

i:=+(N,2);

goto lebdafllb47e;

leb4af11b47f:

= 9;

VA[N]= +(Y(V2[MN]),A(V3M));
}

Figure 6.5: After applyingimplify  to the tree

mov DWORD ecx, 1
leb4b08729615:

cmp DWORD ecx, 8

jg near leb4b08729616

lea edi[ ecx-( 1)]; substituting in edi with 3 occurences
movg MM1, [ ebptedi* 4+ -1620]

paddd MM1, [ ebp+edi* 4+ -1640]

movq [ ebptedi* 4+ -1600],MM1

lea ecx,[ ecx+ 2]

lea edi[ ecx-( 1)]; substituting in edi with 3 occurences
movg MM1, [ ebptedi* 4+ -1620]

paddd MM1, [ ebp+edi* 4+ -1640]

movq [ ebptedi* 4+ -1600],MM1

lea ecx,[ ecx+ 2]

jmp  leb4b08729615
leb4b08729616:

Figure 6.6: The result of matching the parallelised loograggahe Pentium instruction set



60 CHAPTER 6. COMPILER PORTING TOOLS

public int getParallelism(String elementType)

{ if(clementType.equals(Node.int32)) return 2;
if(elementType.equals(Node.int16)) return 4,
if(elementType.equals(Node.int8)) return 8;
if(elementType.equals(Node.uint32)) return 2;
if(elementType.equals(Node.uint16)) return 4;
if(elementType.equals(Node.uint8)) return 8;
if(elementType.equals(Node.ieee32))return 4;
if(elementType.equals(Node.ieee64))return 1;
return 1,

Figure 6.7: The method getParallelism for a P4 processor.

for a P4 is given in figure 6.7. Note that although a P4 is paéiyntcapable of

performing 16 way parallelism on 8 bit operands the measspeg@d when doing
this on is less than that measured for 8 way parallelism. iEhdsie to the restriction
placed on un-aligned loads of 16 byte quantities in the PHitature. For image
processing operations aligned accesses are the exceptiosa when specifying the
degree of parallelism for a processor one should not simpg/the maximal degree
supported by the architecture. The maximal level of pdisiteis not necessarily
the fastest.

Sample machine descriptions for the Pentium and 486 ara givehapter 7 to help those
wishing to port the compiler. These are given in the ILCG niaehlescription language,
an outline of which follows.

6.3 ILCG

The purpose of ILCG (Intermediate Language for Code Geiverais to mediate between
CPU instruction sets and high level language programs.th pmvides a representation
to which compilers can translate a variety of source levegpamming languages and also
a notation for defining the semantics of CPU instructions.

Its purpose is to act as an input to two types of programs:

1. ILCG structures produced by a HLL compiler are input to atomatically con-
structed code generator, working on the syntax matchimgulies described in [12].
This then generates equivalent sequences of assembémestas.

2. Machine descriptions written as ILCG source files arefitppaode-generator-generators
which produce java programs which perform function (1) abov

So far one HLL compiler producing ILCG structures as outpusts: the Vector Pascal
compiler. There also exists one code-generator-genexaiioh produces code generators
that use a top-down pattern matching technique analogdeotog unification.

ILCG is intended to be flexible enough to describe a wide wanémachine architec-
tures. In particular it can specify both SISD and SIMD instions and either stack-based
or register-based machines. However, it does assumerctriags about the machine: that
certain basic types are supported and that the machineiesmid at the byte level.

In ILCG all type conversions, dereferences etc have to besrahdolutely explicit.

In what follows we will designate terminals of the languagebbld thusoctet and
nonterminal in sloping font thuaord8



6.4. SUPPORTED TYPES 61

6.4 Supported types

6.4.1 Data formats

The data in a memory can be distinguished initially in terfhge number of bits in the
individually addressable chunks. The addressable chumkassumed to be the powers
of two from 3 to 7, so we thus have as allowed formatsd8, word16, word32, word64,
word128 These are treated as non terminals in the grammar of ILCG.

When data is being explicitly operated on without regardgadyipe, we have terminals
which stand for these formatsctet, halfword, word, doubleword, quadword.

6.4.2 Typed formats

Each of these underlying formats can contain informatioditféérent types, either signed
or unsigned integers, floats etc. ILCG allows the followintgger types as terminalat8,
uint8, int16, uintl6, int32, uint32, int64, uinté4to stand for signed and unsigned integers
of the appropriate lengths.

The integers are logically grouped insignedand unsigned As non-terminal types
they are represented Agte, short, integer, longndubyte, ushort, uinteger, ulong

Floating point numbers are either assumed to be 32 bit or ©4ithi 32 bit numbers
given the nonterminal symboftoat,double If we wish to specify a particular representa-
tion of floats of doubles we can use the termineée32, ieee64

6.4.3 Reftypes

ILCG uses a simplified version of the Algol-68 reference gpmodel. A value can be a
reference to another type. Thus an integer when used as egsadd a 64 bit floating point
number would be gef ieeeb64. Ref types include registers. An integer register would be a
ref int32 when holding an integer, i@f ref int32 when holding the address of an integer
etc.

6.5 Supported operations
6.5.1 Type casts

The syntax for the type casts is C style so we have for exa(iepbs4) int32 to repre-
sent a conversion of an 32 bit integer to a 64 bit real. Thgse tysts act as constraints on
the pattern matcher during code generation. They do nobperény data transformation.
They are inserted into machine descritions to constraityihes of the arguments that will
be matched for an instruction. They are also used by consgitedecorate ILCG trees in
order both to enforce, and to allow limited breaking of, theetrules.

6.5.2 Arithmetic

The allowed dyadic arithmetic operations are additionyrséed addition, multiplication,
saturated multiplication, subtraction, saturated sutita, division and remainder with
operator symboles, +:, *, *:, - -:, div, mod ..

The concrete syntax is prefix with bracketing. Thus the infigration 3+ 5 7 would
be represented ag3 div (5 7)).

6.5.3 Memory

Memory is explicitly represented. All accesses to memogyrapresented by array op-
erations on a predefined arrayem. Thus location 100 in memory is represented as



62 CHAPTER 6. COMPILER PORTING TOOLS

mem(100) The type of such an expressiordaddresslt can be cast to a reference type of
a given format. Thus we could have
(ref int32)mem(100)

6.5.4 Assignment

We have a set of storage operators corresponding to the wogdihls supported. These
have the form of infix operators. The size of the store beinfppmed depends on the size
of the right hand side. A valid storage statement might be

(ref octet)mem( 299) :=(int8) 99

The first argument is always a reference and the second argawalue of the appro-
priate format.

If the left hand side is a format the right hand side must belaevaf the appropriate
size. If the left hand side is an explicit type rather thanranfat, the right hand side must
have the same type.

6.5.5 Dereferencing

Dereferencing is done explicitly when a value other tharteadl is required. There is a
dereference operator, which converts a reference intoahee\that it references. A valid
load expression might be:

(octet)] ( (ref octet)ymem(99))

The argument to the load operator must be a reference.

6.6 Machine description

llcg can be used to describe the semantics of machine itistngc A machine description

typically consists of a set of register declarations fobkalby a set of instruction formats
and a set of operations. This approach works well only witlktirees that have an orthog-
onal instruction set, ie, those that allow addressing madedsoperators to be combined in
an independent manner.

6.6.1 Registers

When entering machine descriptions in ilcg registers catidntared along with their type
hence

register word EBX assembles['ebx’] ;

reserved register word ESP assembles['esp’];

would declareEBX to be of typeref word.

Aliasing

A register can be declared to be a sub-field of another registace we could write

alias register octet AL = EAX(0:7) assembles['al’];

alias register octet BL = EBX(0:7) assembles['bl'];

to indicate thaBL occupies the bottom 8 bits of registeBX. In this notation bit zero
is taken to be the least significant bit of a value. There aserasd to be two pregiven
registersFP, GP that are used by compilers to point to areas of memory. Thasee
aliased to a particular real register.

register word EBP assembles['ebp’] ;

alias register word FP = EBP(0:31) assembles ['ebp’];

Additional registers may be reserved, indicating that theéecgenerator must not use
them to hold temporary values:

reserved register word ESP assembles['esp’];



6.6. MACHINE DESCRIPTION 63

6.6.2 Register sets

A set of registers that are used in the same way by the inginset can be defined.
pattern reg means EBPEEBX|ESI[EDI|[ECX|[EAX|[EDX|ESH;
pattern breg meanspAL|AH|BL|BH|CL|CH|DL|DH];
All registers in an register set should be of the same length.

6.6.3 Register Arrays

Some machine designs have regular arrays of registerseRhtin have these exhaustively
enumerated it is convenient to have a means of providingray af registers. This can be
declared as:

register vector(8)doubleword MM assembles['MM'i] ;

This declares the symbol MMX to stand for the entire MMX régiiset. It implicitly
defines how the register names are to be printed in the asgdanigluage by defining an
indexing variable i that is used in the assembly languageitiefi.

We also need a syntax for explicitly identifying individuagisters in the set. This is
done by using the dyadic subscript operator:

subscript(MM,2)

which would be of typeef doubleword.

6.6.4 Register Stacks

Whilst some machines have registers organised as an arrahea class of machines,
those oriented around postfix instructionsets, have mggshcks.

The ilcg syntax allows register stacks to be declared:

register stack (8)ieee64 FP assembles[’ ] ;

Two access operations are supported on stacks:

PUSH is a void dyadic operator taking a stack of typetrek first argument and a value
of typet as the second argument. Thus we might have:
PUSH(FP, mem(20))

POP is a monadic operator returningn stacks of typé. So we might have
mem(20):=POP(FP)In addition there are two predicates on stacks that can lkinse
pattern pre-conditions.

FULL is a monadic boolean operator on stacks.

EMPTY is a monadic boolean operator on stacks.

6.6.5 Instruction formats

An instruction format is an abstraction over a class of ceteinstructions. It abstracts over
particular operations and types thereof whilst specifyiog arguments can be combined.

instruction pattern

RR( operator op, anyreg rl, anyreg r2, int t)

means[rl:=(t) op(T((reft) rl), T((reft) r2))]

assemblesfop’'r1°’, r2];

In the above example, we specify a register to registerunstn format that uses the
first register as a source and a destination whilst the sexamgister is only a destination.
The result is returned in register r1.



64 CHAPTER 6. COMPILER PORTING TOOLS

We might however wish to have a more powerful abstractiorichvivas capable of
taking more abstract apecifications for its arguments. kamgle, many machines allow
arguments to instructions to be addressing modes that caith®r registers or memory
references. For us to be able to specify this in an instradbomat we need to be able to
provide grammer non-terminals as arguments to the ingrutdrmats.

For example we might want to be able to say

instruction pattern

RRM(operator op, reg rl, maddrmode rm, int t)

means [r1:=(t) op(T((ref t)rl), T((reft) rm))]

assemblesfop’’'r1’)rm];

This implies that addrmode and reg must be non terminalsceSime non terminals
required by different machines will vary, there must be a mseaf declaring such non-
terminals in ilcg.

An example would be:

pattern regindirf(reg r)

meansy(r) ] assembles[ r ];

pattern baseplusoffsetf(reg r, signed s)

means[+(](r) ,const s)] assembles[r '+’ s ];

pattern addrform means[baseplusoffsetfregindirf];

pattern maddrmode(addrform f)

means[mem(f) ] assembles[ [ f']'];

This gives us a way of including non terminals as parametepsitterns.

6.7 Grammar of ILCG

The following grammar is given in Sable [34] compatible forfhe Sable parser gen-
erator is used to generate a parser for ILCG from this grammhe ILCG parser then
translates a CPU specification into a tree structure whitheis walked by an ILCG-tree-
walk-generator to produce an ILCG-tree-walk Java classipéo that CPU.

If the ILCG grammar is extended, for example to allow newhami¢tic operators, then
the ILCG-tree-walk-generator must itself be modified toeyate translation rules for the
new operators.

/*

6.8 ILCG grammar

This is a definition of the grammer of ILCG using the Sable gramspecification lanaguage. It is
input to Sable to generate a parser for machine descripitiaftg

*

Package ilcg;
/*

6.8.1 Helpers

Helpers are regular expressions macros used in the defintizerminal symbols of the grammar.

*/

Helpers
letter = [[A..Z+Ha..2]);
digit = [0'..'97;



6.8. ILCG GRAMMAR

alphanum = [letter+['0".."9']);

cr = 13;
If = 10;
tab = 9;

digit_sequence = digit+;
fractional_constant = digit_sequence? .’ digit_sequenc

e | digit_sequence

sign =+ | -
exponent_part = ('e’ | 'E’) sign? digit_sequence;
floating_suffix = 'f | 'F | I | 'L}
eol =crlf | cr|If Il This takes care of different platforms

not_cr_If = [[32..127] - [cr + If]];
exponent = (e'[E);

quote = "
all =[0..127];
schar = [all-"7];

not_star = [all - ™];
not_star_slash = [not_star - '/;

/*

6.8.2 Tokens

The tokens section defines the terminal symbols of the gramma
*/

Tokens

floating_constant = fractional_constant exponent_part?
digit_sequence exponent_part floating_suffix?;
/*

terminals specifying data formats

*

void ='void",

octet = 'octet’; int8 = 'int8’; uint8 = 'uint8’;

halfword = ’halfword’; int16 = 'intl6’ ; uintlé = 'uintl6’
word = ‘'word’; int32 = 'int32' ;

uint32 = 'uint32' ; ieee32 = 'ieee3?2’;

doubleword = ’doubleword’; inté4 = 'int64’ ;

uinté4 = 'uint64’; ieee6d = 'ieeebd’;

quadword = ’quadword’;

/*

terminals describing reserved words

*

function= ‘function’;
flag = 'flag’;
location = loc’;

procedure="instruction’;
returns ='returns’;
label = 'label’;
goto="goto’;

fail ='interrupt’;
for ='for’;

to="to’;
Sstep='step’;

do ='do’;
ref="ref",
const="const’;
reg= 'register’;

floating_suffix? |

[N
i

65



66

operation = 'operation’;
alias = ‘alias’;

instruction = 'instruction’;
address = 'address’;
vector ='vector’;

stack = ’stack’;
sideeffect="sideeffect’;

if ='if";

reserved="reserved’;
precondition ="precondition’;

instructionset="instructionset’;
/*

terminals for describing new patterns

*/

pattern = ‘pattern’;
means = 'means’;
assembles = 'assembles’;

/*
terminals specifying operators

*/

colon = "
semicolon= ";’;
comma = ',
dot = ' ;
bra ='(;

ket =),

plus = '+,
satplus = '+!';
satminus = -,
satmult ="*";
map="->";
equals = ="
le = <=
ge=">=";
ne='<>";
shi="<<’;
shr=">>’,
lt="<’;

gt=>"
minus = -
times = ',
exponentiate = "**';
divide = 'div’;
replicate = 'rep’;
and = 'AND’;

or = 'OR ;

xor = 'XOR’;

not = 'NOT’;
sin="SIN’;
cos='COS’;
abs='ABS’;
tan="TAN’;

In="LN’;

CHAPTER 6. COMPILER PORTING TOOLS



6.8. ILCG GRAMMAR

min="MIN’;
max="MAX’;
sqrt="SQRT’;
trunc="TRUNCATE’;
round="ROUND’;
float="FLOAT’;
remainder = 'MOD’;
extend= 'EXTEND’;
store = "=

deref = ",

push ='PUSH’;

pop ='POP’;
call=’APPLY’;
full="FULL’;
empty="EMPTY";
subscript="SUBSCRIPT’,
intlit = digit+,

vbar =,

sket=T;

sbra=";

end="end’;

typetoken="type’;
mem="mem’;

string = quote schar+ quote;
/*

identifiers come after reserved words in the grammar

*/

identifier = letter alphanum®;

blank = (' ’|cr|Ifftab)+;

comment = '/* not_star* "'+ (not_star_slash not_star* " T

Ignored Tokens
blank,comment;
/*

6.8.3 Non terminal symbols

*/

Productions

program = statementlist instructionlist;
instructionlist =instructionset sbra alternatives sket;
/*

non terminals specifying data formats

*/

format = {octet} octet| {halfword} halfword |

{word} word | {doubleword} doubleword |
{quadword} quadword;

/*
non terminals corresponding to type descriptions

¥

67



68 CHAPTER 6. COMPILER PORTING TOOLS

reference =  ref type ;

array = vector bra number ket;

aggregate={stack} stack bra number ket [{vector}array [{n on},
predeclaredtype =  {format} format|{tformat}tformat ;

typeprim=_{typeid} typeid| {predeclaredtype}predeclare dtype;

type= {predeclaredtype}predeclaredtype|
{typeid} typeid|
{array}typeprim array|

{cartesian}sbra type cartesian* sket|
{reftype}reference|
{map}bra [arg]:type map [result]:type ket;
cartesian = comma type;

tformat = {signed} signed|{unsigned}unsigned|{ieee32}i eee32[{ieee63lieeets;
signed = int32 | {int8} int8 | {intl6} intl6 | {int64} int64;
unsigned = uint32 | {uint8} uint8 | {uintl6} uint16 |

{uint64} uint64;

/*
non terminals corresponding to typed values

*/
value = [{refval}refval | *
{rhs}rhs|
{loc}loc|
{void}void|
{cartval}cartval|
{dyadic} dyadic bra [left]:value comma [right]:value ket|
{monadic}monadic bra value ket;
/*

value corresponding to a cartesian product type e.g. reniiaisers

*

cartval=sbra value carttail* sket;
carttail = comma value;

/*

conditions used in defining control structures

*/
condition={dyadic} dyadic bra [left]:condition comma [ri ght]:condition ket
{monadic}monadic bra condition ket |
{id}identifier|
{number}number;
rhs= {numberinumber|
{cast}bra type ket value|
{const}const identifier |
{dereflderef bra refval ket;

refval = loc|

{refcast} bra type ket loc;

loc = {id}identifier|
{memory}mem bra value ket ;

[*predeclaredregister = {fp}fp|{gp}ap;*/
number = {reallit} optionalsign reallit|



6.8. ILCG GRAMMAR 69

{integer} optionalsign intlit;
optionalsign = |{plus}plus|{minus}minus;
reallit="floating_constant;

/*

operators

*

dyadic = {plus} plus|

{minus} minus |

{identifier} identifier|

{exp}exponentiate|
{times} times |
{divide} divide|

{replicate} replicate|

{1}t
{gtigt|
{call}call|
{le}le|
{gelgel
{eqg}equals|
{ne}ne|
{min}min[{max}max|
{push}push|
{subscript}subscript|
{satplus}satplus|
{satmult}satmult|
{satminus}satminus|
{shi}shl|
{shr}shr|
{remainder} remainder|
{orlor|
{and}and|
{xor}xor;
monadic={not}not|{full}full {empty}empty|{pop}pop|{ sinjsin|
{trunc}trunc|{round}round|{float}float| {extend}exte nd|
{cos}cos|{tan}tan|{abs}abs|{sqrt}sqrt [{In}In;
/*

register declaration

*/
registerdecl= reservation reg aggregate type identifier a ssembles sbra string sket ;
reservation = {reserved}reserved|{unreserved};

aliasdecl| =

alias reg aggregate type
[child]:identifier equals [parent]:identifier bra [lowb itl:intlit colon [highbit]:intlit ket
assembles sbra string sket;

opdecl = operation identifier means operator assembles sbr a string sket;

operator = {plus}plus|
{minus}minus|
{times}times|

{1}l

{gtigt|

{min}min|

{max}max|

{shi}shl|

{shr}shr|



70 CHAPTER 6. COMPILER PORTING TOOLS

{le}le|
{gelgel
{eqg}equals|
{ne}ne|
{divide} divide|

{remainder}remainder|

{or}or|
{and}and|
{xor}xor;

/*
pattern declarations

*/

assign = refval store value ;
meaning = {value}value|
{assign}assign|

{goto}goto value|

{fail}fail value|

{iffif bra value ket meaning|

{for} for refval store [start]:value to [stop]:value step [ increment]:value do meaning|
{loc}location value;
patterndecl = pattern identifier paramlist means sbra mean ing sket assemblesto sideeffects precond
|
{alternatives} pattern identifier means sbra alternative S sket;

paramlist = bra param paramtail* ket|/{nullparam}bra ket;

param = typeid identifier|{typeparam} typetoken identifi er/{label}label identifier;
typeid = identifier;

paramtail = comma param,;

alternatives = type alts*;

alts = vbar type;

precond = precondition shra condition sket|{unconditiona I}
asideeffect= sideeffect returnval;

sideeffects = asideeffect*;

assemblesto=assembles sbra assemblypattern sket;

assemblypattern = assemblertoken?;

assemblertoken = {string} string | {identifier} identifie r
returnval = returns identifier;

/*

statements

*/

statement = {aliasdecl} aliasdecl|
{registerdecl} registerdec! |
{addressmode} address patterndecl|
{instructionformat}procedure patterndecl|
{opdecl}opdecl|
{flag} flag identifier equals intlit|
{typerename}typetoken predeclaredtype equals identifie 1l
{patterndecl} patterndecl;
statementlist = statement semicolon statements*;
statements = statement semicolon;

Il



Chapter 7

Sample Machine Descriptions

7.1 Basic 386 architecture

/*
Basic ia32 processor description int ilcg copyright(c) IRzackshott, University of Glasgow Feb
2000

7.1.1 Declare types to correspond to internal ilcg types
gl

type word=DWORD;

type uint32=DWORD,;
type int32=DWORD;

type ieee64=QWORD;
type doubleword=QWORD;
type uint64=QWORD;
type int64=QWORD;

type octet=BYTE;

type uint8=BYTE;

type int16=WORD;

type uintl6=WORD;

type int8=BYTE;

type ieee32=DWORD;
type halfword=WORD;
pattern oplen means[word|halfword|octet];
/*

7.1.2 compiler configuration flags

*/
flag realLitSupported = 0;
/*

7.1.3 Register declarations

*/

register int64 EADX assembles [eadx];

alias register int32 EAX= EADX (0:31) assembles [eax] ;

alias register int32 EDX= EADX (32:63) assembles [edx] ;

alias register uint64 EADXu=EADX(0:63)assembles['eadx’ 1;
register int32 ECX assembles['ecx] ;

register int32 EBX assembles['ebx] ;

71



72 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

register int32 EBP assembles['ebp] ;

alias register int32 FP = EBP(0:31) assembles [‘ebp;
reserved register int32 ESP assembles['esp’];

alias register int32 SP = ESP(0:31) assembles['esp];
register int32 ESI assembles['esi] ;

register int32 EDI assembles[edi’] ;

[*register int32 fitemp assembles['dword[fitemp]';/* n ot a real register */
alias register uint32 uax= EAX (0:31) assembles [eax] ;
alias register uint32 ucx= ECX (0:31) assembles [ecx] ;
alias register uint32 ubx= EBX (0:31) assembles [‘ebx] ;
alias register uint32 usi= ESI (0:31) assembles [esi] ;
alias register uint32 udi= EDI (0:31) assembles [edi] ;
alias register uint32 udx= EDX (0:31) assembles ['edx];

[* use these for signed 8 bit values */

alias register int8 AL = EAX(0:7) assembles['al;
alias register int8 BL = EBX(0:7) assembles[’bl’];
alias register int8 CL = ECX(0:7) assembles['cl];
alias register int8 DL = EDX(0:7) assembles['dIT;
alias register int8 iBH = EBX(8:15) assembles['bh’;
alias register int8 ICH = ECX(8:15) assembles['ch’;
alias register int8 iDH = EDX(8:15) assembles['dh’;

[* use these for unsigned 8 bit values */

[* alias register uint8 AH = EAX(8:15) assembles['ah’]; don t use this*/
alias register uint8 BH = EBX(8:15) assembles['bh’;

alias register uint8 CH = ECX(8:15) assembles['ch’];

alias register uint8 DH = EDX(8:15) assembles['dh’;

alias register uint8 UAL = EAX(0:7) assembles[al’;

alias register uint8 uBL = EBX(0:7) assembles['bl’];

alias register uint8 uCL = ECX(0:7) assembles['cl;

alias register uint8 ubDL (0:7) assembles['dl;

W oo o
m
NN

DX(0:

[* use these for untyped 8 hit values */

alias register octet 0AL = EAX(0:7) assembles['al’;
alias register octet oBL = EBX(0:7) assembles['bl’;
alias register octet oCL = ECX(0:7) assembles[’cl;
alias register octet oDL (0:7) assembles['dl;

11
m
NN

DX(0:

alias register intl6 AX =EAX(0:15)assembles['ax’;
alias register intl6 BX =EBX(0:15)assembles[bx’;

alias register intl6 DX =EDX(0:15)assembles['dx’];
alias register intl6 CX =ECX(0:15)assembles[’cx];
alias register uintl6 uAX =EAX(0:15)assembles['ax’;
alias register uintl6 uBX =EBX(0:15)assembles[bx7;

alias register uintl6 ubDX =EDX(0:15)assembles['dx’;
alias register uintl6 uCX =ECX(0:15)assembles['cx’];
alias register halfword SI = ESI(0:15)assembles['si;
alias register halfword DI = EDI(0:15)assembles['di’;

[* treat 2 memory locations as dummy registers to speed
transfer to and from fpu stack */
register word regutil0 assembles ['dword[regutil0]';
register word regutill assembles ['dword[regutil1]];
alias register int32 rui0 =regutil0(0:31)assembles['dwo rd[regutil0]T;
alias register int32 ruil =regutil1(0:31)assembles['dwo rd[regutil0]’];



7.1. BASIC 386 ARCHITECTURE 73

pattern rug meansregutilO|regutil1];
pattern rui means[ruiO|ruil];
ifdef(‘havesse’, pattern ru meansfruijrug];,
alias register ieee32 ru32rl = regutil1(0:31)assembles[’ dword[regutil0]];
alias register ieee32 ru32r0 = regutil0(0:31)assembles[’ dword[regutilO]T;
pattern rur means[ru32r1|ru32r0J;
pattern ru meansfruilrur|rug];)
register stack(4096)int32 mainSTACK assembles[ 'mainSTA CK7;
/*

7.1.4 Reqister sets

There are several intersecting sets of registers definedifferent instructions. Note that the ECX
and CL,CH registers are named last in their lists to incrdasehance that they are free for sepecial
instructions that need them.

¥

pattern indexreg means[EDI|ESI|EBX|EBP|ESP|EAX|EDX|EC Xl;
pattern accumulators means[EAX|EDX|ECX|EBX];

pattern ireg means [ indexreg] ;

pattern ureg means [ ubx|udijusiludx|ESP|ucx|EBPjuax | ;

pattern reg means [ireg|ureg];

[* Note that the order of the byte registers is chosen to keep t he ah and al regs
free for instructions that require themspecifically, part icularly
conditional expressions on the floating point stack, that r eturn boolean

results in al */

pattern bireg means[ BL|DL|AL|iBH|iDH|iICH|CL];
pattern bureg means[BH|DH|uAL|uBL|uDL|uCL|CH];
pattern boreg means[oBL|oAL|oDL|oCL];

pattern bacc means[AL];

pattern bnonacc means[BL|CL|DL];

pattern breg means[bireg|bnonacc|bureg|boreg|bacc];
pattern swreg means[BX|CX|DX|AX];

pattern uwreg means[uBX|uCX|uDX];

pattern untypedwreg means[SI|DI];

pattern wreg means[swreg|uwreg|untypedwreg];
pattern pushreg means[reg|wreg]; /* these are directly pus hable */
[*pattern dummyreg means[fitemp];*/

pattern dpushreg meansireg];

pattern anyreg means[ breg|wreg|reg];

pattern signedreg means(bireg|swreglireg];

pattern unsignedreg means[bureg|ureg|uwreg|ureg];
pattern acc means[EAX];

pattern gacc means[EADX];

pattern dacc means[EDX];

pattern wacc means[AX];

pattern ebxacc means[EBX];

pattern ebxbacc means[BL];

pattern ecxacc means[ECX];

pattern ecxbacc means[CL];

pattern ecxuacc meansfucx];

pattern modreg means [ECX];

pattern sourcereg means [ESI];

pattern destreg means [EDI];

pattern countreg means [ECX];

pattern eadxu means [EADXul;

pattern shiftcountreg means [ecxbacc|ecxacc|ecxuacc];



74 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

/*

7.1.5 Operator definition

This section defines operations that can be used to parasechenctions.

*/

operation add means + assembles [ 'addT];
[* *loperation and means AND assembles[ 'and’];
operation or means OR assembles['or’;
operation xor means XOR assembles['xor];/* */
operation sub means - assembles [ 'sub’;
operation mul means * assembles ['mul];
operation imul means * assembles [imul 7;
operation bel means < assembles [b’;
operation It means < assembles [I;

operation ab means > assembles [a7;
operation gt means > assembles [g7;
operation eq means = assembles [Z7;
operation be means <= assembles [beT;
operation le means <= assembles [le7;
operation ae means >= assembles [aeT;
operation ge means >= assembles [geT;
operation ne means <> assembles [nz;
operation shiftleft means << assembles [17;
operation shiftright means >> assembles [T7];

pattern condition means[ne|ge|le|eq|gt|lt];

pattern equals means[eq];

pattern eqcondition means[ne|eq];

pattern unsignedcondition means|ne|ae|beleq|ablbel];
pattern operator meansfadd | sublimulland|or|xor];
pattern logoperator means[and|or|xor];

pattern nonmultoperator means[add|subjlogoperator];
pattern saddoperator means[add|imuljand|or|xor];
pattern shiftop means [shiftleft|shiftright];

/*

7.1.6 Data formats

Here we define ilcg symbols for the types that can be used asfgastructions.

*/

pattern unsigned means[uint32|uint8|uint16];

pattern signed means[ int8 | intl6|int32 ];

pattern int means[ int8 | intl6 |int32| uint32|uint8|uintl 6];
pattern double means[ieee64] ;

pattern float means[ieee32];

pattern real means [ieee64|float];

pattern byte meansfuint8|int8|octet];

pattern word32 means[int32|uint32|word];
pattern word16 means[int16|uint16|halfword];
pattern wordupto32 means[byte|word16|word32];



7.1. BASIC 386 ARCHITECTURE 75

pattern dataformat means[octet|word];
pattern longint means [int32|uint32];
pattern hiint meansint32|int64|int16];
pattern two(type t)means[2] assembles[27;
pattern four(type t)means[4] assembles['47;
pattern eight(type t)means[8] assembles['87;
pattern integer64 means[int64|uint64];

pattern scale means[twolfour|eight];
/*

Define the address forms used in lea instructions these tfifi@ the address forms used in other
instructions as the semantics includes no memory referghise of course register and immediate
modes are not present.

*/

pattern labelf(label )

means [I]

assembles]l];

pattern sconst(signed s)means[const s]assembles|s];
pattern Iconstf means[sconst|labelf];

pattern labelconstf(lconstf |,Iconstf s)

means [+(l, s)]

assembles[I'+'s];

pattern constf(signed s)

means|const s]

assembles [s];

pattern offset means[constf|labelf|labelconstf];
pattern regindirf(reg )

means[(r) ]

assembles| r ;

pattern simplescaled(reg rl,scale s)
means[*("(r1),s)]
assembles[rl "*'s];

pattern negcompscaled(reg rl,scale s,offset 0)
means[*(-("(r1),0),s)]
assembles[rl *'s-(" s™*0)];
pattern compscaled(reg rl,scale s,offset 0)
means[*(+("(r1),0),s)]
assembles[rl *'s'+(' s™*'0")7;
pattern scaled means[compscaled|negcompscaled|simples caled];
pattern baseminusoffsetf(reg r, offset s )
means[-(  Nr) , 9)]
assembles[ r (" s )7;
pattern baseplusoffsetf(reg r, offset s )
means[+(  Nr) , 9)]
assembles[ r '+ s ];
pattern scaledindexPlusOffsetf( scaled s, offset offs)
means[+(s, offs)]
assembles[ s '+ offs];
address pattern basePlusScaledindexf(reg rl,scaled s)
means[+(*(r1),s)]
assembles[ r1 '+ s |
address pattern basePlusScaledindexPlusOffsetf(reg r1, scaled s,offset offlongint t)
means[+("(r1),+(s,off)) ]
assembles[ rl '+ s '+off |



76 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

address pattern basePlusScaledindexPlusOffsetf2(reg rl ,scaled s,offset offlongint t)
means[+(s,+("(rl),off)) ]
assembles[ rl '+ s '+off |
address pattern basePlusindexPlusOffsetf(reg rlreg r2, offset off)
means[+(*(r1),+((r2), off))]
assembles[ rl '+ r2 ' +off |;
address pattern basePlusindexf(reg rl,reg r2)
means [+(\(r1),\(r2))]
assembles[ rl '+ r2 |;
pattern directf(unsigned s)
means|const s]
assembles[ s
pattern udirectf(int s)
means|const s]
assembles[ s

pattern riscaddr meansoffset|baseplusoffsetf|regindi rf];
/*

7.1.7 Choice of effective address

This contains the useful formats for the load effective addrinstruction. The pattern regindirf is
excluded here as it adds nothing we do not have already fromimstructions.

*
pattern uncasteaform means|directf |udirectf|
labelf| labelconstf|
basePlusScaledindexPlusOffsetf|
basePlusScaledindexPlusOffsetf2|
scaledIndexPlusOffsetf|
basePlusScaledindexf|

scaledIndexPlusOffsetf|
baseplusoffsetf |

basePlusIndexPlusOffsetf|
baseminusoffsetf
|basePlusindexf

I

pattern eaform(uncasteaform flongint t) /* allow the addr ess expression to be cast to an integer */

means](t)f]
assemblesif];
/*

7.1.8 Formats for all memory addresses

*/
pattern addrform means[eaform|regindirf];

/**

define the address patterns used in other instructions

*



7.1. BASIC 386 ARCHITECTURE 77

pattern maddrmode(addrform f)

means[mem(f) ]

assembles[ T f 7T ],

pattern memrisc(riscaddr r)

means[mem(r)]

assembles[[r]7;

pattern gmaddrmode means[maddrmode|rul];

pattern immediate(signed s)means [const s] assembles [s];

pattern intimmediate(int s)means [const s] assembles [s];

pattern uimmediate(unsigned s)means|const s] assembles| s];
pattern jumpmode means[labelfjmaddrmode];

pattern addrmode means[maddrmode|anyreg];

pattern uwaddrmode means[maddrmode|uwreg];

pattern uaddrmode means[maddrmode|ureg];

pattern baddrmode means[maddrmode|breg];

pattern waddrmode means[maddrmode|reg];

pattern wmemdummy means[maddrmode|rul;

pattern regshift(shiftcountreg r)means[\(r)] assembles [cl;
pattern shiftcount means[immediate|regshift];

pattern regaddrop(addrmode r)means[\(r)] assembles]r];

pattern uwregaddrop(uwaddrmode r)means[’\(r)]assembles [r;

pattern regaddrimmediate means[intimmediate|maddrmode |regaddrop|rul;
pattern uwregaddrimmediate means[uimmediate|uwregaddr opl;

/*

7.1.9 Instruction patterns for the 386
Stack operations
gl

instruction pattern STACKSTORE(reg rl )

means|(ref int32)mem((int32)POP(mainSTACK)):="(r1)]

assembles['xchg DWORDI[esp],r1\n pop DWORD[r1T\n  7;

instruction pattern STACKWSTORE(wreg r1 )

means|(ref halfword)mem((int32)POP(mainSTACK)):=(r1 )l
assembles['xchg DWORDIesp],esiin  mov word[esi],r1\n p op esil;
instruction pattern STACKBSTORE(breg r1 )

means|(ref octet)mem((int32)POP(mainSTACK)):="(r1)]

assembles['xchg DWORD[esp],esiin  mov BYTE[esi],r1\n p op esil;
instruction  pattern SMLIT( nonmultoperator op,offset s)
means[ PUSH(mainSTACK,(int32)op((int32) POP(mainSTACK ), 9))]

assemblesfop * DWORDIesp] ;" sJ;

instruction  pattern SMULIT( nonmultoperator op,offset s)

means[ PUSH(mainSTACK,(int32)*((int32) POP(mainSTACK) , 9
assembles['xchg eax,DWORD[esp]\n imul eax ,” s'\n xchg eax ,DWORDJ[esp]" I;

instruction pattern SADD(saddoperator op)
means [PUSH(mainSTACK,(longint)+((longint)POP(mainST ACK),(longint)POP(mainSTACK)))]
assembles['xchg eax,DWORD[esp]\n add DWORD[esp+4],eax\ n pop eaxl;
instruction pattern SOP(saddoperator op)
means [PUSH(mainSTACK,(longint)op((longint)POP(mainS TACK),(longint)POP(mainSTACK)))]
assembles['xchg eax,DWORDI[esp]\n 'op’ eax,DWORD[esp+4] \n mov DWORDIesp+4],eax\n pop eax];
instruction  pattern SMR( nonmultoperator op,reg rl)

means| PUSH(mainSTACK,(int32)op( (longint)POP(mainSTA CK),(longint)*( r1)))]

assemblesfop ' DWORD[esp] ," r1];



78 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

instruction  pattern SMRSHIFT( shiftop op,shiftcountreg r

means[ PUSH(mainSTACK, op( (int32)POP(mainSTACK),*( rl)

assembles['xchg eax, [esp]\n’
'sh'op ' eax ,cl
\n xchg eax,[esp]];
instruction  pattern BSMR( nonmultoperator op,breg rl)
means[ PUSH(mainSTACK,(octet)op( (int8)POP(mainSTACK)
assemblesfop ' byte[esp] ,’ rl];

instruction  pattern SMRADD( reg rl)
means| rl:=(int32)+((longint) POP(mainSTACK),\( rl1))]
assembles['add 'rl’,DWORD[esp] \n add esp,47;

instruction  pattern SMRP( nonmultoperator op,reg rltype
means[ PUSH(mainSTACK,(ref t)op( (longint)POP(mainSTAC

assemblesfop ' DWORD[esp] ," r1];
instruction pattern RPUSH(dpushreg r)
means[PUSH(mainSTACK,\(r))]
assembles['push " 1];
instruction pattern RPUSHE(ureg r, integer64 t)
means[PUSH(mainSTACK,(t)EXTEND(*(r)))]
assembles[ push dword O ; extend 'r' to 64

\n push ' 1;

instruction pattern POPEADXu(type t,eadxu r)
means[r:=(uint64)POP(mainSTACK)]
assembles['pop eax\n pop edx’;
instruction pattern STOREAXDu(eadxu r,destreg d)
means[(ref uint64)mem(™(d)):="(r)]
assembles'mov eax,['d]\n mov edx,['d'+4]];
instruction pattern RPOP(dpushreg r,type t)
means|[(ref t)r:=(t)POP(mainSTACK)]
assembles[pop ' T1];
instruction pattern BPUSH(bureg r)
means[PUSH(mainSTACK, ()]
assembles['push dword O\n mov BYTE[esp],r];
instruction pattern BSPUSH(baddrmode r)
means[PUSH(mainSTACK, (int8)"(1)]
assembles['push esi\n movsx esi,'r\n xchg esi,[esp]];
instruction pattern BSPOP(bireg r)
means[r:=(octet)POP(mainSTACK)]
assembles/mov ' r',BYTE[esp]\n add esp,47;
instruction pattern BPOP(bureg r)
means[r:=(octet)POP(mainSTACK)]
assembles/mov ' r,BYTE[esp]\n add esp,47;
instruction pattern REFPOP(addrmode r,type ttype t2)
means|(ref ref t)r.=(ref t2)POP(mainSTACK)]
assembles[pop DWORD ' 1];
instruction pattern WPOP(addrmode r.type 1)
means|(ref ref t)r.=(word)POP(mainSTACK)]
assembles['pop DWORD ' 1];
instruction pattern MEMPOP(maddrmode m)
means(ref int32)m:=(int32)POP(mainSTACK)]
assembles[pop DWORD ’'m];
instruction pattern LITPUSH(offset s)
means[PUSH(mainSTACK, s)]
assembles['push DWORD ' s];
instruction pattern MEMPUSH(maddrmode m)
means[PUSH(mainSTACK,(word)*( m))]

1)

K),(longint)*(r1)))]



7.1. BASIC 386 ARCHITECTURE 79

assembles['push DWORD ' m];

instruction pattern DMEMPUSH(eaform ea)
means[PUSH(mainSTACK,(doubleword)((ref doubleword)m em(ea)))]
assembles['push DWORD['ea'+4\n push DWORD['ea’]];

instruction pattern STACKLOAD(word32 t)

means[PUSH(mainSTACK,A((ref t)mem((int32)POP(mainSTA CK)MI
assembles['xchg DWORDIesp],eax\n mov eax,DWORD[eax]\n x chg DWORD[esp],eax];
instruction pattern REFPUSH(maddrmode m,type t)
means[PUSH(mainSTACK,(ref t)(m))]

assembles['push DWORD ' m];

instruction pattern SDEREF(int t)

means[PUSH(mainSTACK, (t)*(mem((int32)POP(mainSTACK) M
assembles['xchg esi,[esp]\n mov esi,dword[esi\n xchg es i,[esp]];
instruction pattern SDEREFDOUBLEWORD(int t)
means[PUSH(mainSTACK,(doubleword)(mem((int32)POP(m ainSTACK))))]

assembles['xchg esi,lesp\n push dword[esi]\n mov esi,dw ord[esi+4]\n  xchg esi[esp+4]];

/*

Data movement to and from registers

*/
instruction pattern SELECT(reg rl,reg r2,addrmode r3,wor dupto32 t)
means[(ref t) rL:=OR(AND((t)*(r1),(t)"(r2)),AND((t)( r3),NOT("(r2))))]
assembles|
‘and 'r1 r2 \n'
‘not 'r2 \n’
‘and 'r2 A SR \n’
‘or rl r2);

instruction  pattern LOAD(maddrmode rm, reg rl, word32 t)
means[ (ref t) rl:= (t)rm )]

assemblesmov ' r1 ') t ' mm];

instruction  pattern LOADW(maddrmode rm, wreg rl, wordl16 t)
means[ (ref t) rl:= (H)rm )]

assemblesmov " r1 ') t ' mm];

instruction  pattern LOADB(maddrmode rm, breg rl)
means[ rl:i= (octet)*(rm )]

assemblesmov ' r1 ') ’byte ' rm];

instruction pattern MOVZXB(reg rl, baddrmode rm)

means[ r1:=EXTEND( (uint8)( rm) )]

assemblesmovzx ' r1 ', BYTE 'rm];

instruction pattern MOVZXB2(reg r1, baddrmode rm)

means[ r1:=EXTEND( (uint8)( rm) )]

assemblesmovzx ' r1 ', BYTE 'rm];

instruction pattern MOVSXB(reg rl,baddrmode rm)
means[rl:=(int32)EXTEND( (int8)( rm) )]
assembles'movsx 'r1'BYTE  'rm];

instruction pattern MOVZXBW(uwreg rl1, baddrmode rm)
means[ rl:= EXTEND((uint8)(rm))]

assemblesmovzx ' r1 ', 'rm];

instruction pattern MOVSXBW(swreg rl1, baddrmode rm)
means[ rl:= EXTEND((rm))]

assemblesmovsx ' r1 ', 'rm];

instruction pattern MOVZXW(reg r1, uwaddrmode rm)
means[ r1:=EXTEND((uint16)"(rm))]

assembles'movzx ' rl1 ’, word 'rm];

instruction pattern MOVSXW(reg r1, wreg rm)



80 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

means[  r1:=(int32)EXTEND("(rm))]
assemblesmovsx ' r1 ', 'rm];
instruction pattern ToBYTE(reg r, breg b)
means[b:= (octet) A( r)]
assembles['push " r \nmov ' b ', BYTE[esp]\nadd esp,4 ' |;

instruction pattern STOREBR(baddrmode rm, breg rl)
means| (ref octet ) rm:= A(rl) ]

assemblesmov BYTE 'rm’," rl];

instruction pattern STORER(maddrmode rm, reg rl, word32 t)
means[ (ref t) rm:= ~( rl) ]

assemblesmov 't ' 'rm’;’ r1];

instruction pattern STOREWR(maddrmode rm, wreg rl, word16 f)
means[ (ref t) rm:= ~( rl) ]

assemblesmov 't ' 'rm’;’ r1];

instruction  pattern NULMOV(reg r3, type t)

means[(ref t)r3:="((ref t)r3)]
assembles[;nulmov ' r3  r3];

instruction  pattern STORELIT(addrmode rm, type t, int s)
means| (ref t) rm:= (t)const s ]

assembles/mov "t ' 'rm ') ' s];

instruction  pattern CLEARREG(reg rm, type t, int s)
means[ (ref t) rm:= ()0 ]

assembles[xor * rm ' rm];

/*

Reqgister to register arithmetic

*

instruction  pattern RMLIT(nonmultoperator op,addrmode r m, type t, offset sm)
means[ (ref t) rm:= op(™(rm),(t) sm) ]

assemblesjop © "t ' rm ) sm];

instruction  pattern MLIT(nonmultoperator op,maddrmode r m, type t, offset sm)
means[ (ref t) rm:= op(™(rm),(t) sm) ]

assemblesjop © "t rm ) sm];

instruction  pattern INC(addrmode rm,int t)

means[(ref tyrm:=  + (*(rm),1)]

assembles[inc " t ' " rm];
instruction  pattern DEC(addrmode rmiint t)

means[(ref trm:= - ((Y)(rm),1)]
assembles['dec " t ’ ' rm];
instruction  pattern SHIFT(shiftop op, shiftcount s, anyre g rtype t)

means|(ref t) r:= op(\(r),s)]
assembles['sh’ op’ ' r ', 's];
instruction  pattern RMR( nonmultoperator op,maddrmode rm ,anyreg rl,wordupto32 t)
means[ (ref t) rm :=op((t) *( rm),(O)( r1))]
assemblesjop * 't rmm ' rl];
instruction  pattern ADDRMR( nonmultoperator op,maddrmod e rm,anyreg rl,wordupto32 t)
means[ (ref t) rm :=+((t) ~( rm),()N rl))]
assembles[ 'add ' t '’ rm ') rl];
instruction  pattern RMRB( nonmultoperator op,addrmode rm ,Jbreg rlbyte t)
means[ (ref t) rm :=op((t) *( rm),[O)( r1))]
assemblesjop * 't rmm ' rl];
instruction pattern nulbass(breg rl,byte t)
means[(ref t)rl:=(t)"(r1)]
assembles[’; nulbas’;
instruction pattern ADDUSB(addrmode fm,breg rl,breg rm)



7.1. BASIC 386 ARCHITECTURE

means[ rm:= +:((uint8)"(rm),\(r1))]

assembles[ 'add ' rm ) rl \n jnc $+4\n mov ' rm’,255\n nop\n
instruction pattern SUBUSB(breg r1,breg rm)

means[ rm:= -:((uint8)"(rm),"(r1))]

assembles[ 'sub ' rm '/ rl "\n jnc $+4\n mov ' rm’,0\n nop\n no
instruction pattern ADDSSB(breg r1,breg rm)

means[ rm:=(int8) +:((int8)"(rm),\(r1))]

assembles[ 'add ' rm ') rl \n jno $+10\n jg $+6\n mov 'rm’ -1
instruction pattern MULTSSB(breg rl1,bnonacc r2)
means[r2:=*:("(r2),"(r1))]

assembles['push ax\n mov al,'r1\n imul 'r2\n shr ax,7\n m

instruction pattern MULTSSBAL(bacc rl,bnonacc r2)
means[rl:=*:("(r1),\r2))]
assembles[imul  'r2\n shr ax,77;

instruction pattern SUBSSB(addrmode fm,breg rl,breg rm)
means[ rm:= (int8)-:((int8)"(rm),A(r1))]
assembles[ 'sub ' rm '’ rl \n jno $+10\n jg $+6\n mov 'tm’ -1
instruction pattern UINT8MAX(breg rl,breg r2)
means| (ref uint8)rl:=MAX((uint8)"(r1),"(r2))]
assembles['cmp 'r1r2\n ja $+4\n mov 'r1''r2];
instruction pattern INTMAX(reg rl,reg r2)
means| rl:=MAX("(r1),"(r2))]
assembles['cmp 'r1'r2\n jl $+4\n mov 'r1''r2];

instruction pattern INTABS(reg rl)
means| rl:=ABS(\(rl))]
assembles['sub ' r1 0’ \n jns $+4\n neg 'ri];
instruction pattern UINT8MIN(breg rl,breg r2)
means| (ref uint8)rl:=MIN((uint8)™(r1),(r2))]
assembles['cmp 'r1''r2\n jna $+4\n mov 'r1’'r2];
instruction pattern INT8MAX(breg rl,breg r2)
means| (ref int8)rl:=MAX((int8)"(r1),(r2))]
assembles['cmp 'r1',r2\n jg $+4\n mov 'rl''r2];
instruction pattern INT8MIN(breg rl,breg r2)
means| (ref int8)rl:=MIN((int8)"(r1),\(r2))]
assembles['cmp 'r1'r2\n jl $+4\n mov 'r1’,r2];
instruction pattern LEA(reg rl, eaform ea)
means [rl:=ea]
assembles [lea ' rl [ ea T ];
instruction pattern NOTOP(addrmode rm, type t)
means[(ref tirm:= NOT((t)*(rm))]
assemblesnot 't * ' rm];
instruction pattern Negate(anyreg rl,type 1)
means[(ref t)rl:= -((t)0,( t)*(r1))]
assembles [neg ' '’ rl];
instruction pattern MNegate(anyreg rl,type t)
means[(ref trl:= *((t)-1,( H)\rl))]
assembles [neg ' '’ rl];
instruction  pattern RLIT(operator op,pushreg r0, type t, s
means[r0:=  op("( r0), const sm) ]
assemblesjop ' ' 10 ') sm];

instruction pattern RRD( operator op, indexreg rl, indexre
means[rl:= (int32)op( A r1)A( r2))]
assemblesfop ' ' r1 ' r2;RRDY;

81

nop’;

pl;

28 \n jng $+4\n mov '’

ov 'r2’,al\n pop axl;

28 \n jng $+4\n mov '’

igned sm)

g r2)

m’,127\n );

rm’,127\n nop\n

nop’;



82 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

instruction pattern RR( nonmultoperator op, anyreg rl, any
means[rl:=(t) op((t) ~( (ref t) rl),(O r2))]

assemblesfop ' ' rl ' r2;RRY;

instruction pattern RRPLUS( anyreg rl, maddrmode r2, int t)
means[rl:=(t) +((t) ~( (ref t) r2),®ON (ref t) rl))]

assembles['add ' rl1 ') r2];

instruction  pattern RRM(operator op, pushreg rl, maddrmod

means [rL:=() op((t) ~(rl),(H)*( rm))]

assemblesfop " " r1 ) m ] ;

pattern bnonacreg means[DH|DL|BH|BL|CH|CL];

pattern baccreg means[AL];

pattern baccregmode means[maddrmode|baccreg];

pattern bnonacregmode means[maddrmode|bnonacreg];

instruction pattern fastBIDIV(baccreg rl,bnonacregmode
means[rl:=div((int8)"(r1),(int8)"(r2))]

assembles[ movsx ax,’rl'\n idiv BYTE 'r2];

instruction pattern BIDIV(baccreg rl1, bnonacregmode r2,b
means|[r3:=div((int8)"(r1),(int8)"(r2))]

assembles[" movsx ax,'rl'\n idiv BYTE 'r2\n mov BYTE 'r3’,

instruction pattern BIMUL(baccreg rl, bnonacreg r2)
means[r2:=*((int8)"(r1),(int8)"(r2))]

assembles['imul BYTE 'r2'\n mov BYTE 'r2,al’;

instruction pattern fastiMUL(acc a,dacc d)

means|(ref int32)a:=*((int32)"(a),(d))]

assembles['imul edx;

instruction pattern CDQ(gacc rl,acc r2)

means[r1:=EXTEND((r2))]

assembles['cdq’];

instruction pattern IDIV(acc rl, gacc r2, indexreg r3)

means[rl:=div("(r2),"(r3))]

assembles['idiv 'r3];

instruction pattern RIDIV(indexreg rl, gacc r2, indexreg r

means[rl:=div("(r2),"(r3))]

assembles['idiv 'r3'\n mov 'rl’eax];

instruction pattern SIDIV(acc rl,modreg r2)

means[PUSH(mainSTACK,div((int32)(r1),( r2))) ]
assembles['push edx\n cdg\n idiv. ' r2 \n xchg eax,DWORD[es
instruction pattern UDIV(acc rl,modreg r2)
means[PUSH(mainSTACK,div((uint32)(r1),( r2))) ]

assembles['push edx\n xor edx,edx\n div. ' r2 \n xchg eax,DW

instruction pattern IMULLIT(pushreg rl,addrmode rm, sign

means|(ref int32)rl:=*("(rm),const s)]

assembles['imul 'r1’,DWORD ’'rm’/'s];

instruction pattern IMOD(acc rl, modreg r2)
means[PUSH(mainSTACK,MOD((int32)*(r1),"( r2))) ]

assembles['push edx\n cdg\n idiv ' r2 "\n xchg edx,DWORD[es

instruction pattern UMOD(acc rl, modreg r2)
means[PUSH(mainSTACK,MOD((uint32)*(r1),"( r2))) ]

assembles['push edx\n xor edx,edx\n div. ' r2 \n xchg edx,DW

instruction pattern BIMOD(baccreg rl, bnonacreg r2)
means[r2:=MOD((int8)(r1),(int8)(r2))]

assembles[" movsx ax,rl\n idiv 'r2'\n mov 'r2’.ah’;

instruction pattern MOD2(reg r)
means[r:=MOD(\(r),2)]
assembles['and 't ',17;

reg r2, int t)

e rm, int t)

r2)

accregmode r3)

all;

p\n xchg eax,edx];

ORDJ[esp]\n xchg eax,edxT];
ed s)

pIT;

ORD([esp];



7.1. BASIC 386 ARCHITECTURE 83

instruction pattern MODA4(reg r)
means[r:=MOD((r),4)]
assembles['and 'r ’,37;
instruction pattern MOD8(reg r)
means[r:=MOD("(r),8)]
assembles['and 'r ', 77;
instruction pattern DIV8(ureg r)
means|[r:=div((uint32)(r),8)]
assembles['shr 't ',37;

instruction pattern MOD16(reg 1)
means[r:=MOD(’(r),16)]

assembles['and 'r ’,157;

instruction pattern PLANT(label )

means]

assembles[l ";

instruction pattern PLANTRCONST( double r,type t)
meansfloc (t)r]

assembles[ 'dq ' r];

instruction pattern PLANTICONST( longint r,type t)
meansfloc (t) r]

assembles[ 'dd ' r];

instruction pattern PLANTSCONST( float r,type 1)
means[loc (t) r]

assembles[ 'dd ' r];

instruction pattern PLANTBCONST( byte rtype t)
means[loc (t) r]

assembles[ 'db ' r];

instruction pattern PLANTWCONST( word16 r,type t)
means[loc (t) r]

assembles[ 'dw ' 1];

/*

Control transfers and tests

*/

instruction pattern FAIL(int i)
means]interrupt ]

assembles['int i];

instruction pattern GOTO(jumpmode )
means[goto ]

assembles[jmp "’ 1];

instruction pattern IFLITGOTO(label l,addrmode r1,signe d r2,condition c,signed t,int b)
means]if((b)c((t) ~(rl),const r2))goto ]

assembles cmp 't "r1 ', " r2\nj ¢ ' near ' ]

instruction pattern IFULITGOTO(label l,addrmode r1,unsi gned r2,unsignedcondition c,unsigned t,int b)

meanslif((b)c((t) ~(r1),(t)const r2))goto 1]
assembles[ emp 't " r1 ', " 12 \nj c ' near ' I];

instruction pattern BIFLITGOTO(label |,baddrmode r1,sig ned arg2,condition c,signed t)
meanslif(c((t) ~(rl),const arg2))goto ||

assembles[ ecmp 't " r1 ', 't arg2 \nj ¢’ near ' I];

instruction pattern IFGOTOB(label |,bireg rl,regaddrimm ediate r2,condition c,signed t,int b)
means]if((int8)c( A(rl),(int8) r2))goto ]

assemblescmp ' rl 'byte’ * ' r2\nj ¢ ' near ' I];

instruction pattern IFGOTOW(label l,wreg rl,regaddrimme diate r2,condition c,signed tint b)
means|if((int8)c( ~(rl),(int16) r2))goto I]
assembles[cmp " r1 "word ' ' r2 \nj c

1

1

near ' ];



84 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

instruction pattern IFGOTO(label l,ireg rlregaddrimmed iate r2,condition c,signed t,int b)
means|if((int8)c( ~(rl),(int32) r2))goto I]

assembles['cmp * rl "dword’ * ' 12 \nj ¢ ' near ']

instruction pattern IFUGOTO(label l,ureg rl,ureg r2,unsi gnedcondition c,signed t,int b)
means[if((int8)c( ~(r1),"( r2)))goto I]

assembles['cmp * rl "dword’ * ' 12 \nj ¢ ' near I}

instruction pattern IFASSp6(signedreg rl,regaddrimmedi ate r2,condition c,type t2,maddrmode r3,maddrmode rm,
means[if((t2)c( ({)"(r1),(t) r2))(ref trm:= ()(r3)]

assemblesfcmp " r1 't ' 7 r2

\n mov 'rl't rm

\n cmov'c’ 'rl'r3\n mov 't rm ') rl];

instruction pattern IFASS(signedreg rl,acc r2,maddrmode rm, type tequals ctype t2 )
means|if((t2)c( ()Nrm),(t) r2))(ref tyrm:= () (rl)]

assembles[cmpxchg "t rm ') " ' rl ]

instruction pattern SET(condition c,reg rl,reg rm, breg r, signed t,byte b)
means[r:=(b) c((int32)"(r1),(t) rm)]

assembles[cmp 'r1 ) " " rm \n set'c * ' r\n sub 'r,1\n not M;

instruction pattern SETU(unsignedcondition c,ureg rl,ur eg rm, breg runsigned t)
means[r:= c((t)(r1),(t) rm)]

assembles[cmp 'r1 ;" " rm \n set'c * ' r\n sub 'r,1\n not M;

instruction pattern SETW(condition c,wreg rl,wreg rm, bre g r,signed tbyte b)
means[r:=(b) c((int16)"(r1),(int16) rm)]

assembles[cmp 'r1 ) " " rm \n set'c * ' r\n sub 'r,1\n not M;

instruction pattern SETUW(unsignedcondition c,uwreg rl, uwregaddrimmediate rm, breg r,unsigned t)
means[r:= c((t)(r1),(uint16) rm)]

assembles[cmp 'r1 ;" " rm \n set'c * ' r\n sub 'r,1\n not M;

instruction pattern SETB(condition c,bireg rl,bireg rm, b reg r,signed tbyte b)
means[r:=(b) c((t)*(r1),(int8) rm)]

assembles[cmp 'r1 ;) " " rm \n set'c * ' r\n sub 'r,1\n not M;

instruction pattern SETUB(unsignedcondition c,bureg rl, bureg rm, breg r,unsigned t)
means[r:= c((t)(r1),(int8) rm))

assembles[cmp 'r1 ;) " " rm \n set'c * ' r\n sub 'r,1\n not M;

instruction pattern SETeq(eqcondition c,reg rl,regaddri mmediate rm, breg r,oplen t)
means[r:= c((t)(r1),(t) rm)]

assembles[cmp 'r1 ;) " " rm \n set'c * ' r\n sub 'r,1\n not M;

instruction pattern IFBOOL(label I,breg rl)

means[ if( (int8)"(rl))goto ]

assembles[test " r1 ;' rl \n jnz near ' I];

instruction pattern BOUNDC(reg rl,int Iwb,int upb)

means[if(OR(<( ~(rl), const Iwb), >( (1), const upb)) )in terrupt 5]
assembles['boundc ' rl ’/lwb’,'upb];

instruction pattern BOUNDO(reg rl,reg r2)

means[if(OR(<( ~(r2), *((ref int32)mem( ~(rl) ))), >( ~(r2 ), M(ref int32)mem(+("(r1), 4))))) )interrupt 5]
assembles[bound " r2 [ r1 ],

instruction pattern BOUNDA4(reg rl,reg r2)

means[if(OR(<( ~(r2),M((ref int32)mem(+(*(r1),4)))),> (™M(r2),M(ref int32)mem(+(*(r1), 8))))))interrupt 5]
assembles[bound ’ r2 [ rl '+4]7;

instruction pattern BOUND16(reg rl,reg r2)

means[if(OR(<( (r2),M((ref int32)mem(+("(r1),16)))), >(Nr2),M(ref int32)mem(+(7(rl), 20))))))interrupt 5]
assembles['bound ’ r2 '[' r1 '+16]7;

instruction pattern IFIN(reg rl,reg r2, label I)

means[ if((int8)AND((uint8)*(mem(rl )) , <<( (uint8)1,’( r2))))goto ]

assemblesfbt [ r1 "’ r2 \n jc 'l];

instruction pattern TESTIN(reg rl,reg r2, breg rtype t)



7.1. BASIC 386 ARCHITECTURE 85

means[ r:=<>(AND(({t)*(mem(rl )) , ()<<( 1,Xr2))),0)]
assembles[bt [ rl ], r2 \n setc 'r\n not 'r\n inc 'r];
instruction pattern BTS(reg rl,reg r2)
means|(ref uint8)mem(rl ):=OR((uint8)*(mem(rl ) ), <<( (u int8)1,(r2)))]
assembles['bts [ r1 ], r2];
instruction pattern REPMOVSD(countreg s,maddrmode m1,s0 urcereg si, destreg di)
meansffor (ref int32)m1:=0 to /(s) step 1 do
(ref int32)mem(+(*(di),*(*((ref int32)m1),4))):="((re f int32)mem(+("(si),*(M((ref int32)m1),4))))
]
assembles[' inc ecx\n rep movsd];
instruction pattern REPMOVSB(countreg s,maddrmode m1,s0 urcereg si, destreg di)
meansffor (ref int32)m1:=0 to /(s) step 1 do
(ref octet)mem(+("(di),((ref int32)m1))):="((ref octe t)mem(+("(si),A((ref int32)m1))))
]

assembles[' inc ecx\n rep movsb];

define(IA32codes,|IFLITGOTO|LOADB|LOADW|LOAD|MOVZXB| ~ MOVSXB|MOVZXW|MOVSXW|MOVZXB2|MOVZXBW|MOVSXBW|
CLEARREG|STORELIT|LEA|INC|TESTIN|SHIFT|MLIT|
RMLIT|ADDRMR]|
[* Note ! the order below is important you must try and match
a 32 hit const before a 16 before an 8
Otherwise you will plant a word where you want to plant
a doubleword if the constant turns out to be small enough
to fit in. Thus PLANTBCONST accepts a value of 13 even
if this is typed to be an int32

*/
PLANTICONST|PLANTWCONST|PLANTBCONST|PLANTRCONST|RISCONST]|
DEC|IMULLIT]|
MOD2|MOD4|MOD8|MOD16| IMOD|UMOD]|INTABS|
Negate|NOTOP|MNegate|BTS|
UINT8MAX|UINT8MIN|INT8MAX|INT8MIN|SELECT)|
PLANT|LITPUSH| MEMPUSH|SETUB|SETUW|
SETB|SETW]|
SET|SETU|IFASS|SETeq|RMR|
IFLITGOTO|IFULITGOTO|BIFLITGOTO|IFIN|IFGOTO|IFUGOTO |
BIMUL|RLIT|LEA|RRM|fastIMUL|RMRB|RRD|RR|DIV|IDIV|f astBIDIV|BIDIV|UDIV|CDQ|
RIDIV|SIDIV]|
IFGOTOB|IFGOTOW
|GOTO|FAIL|BOUND4|BOUNDO|BOUND16|BOUNDC
|REPMOVSB|REPMOVSD |ADDUSB|SUBUSB|ADDSSB|SUBSSB|MSSB|MULTSSBAL |
STOREWR|STORER|STOREBR/* stores */)
[* these come last as they are a fallback for having no free reg isters must go after fpu ops*/
define(lastiA32codes, REFPUSH|RPUSH|SDEREF|SDEREFDOU  BLEWORD/* pushes */
|IFBOOL|SMLIT|SMRP|SADD|SMULIT|SMRADD|SOP|SMR|BSMR| /* stack ops */
STACKLOAD |REFPOP|MEMPOP|BPOP|BSPOP|BSPUSH|DMEMPUSHJSHE
IMOD|UMOD
|BPUSH|STACKSTORE|STACKWSTORE|STACKBSTORE|RPOP|TGEYSMRSHIFT|WPOP
|POPEADXu)

/*

*/



86 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

7.2 The MMX instruction-set

/*

7.2.1 MMX registers and instructions
Registers
gl

register doubleword MMO assembles][ 'MMO';

register doubleword MM1 assembles[ 'MM17];

register doubleword MM2 assembles[ 'MM27;

register doubleword MM3 assembles][ 'MM3;

register doubleword MM4 assembles[ 'MM47;

alias register uint64 MM1U=MM1(0:63) assembles [MML17;
alias register int64 MM1I=MMZ1(0:63) assembles [MMZ17];

[* reserve for working space */

reserved register doubleword MM7 assembles[ 'MM77;
reserved register doubleword MM5 assembles[ 'MM57];
reserved register doubleword MM6 assembles] 'MM6'];
I** used for operations using half registers */

alias register word MMOL=MMO0(0:31) assembles['MMO7;
alias register word MM1L=MM1(0:31) assembles[MML17;
alias register word MM2L=MM2(0:31) assemblesMM2’];
alias register word MM3L=MM3(0:31) assembles[MM37;
alias register word MM4L=MM4(0:31) assembles[MM47;
alias register word MM1LU=MM1U(0:31) assembles/MM1];
alias register word MM1LI=MM1I(0:31) assembles[MML17;

alias register word MM5L=MM5(0:31) assembles[MM57;
[* used for 16 bit parallelism */

alias register intl6 vector (4) MM016=MMO0(0:63) assembles [MMOT;
alias register intl6 vector (4) MM116=MMZ1(0:63) assembles [MM17;
alias register intl6 vector (4) MM216=MM2(0:63) assembles [MM27;
alias register intl6 vector (4) MM316=MM3(0:63) assembles [MM3T;
alias register intl6 vector (4) MM416=MM4(0:63) assembles [MM47;
alias register intl6 vector (4) MM516=MM5(0:63) assembles [MM57;
alias register int32 vector (2) MM032=MM0(0:63) assembles [MMOT;
alias register int32 vector (2) MM132=MM1(0:63) assembles [MM17;
alias register int32 vector (2) MM232=MM2(0:63) assembles [MM27;
alias register int32 vector (2) MM332=MM3(0:63) assembles [MM3T;
alias register int32 vector (2) MM432=MM4(0:63) assembles [MM47;
alias register int32 vector (2) MM532=MM5(0:63) assembles [MM5T];
alias register int8 vector (8) MM08=MMO0(0:63) assembles[ MMO'];
alias register int8 vector (8) MM18=MMZ1(0:63) assembles[’ MM17;
alias register int8 vector (8) MM28=MM2(0:63) assembles[ MM27;
alias register int8 vector (8) MM38=MM3(0:63) assembles[ MM37;
alias register int8 vector (8) MM48=MM4(0:63) assembles[’ MM4T;
alias register int8 vector (8) MM58=MM5(0:63) assembles[ MM5;

pattern im8reg means[MM48|MM38|MM58|MM08|MM18|MM28];

pattern im2reg means[MM432|MM332|MM532|MM032|MM132|MM  232];
pattern imdreg means[MM416|MM316|MM516|MM016|MM116|MM  216];
pattern untypedmreg means [MM1|MM3|MM4|MM5|MM2|MMOIMM7  |MM6];



7.2. THE MMX INSTRUCTION-SET

pattern Imreg means [MM1L|MM3L|MM4L| MM2LIMMOL| MMS5L];
pattern umreg means[MM1U];

pattern iMreg means[MML1l];

pattern ilmreg means[MM1LI];

pattern ulmreg means[MM1LUJ;

pattern wmreg means[imreg|ulmreg|iimreg];

pattern mreg means[im2reg|untypedmreg|umreg|im4reg|im

[* define m4 macros to generate casts to the desired types */
define(shortquad, (intl6 vector(4))$1)
define(refshortquad,(ref int16 vector(4))$1)

define(octoct,(int8 vector(8))$1)
define(octb,(octet vector(8))$1)
define(refoctb,(ref octet vector(8))$1)
define(octuint,(uint8 vector(8))$1)
define(refoctuint,(ref uint8 vector(8))$1)
define(refoctoct,(ref int8 vector(8))$1)
define(intpair, (int32 vector(2))$1)
define(refintpair,(ref int32 vector(2))$1)
/*

Addressing modes

*/

pattern mrmaddrmode means[maddrmode|mreg];
pattern mriscaddrmode means[memrisc|mreg];
/*

MMX instructions

*/

instruction pattern PMULLW(im4reg m, imdreg ma)

means[m := *(“(m),"(ma))]

assembles[pmullw " m ') ma];

instruction pattern PMULLSSB(im8reg m1,mreg m2, mrmaddrm

means[m1:= octoct(*:(octoct(*(m1)),octoct(*(ma))))]

assembles[pxor MM7,MM7"  [* clear regs mm5 and mm7 */
\n pxor MM5,MM5’

8reg|iMreg];

ode ma)

\n punpckhbw MM7’ma /* mm7 now has 4 words with the top 4 byte

\n pxor MM6,MM6’

\n punpckhbw MM6,'m1
\n punpcklbw MM5,'ma
‘\n pmulhw MM7,MM6’
\n psraw MM7,7’

\n pxor MM6,MM6’
\n punpcklow MM6,'m1
\n pmulhw MM5,MM6’

\n psraw MM5,7’

\n packsswb MM5,MM7’

\n movg 'ml’,MM57;

instruction pattern MMXPUSH(mreg m)
means[PUSH(mainSTACK,m)]
assembles['sub esp,8\n movq [esp],' m];
instruction pattern MMXPOP(mreg m )
means[m:=(doubleword)POP(mainSTACK)]
assembles['movg 'm’,[esp]\n add esp,87;

87

s of ma in them *



88 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

instruction pattern PADDD(mreg m, mrmaddrmode ma)
means]refintpair(m) := intpair(+(intpair("(m)),intpai
assembles [paddd 'm ', ma];

instruction pattern PADDW(im4reg m, mrmaddrmode ma)
means[refshortquad(m) := shortquad(+(shortquad(*(m)),
assembles [paddw 'm ') ma];

instruction pattern PADDB(im8reg m, mrmaddrmode ma)
means[refoctoct(m) := octoct(+(octoct((m)),octoct("(
assembles [paddb 'm ') ma];

operation meq means = assembles [eq];

operation mgt means > assembles [gt];

pattern mcondition means[meq|mgt];

instruction pattern CMPPB(mreg m,mrmaddrmode ma,mcondit
means[refoctb(m):= octb(cond(octb(*(m)),octb(*(ma)))
assembles['pcmp’ cond 'b 'm’;ma];

instruction pattern CMPPBR(mreg m,mrmaddrmode ma,mcondi
means[refoctb(m):= octb(<(octb(*(ma)),octb(*(m))))]
assembles['pcmpgth 'm’,;’ma];

instruction pattern CMPPW(im4reg m,im4reg ma,mcondition
means[m:= EXTEND((int8 vector (4))cond("(m),(ma)))]
assembles['pcmp’ cond 'w 'm’,/ma];

instruction pattern CMPPWR(im4reg m,im4reg ma,mconditio
means[m:= EXTEND((int8 vector (4))<(*(ma),\(m)))]
assembles['pcmpgtw 'm’,’ma];

instruction pattern CMPPD(im2reg m,im2reg ma,mcondition
means[m:= EXTEND((int8 vector (2))cond("(m),(ma)))]
assembles[pcmp’ cond 'd 'm’,;ma];

instruction pattern CMPPDR(im2reg m,im2reg ma,mconditio
means[m:= EXTEND((int8 vector (2))<(*(ma),\(m)))]
assembles['pcmpgtd 'm’,'ma];

instruction pattern PADDUB(mreg m, mrmaddrmode ma)
means[refoctuint(m) := octuint(+(octuint("(m)),octuin

assembles [paddb 'm ')’ ma];

instruction pattern PADDSB(im8reg m, mrmaddrmode ma)
means[m := octoct(+:("(m),octoct("(ma))))]

assembles [paddsb 'm ') ma];

instruction pattern PADDSB3(im8reg m,im8reg m2, mrmaddrm
means[m := octoct(+:("(m2),octoct(*(ma))))]

assembles ['movg 'm’m2\n paddsb 'm ')’ ma];

instruction pattern PADDUSB(mreg m, mrmaddrmode ma)
means[refoctuint(m) := octuint(+:(octuint(™(m)),octui
assembles [paddusb 'm ') ma];

[* stack add instructions */

instruction pattern SPADDUSB(mreg m )
means[refoctuint(m) := octuint(+:(octuint(POP(mainSTA
assembles ['movq 'm’,[esp]\n paddusb 'm ’[esp+8]\n add es
instruction pattern SPADDUB(mreg m )

means(refoctuint(m) := octuint(+(octuint(POP(mainSTAC
assembles ['movq 'm’,[esp]\n paddb 'm ’,[esp+8]\n add esp,
instruction pattern SPADDSB(im8reg m )

r(*(ma))))]

shortquad(“(may))))]

ma))))]

ion cond)

)

tion cond)

cond)

n cond)

cond)

n cond)

ode ma)

nt(*(ma))))]

CK)),octuint(POP(mainSTACK))))]
p.167;

K)),octuint(POP(mainSTACK))))]
16 [



7.2. THE MMX INSTRUCTION-SET

means[m := octoct(+:(octoct(POP(mainSTACK)),octoct(PO
assembles ['movg 'm’,[esp]\n paddsb 'm ’,[esp+8]\n add esp

instruction pattern SPSUBD(mreg m )
means[refintpair(m) := intpair(-(intpair(*(m)),intpai
assembles [psubd 'm ’J[esp]\n add esp,8’ ];

instruction pattern PSUBW(im4reg m, mrmaddrmode ma)
means[refshortquad(m) := shortquad(-(shortquad(*(m)),
assembles [psubw 'm ' ma];

instruction pattern PSUBB(im8reg m, mrmaddrmode ma)
means[refoctoct(m) := octoct(-(octoct(*(m)),octoct("(
assembles [psubb 'm ') ma];

instruction pattern PSUBUB(mreg m, mrmaddrmode ma)
means[refoctuint(m) := octuint(-(octuint(*(m)),octuin
assembles [psubb 'm ') ma];

instruction pattern PSUBSB(im8reg m, mrmaddrmode ma)
means[refoctoct(m) := octoct(-:(octoct(*(m)),octoct(®
assembles [psubsb 'm ') ma];

instruction pattern PSUBUSB(mreg m, mrmaddrmode ma)
means[refoctuint(m) := octuint(-:(octuint(*(m)),octui
assembles [psubusb 'm ' ma];

instruction pattern PAND(mreg m, mrmaddrmode ma)
means[m := AND(\(m),"(ma))]

assembles ['pand 'm ')’ ma];

instruction pattern PANDN(mreg m, mrmaddrmode ma)
means[m := AND(“(ma),NOT("(m)))]

assembles ['pandn 'm ')’ ma];

instruction pattern POR(mreg m, mrmaddrmode ma)
means[m := OR(*(m),(ma))]

assembles [por 'm ')’ ma];

instruction pattern MOVDS(waddrmode rm, wmreg m)
means|(ref word)rm:= "(m)]

assembles'movd 'rm '’m];

instruction pattern MOVDL(waddrmode rm, wmreg m)
means[m := (word)(rm)]

assemblesmovd 'm ’'rm];

instruction pattern MOVOCTUINTL(memrisc rm, mreg m)
means[m := octuint(*(rm))]

assemblesmovg " m ') rm];

instruction pattern MOVQS(memrisc rm, mreg m)
means|(ref doubleword)rm:= ~(m)]

assembles['movqg 'rm '’m];

instruction pattern MOVQSGEN(maddrmode rm, mreg m)
means|(ref doubleword)rm:= ~(m)]

assembles['movqg 'rm '’m];

instruction pattern MOVQR(mreg rm, mreg m)
means|(ref doubleword)rm:= ~(m)]

assembles['movqg 'rm '’m];

instruction pattern MOVOCTUINTS(maddrmode rm,mreg m)
means|(ref uint8 vector(8))rm:="(m)]

assembles['movqg 'rm’;/m];

instruction pattern MOVQL(mrmaddrmode rm, mreg m)
means[m := (doubleword)™(rm)]

assemblesmovg ' m '’ rm];

instruction pattern MOVQLR(im8reg rm, im8reg m)

means[m := (rm)]

P(mainSTACK))))]
167;

r(POP(mainSTACK))))]

shortquad(“(ma))))]

ma)))]

t({(ma))))]

89



90 CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS

assembles'movg ' m ', rmj;

instruction pattern REP2(mreg m, reg r)
means[m:=rep(\(r),2)]
assembles['push 'r\n push 'r\n movq 'm',[esp]\n add esp,

instruction pattern REP4(mreg m, wreg r)
means[m:=rep(\(r),4)]
assembles['push 'r\n push 'r\n push 'r\n push 'r\n movq

instruction pattern REP8(mreg m, breg r)
means[m:=rep(’\(r),8)]

assembles['sub esp,2\n mov [esp], 'r\n mov [esp+1], 'r'\n
instruction pattern PACKSSDW(reg r, mreg m)
means|(ref int16 vector(4))m:="((ref int32 vector(4))me
assembles'movg 'm’,[r]\n packssdw 'm’,[r'+8]7;

instruction pattern PACKSSWB(reg r, im8reg m)
means|(ref int8 vector(8))m:="((ref intl6 vector(8))mem
assembles['movq 'm’,['r\n packsswh 'm’,['r'+8]7;

instruction pattern PACKUSWB(reg r, mreg m)
means|(ref uint8 vector(8))m:="((ref int16 vector(8))me
assembles['movq 'm’,[r\n packuswb 'm’,['r'+8]7];

87,

'm’,[esp]\n add esp,87;

xchg [esp],ax\npush ax\npush ax\n push ax\nxchg

define(mmxcodes, MOVQSGEN|PADDD|PADDW|PADDB|PADDSB|PADDSB3|PADDUSB|PADDUB|SPADDSB|SPADDUSB|SPADDUB|PASOW

CMPPB|CMPPBR|CMPPD|CMPPDR|CMPPW|CMPPWR]

SPSUBD|PSUBW|PSUBB|PSUBSB|PSUBUSB|PSUBUB|POR|PANDARDN|PMULLSSB]
PMULLW|MOVDS|MOVDL|MOVQS|MOVQL|MOVQLR|MOVOCTUINTSMCTUINTL|REP2|REP4|REPS|

MMXPUSH|MOVQR)

define(athloncodes,PF2IW)
/*

*

7.3 The 486 CPU

include(‘cpus/i386base.m4’) include(‘cpus/ifpu.m4’) /
*

instructionset [IA32codes|FSET|fpucodes|fpupushes|la

/*

*
[*

stlA32codes]



7.4. PENTIUM 91

7.4 Pentium
*/ include(‘cpus/i386base.m4’) include(‘cpus/ifpu.manclude(‘cpus/mmx.m4’) /*

¥
instructionset [ 1A32codes |RPUSH]|lastlA32codes|fpucod es |fpupushesimmxcodes|STOREAXDuU]

[*
*

7.4.1 Concrete representation



92

CHAPTER 7. SAMPLE MACHINE DESCRIPTIONS



Part |l

VIPER

Ken Renfrew

93






Chapter 8

Introduction to VIPER

8.1 Rationale

When originally developed, Vector Pascal used a commasedclimpiler operating in the
classical Unix fashion. This interface is documented irtieacs.1. However it has been
conventional, at least since the release of UCSD Pascat iatd’70s for Pascal Compilers
to be provided with an integrated development environme&hé Vector Pascal IDE, pro-
vides the usual capabilities of such environments, but thighadditional feature of literate
programming support.

8.1.1 The Literate Programming Tool.

Today’s pace of technological development seems to begrisitlyond anything that could
be conceived only a few decades ago. It is a common “joke” @hgtpiece of modern
technology is six months out of date by the time it reachesktiwsv room.

Software developmentis one of the fastest moving areassaitbhnological stampede.
With development happening at such a rate documentatioftes at best a few steps
behind the reality of the code of any system. Thus anyonmatiag to maintain a system
is left to their own ingenuity and some out of date documémtat

The constant updating of this documentation would in factast certainly be a more
time consuming task than developing the program in the fiestgpand hence time spentin
this area can often be regarded as non productive time.

Several attempts have been made at automating this proddss.automation pro-
cess is often termed literate programming. The two mostesstal of these beingeb
[23] a development of thegK system which is the forefather ofTEX [25] developed by
Leslie Lamport that is so widely used today, and JAVADOC. TAZADOC system was
developed by Sun Microsystems to document programs wiitttdAVA by including the
document details inside specially marked comments [Sch1l].

The Vector Pascal literate programming tool will combines two approaches by
allowing the programmer to embefiliEX commands with in special comment markers.
These will still be able to be parsed by a conventional PaSecaipiler allowing the system
to be used for conventional Pascal programming.

The embedding oFI[EX commands in the program is not compulsory for those wishing
to use the tool. There is a user selectable scale of detaivMhlde included automatically
in documentation even from a normal Pascal program.

In addition in an attempt to make the programs idiosynceasiere readable and to
present the programs arguments more conventionally teeheioption of using a “math-
ematical syntax converter” which will change some of the enionpenetrable code into

95



96 CHAPTER 8. INTRODUCTION TO VIPER

conventional mathematical symbolismThe finished document being written, by the sys-
tem in BTpX to allow straight compilation into a postscript or pdf docent formats.

To further aid the documentation the variables declaret witthe program will be
cross referenced to their instantiation point allowing @dex to cross reference a variable
and thus remind themselves of it's exact nature.

This brief description clearly show the aids that a litegatggramming tool would bring
to the programmer allowing documentation to be both keptougete and in fact created
retrospectively from existing code.

8.1.2 The Mathematical Syntax Converter.

A computer program by it's very nature has a structure whildwa it to be read by a ma-
chine. Modern high level languages have abstracted theassbm this very successfully
but never the less due to this underlying requirement theagyof a program language can
hide the program’s algorithm from a human reader.

Programmers often use psuedo-code to explain algorithrgigngents. Mathemati-
cal notation is usually the most clear and precise way ofgmsg this argument. The
mathematical converter allows a developer to use this systeconvert the Pascal syntax
into something closer to mathematical notatfeand much more presentable to the human
reader.

This feature is uniqué in a programming interface and provides a further level of
documentation. The documentation of the algorithms iredlw the program, which are
arguably the program’s most valuable assets.

8.2 A System Overview

As can be seen from the rationale above the system breakghiet® main sections. The
program editor with the compiler, the literate programntimgl and the mathematical syn-
tax converter.

Itis hoped that an improvementin performance of the sugglempiler can be achieved
by statically loading the compilers class files for all tang@cessoré at start up rather than
the dynamic loading currently employed.

The I.D.E. will follow the traditional approach offeringmilar facilities to that of many
other editors for different languages on the market place.

Among these facilities are a syntax highlighting (for Veddascal , ATeX and HTML),

a project manager with automatic make file facility, the iilo run a program in the
environment with redirected input and output, a functionr&@qedure finder linked to the
source code, a error line highlighter for compilation esr@n external process runner for
IATEX compilers, 'BX to HTML converters, a mini browser to show approximate hessof
the Literate programming tool etc...

The Literate programming tool has been described in itiemale and incorporates the
unigue mathematical syntax conversion allowing a progabetconverted to a mathemat-
ical argument at literally the touch of a button.

8.3 Which VIPER to download?

VIPER is platform independent for the operating systemsujiperts. These operating
systems are: -

1Refer to separate section of for the rationale of the mathtagyconverter.

2Precise mathematical notation although perhaps desiiahlenore complex operation than the time allotted
to the project would allow but none the less an interestingeid@ment for the future.

SUnique to the best of our knowledge at the time of submission.

4Processors currently supported are the Intel 486,Peri®@iand The Athalon K6.



8.4. SYSTEM DEPENDENCIES 97

e Linux
e Windows 9x

e Windows NT/2000/XP

The only decision to make on the VIPER download is whethesthece code is re-
quired. The source version although much larger contamsdlirce code for the VIPER
I.D.E. and the Vector Pascal Compiler and all files requigdaf developer to further de-
velop or adapt any of the systems within VIPER. The class fiwrdoad provides the
required files to have an operational VIPER installation.

8.4 System dependencies

VIPER depends on several pieces of software all of whichraxdyf available to download
from various sources. The vital dependencies are: -

e Java 1.3 or newer.
e The NASM assembler.

e The gcc linker. Included in Linux installations, for Windewse the cygwin or
DJGPP versions of the gcc linker.

For full functionality the following systems are also red: -

o AlATEX installation. ETeX usually comes with Linux installations. The total MigX
package is recommended for all Windows installations.

e A dvi viewer usually included with @IX installation. The YAP viewer included
with MiIKTgX is particularly recommended.

e A TpX to HTMLconverter. TTH was used in the development of the system.

It is recommended that all the above programs are set-uprabgieown installation
instructions and the appropriate class path establisheditdhe host machines operating
system.

8.5 Installing Files

Assuming the VIPER files have been downloaded to a suitabieepdn the host machine
the actual installation can begin. The only decision thastine made is where to install
VIPER. VIPER can be installed anywhere on the host machioeiged that there are no
spaces in the directory path of the target directory.

Once this decision has been made the .zip file should be wipging a proprietary
zip tool (e.g. WinZip, zip magic etc.) to the source diregtor

When the .zip file has been unzipped there will be a directated VectorPascal in
the target directory. VectorPascal is the home directotheVIPER system.

VIPER may be launched by : -

e All installations. Open a shell / DOS window change to the EfPhome directory
and type the commarjava viper.Viper taking care of the capital letter.

e Windows installations. The batch file viper.bat is includedhe VIPER home di-
rectory; running this will start VIPER. A shortcut to thistbh file should be placed
on the host machines desktop for the easiest start-up.

e Linux installations. The shell script viper.sh is includedhe VIPER home direc-
tory; running this will start VIPER.



98 CHAPTER 8. INTRODUCTION TO VIPER

8.6 Setting up the compiler

VIPER detects the operating system installed at start uptlaead moves a suitable run
time library into the ../VectorPascal/ilcg/Pascal dioegtwhere it will be available for the
compiler. This is done automatically each time that VIPERtésted.

The compiler options will need to be set-up along with thespeal set-up proffered for
the installation (see Chapter 9). The file type for the linkérneed set-up. These options
are: -

e For Linux or Windows using the Cygwin gcc use “elf”.
e For Windows using the DJGPP linker use “coff”.

It is important to read through the user guide (see Chaptd¢o @yvoid learning the
system the painful way!



Chapter 9

VIPER User Guide

9.1 Setting Up the System

VIPER automatically sets the compiler flags to suit the ofiregasystem on the host ma-
chine. For those who have used the Vector Pascal compileradommand line interface
this means that the -U flag is set for Windows 9x and Windowsm$éTalllations, and not set
for Linux/UNIX installations, the -o flag is set to produce exe file with the same name
as the Pascal source file. The .asm file and .o files are siynilarhed. If these flags mean
nothing then that is not a problem, either ignore the prewgiformation or see the Vector
Pascal reference manual in the help files of the VIPER system.

VIPER cannot however detect the versions of the gcc linksaited, this is left for the
user. The -f flag of the compiler tells the compiler the fileni@t to be used. To set this go
to Set-Up / Compiler Options / Options and click the -f butsod enter the file format into
the adjacent text field. The format should be :

e Linux Installations and Windows installations with Cygwgaoc linker format iself

e Windows with DJGPP linker format isoff

Q 1 [or Q 7 fer

Figure 9.1: File Format Entries in Compiler Options

The other options on the Compiler options window are: -

e Smart (Not Yet Implemented on the V.P. compiler) Serializésserializes the code
tree for the processor. This allows the compiler to ‘leamito quickly respond to
a given code segment.

e S suppresses the assembly and linking of the program (ambksdfile is still pro-
duced).

e V causes the compiler to produce a verbose output to MyRtoghen compiling
MyProg.pas.

e CPUtag This option is used in conjunction with the -cpu aptitli prefixes the .exe
file with the name of the cpu for which the compiler is set. wtiga option is used
the .exe cannot be run in the I.D.E.

99



100 CHAPTER 9. VIPER USER GUIDE

e -cpu This option allow the source file to be compiled to a raofyprocessors. To
produce an exe file for a range of processors the CPUtag shewdet. This prevents
the exe file being over written by the next compilation for fhedlent processor. Sub-
sequent compilations for the same processor, howeverbwitbverwritten. Select
the cpu from the list in the drop down menu adjacent to the kton.

e -ISO (Not Yet Implemented on the V.P. compiler) Compilessio standard Pascal.

9.1.1 Setting System Dependencies

VIPER depends on various other systems for full functidpallhese are set in Set-Up /
Compiler Options / Dependencies The fields are: -

Compiler Options . |

| options | Dynamic Catians (1)

0 Use Default Compiler

Source Compier Idefault Browse

LaTex Compilar ftexi2dvi - Browes

Dl viewer  frap Brawse

Texto HTML }l‘lh Browse

TEXto FOF  fexzpdf Brawse

Tkl

DVt PS  [dvips Browse

Figure 9.2: Dependencies Window

1. Source Compiler this option is only editable if the Def&lompiler option is not set.
This is the command that would run the compiler from the Vidie#scal directory.

2. This is the command required to rigX this is required for VPEX to work. The
recommended option for this field texi2dvi

3. DVIviewer The dvi viewer that is to be used to view th§X recommended option
is YAP (Windows installations).

4. Tex to HTML if a converter is installed on the host machinert put the command
in this field.

5. Tex to PDF enter the command used to convert tex to PDF.

(o]

. DVIto PS command to convert DVI files to PostScript (usudllips).

9.1.2 Personal Set-up

Viper allows the user many options to cater for differentdasind programming styles. It
is not crucial to the system to set these options but it dodeerfa a more comfortable
programming environment.

If your VIPER installation is on a network each user may hawifferent personal
set-up providing each user has a separate home directofyER/linstalls a file called



9.1. SETTING UP THE SYSTEM 101

viper.properties into this directory and updates this file when ever a changeide to
the system set-up.

NOTE The individual set-up should not be attempted when multijds are open.
If this is done then no harm comes to the system or any of the éjgs but users may
experience difficulty in closing one or more files. The salntis to use Window / Close
All to close all the files. The system can then be used as normal

Viper Options

In the Set-up menu there is the Viper Options menu option hik you will find all the
familiar I.D.E. options such as font size and style, icomesj syntax colours, look and feel
etc.

] Poe opseee 4
Eﬂ'rh:iri Cunsulei Freferences '9 | (_)n_ns_ole] Preferennesl Syniax C_oloura'!
Language Fv‘uc!urPascal b ant!sanssarlr "I Siza |12 'I
Tanspaces [+ v @ Awe ingen
Colat group IE‘td Cormiment 'I -
Look & Feel wincdows 'I
el | Cancel I Cancel |
x x
Edilur{ Consale DYEfBanCES; Syritax Culuursl
Fant |Senf :i' See|l1 = Menlicon size; @ 16 @ 24 @
i R GG |_ Toolkaricon sze: ) 16 [ BT @ 22
Cancel | o "ok I Caricel I

Figure 9.3: The Viper Option Windows
The different Windows shown above allow the control of théER |.D.E. The indi-
vidual windows control: -

e Editor This controls the look and feel (see Colour Plates) the fizetand style, the
tab size and auto indentation.

e ConsoleThis controls the Font style and size and the backgroundicolicthe con-
sole window.

e PreferencesThis allows the individual set-up of the menu icon sizes &edool bar
sizes.

e Syntax Colours This allows the Syntax Highlighting colours to be alteredpt-
sonal taste. These can be adjusted for each supported gn@rector PascaliTX,
HTML) independently.

9.1.3 Dynamic Compiler Options
NOTE This is for advanced use only.
This feature is intended to allow VIPER to handle: -
e New processors as the class files become available (Dyndasiloading only).

e New options for the compiler / new versions of the compiler.



102 CHAPTER 9. VIPER USER GUIDE

The dynamically created options pages are added in the fobamew tabbed pane to the
Compiler Options window. To create a new options pane themasst: -

1. Open the file ../\MectorPascal/viper/resources/dyn@miion.properties
2. Edit the file to suit the new options.

3. Save the file.

Editing to add a processor

In the file dynamicoptions.properties in the ../VectorRélsiper/resources directory there
is a list of the current processors.. This list can be extdrsitmply by adding another to
the end of the list. It is best if the list ends with “others”.

Note The appropriate code generator files must be written for #gxtdr Pascal com-
piler and placed in the ../VVectorPascal/ilcg/tree dirgcto

Editing to add compiler options

The dynamicoptions.properties file can be edited to producew compiler option. This
is done by entering a new line at the end of the file following ih the line above. For
example: -

Compiler Dptions x|

@ TEST

Browse ‘

Ok I Cancell

Figure 9.4: Dynamic Option Window

CPUFLAGS: P3:K6:Pentium:IA32

#

#This is to set flags for the compiler

#NB DO NOT EDIT THIS FILE BEFORE AFTER READING THE HELP FILE
#IT IS IMPORTANT THAT THE FIELDS COME IN THE FOLLOWING ORDER
#FLAG(Type:String), DESCRIPTION(Type:String), TEXTFIE LD(Type:int),
#BROWSEBUTTON(Type: boolean)

#Any comments must be but in this area.

FLAG:DESCRIPTION :TEXTFIELD: BROWSEBUTTON
-TEST:Test description: 20 : true:



9.2. MOVING VIPER 103

9.1.4 VIPER Option Buttons

The VIPER options are set in their respective panels withiliRER Option Buttons these
have three states: -

e Grey The item is not selected.
e Red The mouse is over the correct areas to select the item.

e Blue The item is selected.

9.2 Moving VIPER

Ideally VIPER should be installed from the downloaded zip @ih any new system. If this
is not possible then it is still possible to move VIPER ontoeavrsystem even if the new
host machine has a different operating system.

Moving a VIPER installation from any Windows host to any athN#¢indows host, or
from one Linux installation to another is straight forward.

1. Move the entire VectorPascal directory and all sub-dinges to the new system.

2. Run VIPER and in the File menu click clear recent files amhttlick clear recent
projects.

3. Import all projects that have been moved and are to be usdtemew system.

If the operating systems are different (i.e. moving fromuwirto Windows or vice versa)
then the system must be reset: -

1. open a shell/DOS prompt window and change directorielsad/ectorPascal direc-
tory.

2. Type java ViperSystemReset in the console window.

The system is now reset and the new installation of VIPER eansed normally.

9.3 Programming with VIPER

This section assumes that the I.D.E. is now set-up to thésusste. To open a file click
the open file menu option and use the dialogue box to open &ia fihe usual way.
Familiarity with the basic editing functions of an |.D.Eeassumed.

9.3.1 Single Files

The file will open with the syntax highlighter associatedhatite file suffix of the target
file. The file can be edited with all the usual I.D.E. functio¢@ut, Paste, Copy, Save, Save
As, Find and Replace, etc.).

VIPER features a “right click menu” to offer another methddjoickly editing files.

Line numbers can be viewed either by using the statistich@status bar at the bottom
right hand corner of the I.D.E. or by double clicking the dgrky panel on the left of the
editor window, this line number panel can then be adjustesizia to suit the user’s needs.

A new file can be opened from the file menu. Clicking on the NeweDwent option
allows the user to choose between the three types of file tHER supports (.Pascal,
IATEX, HTML). A new file is then opened in the editor window. The figeun-named until
it has been saved.

When a file has been changed since it was last saved the narae ttagtop of the
editor window appears in red, otherwise it is black.



104 CHAPTER 9. VIPER USER GUIDE

| 3 undo Cirl+Z
ﬁ Redo Alt+Z
@'cm : CHrl+X

%mpy " Ctrl+C
Paste  ©  OtrlsV

Delete Line ~ Ctrl+D

Select All Ctrl+A

Eﬁ Find & Replace  Ctrl+F

Frlf] compie Ctri+F9
] save Cti+8
Close Alt+F4

Figure 9.5: The Right Click Menu

If the user attempts to close the editor before a file is savedption to save the file is
offered before the I.D.E. closes.

If a file has functions and / or procedures the function findeowratically displays
these in the left most editor window. Clicking on the icon biyiaction or procedure takes
the editor to the start of that section.

9.3.2 Projects

The VIPER Project Manager allows the user to construct sofyerojects in Vector Pascal.

An existing project can be opened using the Project / Opeje&nmenu option or icon.
The project will then appear in the project window. The filesnes are in a tree structure
which can be clicked to open the file in the editor window.

To create a new project the user clicks on the new projectacalthe Project properties
dialogue box will appear.

The text fields are then filled in to create the empty projebe @irectory path should
be the parent directory for the project’s home directoryisTtome directory will be given
the project’'s name.

Once the project has been created the files can be added aodeckas required.

e Adding Click the add files icon and enter or browse for the required Tihis copies
the file to the project directory.

e RemovingHighlight the file too be removed and click the remove filesiid&/arn-
ing This deletes the file from the project directory.

Other files may be placed in the project directory but if theyreot added to the project
they will not be a member of the project.

The makefile for the project is automatically created asdetbjame.mke. The user
should not edit either this or the .prj file directly.



9.4. COMPILING FILES IN VIPER 105

Yiper Project Properties E

Figure 9.6: The Project Properties Window

Importing Projects

Projects can be imported from other VIPER installationsitgyjitnport project facility. This
can be found in Project / Import Project. Any project comirani another VIPER must be
imported via this facility.

Backing-Up Projects

The import project facility can be used to move an existingjgut to another directory
of the same machine. This Back-Up project is not just a copthefproject but is fully
functional with all the facilities of the VIPER system.

9.3.3 Embedding ATEX in Vector Pascal

The special comment (*! comment body *) is used to embB&gLin the Vector Pascal
source file. Anything in within these comments will be trebés if it were ATpX both by
the VPEX system and the syntax highlighter.

There is no need to putTgX commands in the special comments unless a specific
result is required. (See section 9.9)

9.4 Compiling Files in VIPER

9.4.1 Compiling Single Files

Assuming the compiler has been set-up the compilation okadivery simple. Simply
click the compile icon (or menu option) and the compiler wadimpile the file in the editor
window with the options selected.

The resulting files are placed in the same directory as theesdile and are named the
same as the source file with the corresponding suffix.



106 CHAPTER 9. VIPER USER GUIDE

Compiling a file to executable for several processors

If a file is to be compiled for several different processoes @PUTAG and -CPU options
must be set in the Set-Up / Compiler Options / Options pane file MyProg.pas would
then be compiled to ProcessorNameMyProg.exe. This prazesbe done for each pro-
cessor on the available processor list.

Note A file compiled in this manner cannot be run within the I.D.E.

9.4.2 Compiling Projects
Projects can be compiled in two ways: -

e Make a project. This compiles the files that are not up to datelbes not compile
any file that is up to date.

e Build a project. This compiles all the files in the projectasdjess of whether the
files are up to date.

The Vector Pascal compiler used in the traditional commaralihterface mode will
check one level of dependency in a project. If there are marel$ of dependency the
VIPER project manager will automatically makemakefile — and recursively check all
levels of dependency in the project.

As VIPER compiles afile, the file is opened in the I.D.E. if aroeis found compilation
stops and the error is highlighted.

9.5 Running Programs in VIPER

Note Projects requiring input from the usBlUST have the input redirected.

When a program has been compiled the resulting executatleecaun in the 1.D.E. by
clicking on the Run icon. A redirect input box then appeafrthé program requires input
from the user then an input file must be set. This file shouldaiorall the data that the
program requires to run to completion.

| ]
Redirectlnput}

~RUM OPTIONS

Redirect Input

Browse |

Redirect Output

Browse |

Ol Cancel

Figure 9.7: The Run Options Panel

Similarly the output may be redirected. This, however iseatpulsory if the output
is not redirected the output of the program appears in thealerwindow. If the output is
redirected then the output is written to the file set-up inrtiredialogue window.



9.6. MAKING VPTEX 107

9.6 Making VPTEX

Making VPTEX is as simple as clicking the Build VX icon or menu option. If a project
is open then the VRX is made for the whole project, otherwise the \&XTis made for
the file in the editor window.

9.6.1 VPTEXOptions

The level of documentation is set by the user in the @PDptions panel. This panel can
be found in the TeX / VP-TeX Options menu item. There are fiveleof detail that can
be chosen :-

e Function and Procedure headings only.
e Level 1 plus all special comments.

e Program bodies and interfaces.

e Selected text

e All source code.

In addition to the above options the user can choose whetbent@nts page is to be
included or not. This is set by clicking the create conteatggbutton.

Compiler Options x|

Figure 9.8: The VPEX Options Panel

9.6.2 VPMath

The VPMath system converts Vector Pascal code to matheathatintax. This makes the
program more human readable and in general more concise.

The VPMath system is invoked automatically when the VPTexagle if the Use Math
Converter is set in the Tex/VP-TeX Options menu item.



108 CHAPTER 9. VIPER USER GUIDE

9.7 WBTEXin VIPER

Most of the features of the VIPER editor used in the creatixtiting of Vector Pascal files
can also be used for creating / editid@gX documents.

Opening aATpX document in VIPER automatically invokes thEX syntax high-
lighter and the Function Methods finder automatically clesntgp a Section / Sub-Section
finder.

This allows the user to click on a Section icon in the left hamddow and the editor
will jump to that section.

9.8 HTM in VIPER

VIPER allows the user to edit/write HTML pages. The systemH®ML is very straight
forward. Create a new HTML file or open an existing file to beteli Once the file has
been altered click on the run button just as if to run a Vectmdal executable.

When a new HTML file is created or an existing one opened the HElhtax high-
lighter is automatically loaded.

The default browser that is installed on the host machineapién with the HTML
page displayed.

9.9 Writing Code to Generate Good VPEX

VPTeX is a tool included in the VIPER Integrated DevelopmEntironment for Veector

Pascal. It automatically produces and formats a LaTeXnlistf the source file or files
on which it is called. By defining three distinct types of coents, VPTeX also allows
the programmer to add extensive descriptions of their codled listing, creating full La-

TeX documentation for their Vector Pascal programs or gtsjeMathematical translation
can also be performed on the source code listing to producera generic and succinct
description of the program'’s algorithms and structures.

The three types of comments available are:

Special Comments : A special comment is started in the source code with the cathme
command (*! and terminated with *). Special comments appetire LaTeX as run-
ning prose and are of most use in giving extensive commeuitsl@scriptions of the
program. Special comments can include LaTeX commands,saitie limitations,
to further imrove the readability of the documentation.

Margin Comments : Normal Pascal {...} comments which appear immediately athd
of aline of code are placed in the left-hand margin adjaaettieir source code line
in the LaTeX documentation. These are of principal use whamall description of
the content of a single line is required.

Normal Comments : Normal Pascal {...} comments which appear on a line of theino
will appear in the LaTeX in typewriter font.

9.9.1 Use of Special Comments

As outlined above, special comments are the principal mefofsscribing a programin the
documentation. To maximise the effectiveness of the lisepprogramming facility source
code should be written with large amounts of special comsand with the program’s
documentation in mind. The ability to include LaTeX commavithin special comments
allows the programmer to directly affect the look of the L{T@gocumentation, but there
are some limits to the use of LaTeX commands within specialroents:



9.9. WRITING CODE TO GENERATE GOOD VX 109

¢ Do notinclude any preamble within special comments. Thamide for the LaTeX
documents is automatically produced by VPTeX.

e Always use full text series altering commands such \&xtbf{..} rather than
their shorthand equivalents such asf{...}

e Bear in mind that any text entered in special comments musbhgilable LaTeX
for the documentation to compile. This means that the faligveharacters are con-
trol characters and should not be entered verbatim intaapsmments; & $ % _ {

)7\

Special comments can be particularly useful for contrgltime structure of your LaTeX
document. The following are guidelines as to how to strieeyimur documentation.

e For an individual program or unit file, the LaTeX documentguoed by VPTeX
will be an article, so sections are the highest level deBorighat can be applied to
a block of text.

e Itis usually useful to include an introduction to the pragrat the start of the Pascal
source file using thisection{Introduction} comand at the start of an opening
special comment.

e A special comment containing just a structure commésegdt{on, \subsection
etc.) can be extremely useful in sectioning off differenttpaf the source code to
add structure to the code listing. For example, the dedtaratould be prefaced with
(*! \section{Declarations} *) or the main program could be prefaced with a
similar command. Each procedure or function is automayigddiced within its own
section by VPTeX so do not add structuring special commentlsese sections of
code.

To produce a well documented program, it is important that&h comments are reg-
ularly employed to add verbose descriptions of the sourde.cti is not uncommon for a
LaTeX documentation file to contain many pages of specialmenis split into sections
and subsections between small sections of code. VPTeX atematically creates a con-
tent page so the structure of your special comments will heated in the content page.

Note: With the current release of the Vector Pascal comfcial comments contain-
ing *’s other than at the opening (*! and closing *) tags wititrcompile.

9.9.2 Use of Margin Comments

Margin comments are useful for providing short descrigiofthe purpose of individual
lines of code. If the meaning of a particular code line is eggly cryptic, or the signif-
icance of the line needs to be emphasised, a margin comnainigsthe purpose of that
line may be useful. Please be aware that because margin aasmexessarily reside in
the left-hand margin of the finished document, lengthy comswill spill onto many lines
and break up the flow of the code. It is advised that margin cenmtashould not be more
than 10 or so words, with the other types of comments availélal longer description is
required.

The VPTeX tool automatically breaks lines following thear and const keywords.
Therefore, the declaration following these keywords wdlgdaced on a new line, but any
margin comment for this line will not. It is recommended tte programmer takes a new
line after thevar andconst keywords.



110 CHAPTER 9. VIPER USER GUIDE

9.9.3 Use of Ordinary Pascal Comments

The function of normal Pascal comments has been supercededst cases by VPTeX'’s
Special Comments. However, normal comments can still biiLisea number of circum-
stances. The following list details the recommended usagermal Pascal comments, but
the user is, of course, free to make use of them in any ciramss he wishes.

e Firstly, because normal comments are displayed in typewf@nt, any spacing
within these comments set out by the programmer will be pveskdn the documen-
tation. This is not the case for special comments which asplayed in a serifed,
variable width font. This property of normal comments matkesn particulary suit-
able for laying out tables and arrays simply, although aigheomment can make
use of LaTeX'’s ability to typeset tables for a more advanegduit.

e Secondly, normal comments do not break up the flow of a cotiedio the same
extent as special comments and so are more useful for ajfarianning commentary
on code lines, without the space limitations of margin comtse

e If a comment is reasonably short, the programmer may findamatrmal comment
will have a better appearance than a special comment. Spemas comment are
offset from the program listing a small special comment marystitute a waste of
the space set aside for it.

9.9.4 Levels of Detail within Documentation

Depending on the sort of documentation you want to produBdeX allows the program-
mer to specify the detail of their program documentatiore Tite levels are:

1. Procedure and Function Headings Only:For documentation of ADT’s it is often
useful to simply provide a list of the functions and procesiuny which a program-
mer may make use of the ADT. VPTeX supports this by providiegtption to create
documentation consisting of only function and procedusalimgs. It is advised that
a contents page is not included with this level of detalil.

2. Special Comments with Function and Procedure HeadingsTo add commentary
and descriptions to the above level of detail, option 2 will @any special comments
to the documentation. This allows the programmer to prodiegcriptions of their
procedures and functions and to add structure to the dodatimm A contents page
is advised for this level of detail.

3. Program Bodies and Unit Interfaces: This level of detail includes all comments. It
is again very useful for documenting ADT’s as the interfages/ided by units will
be documented, but none of the implementation will be inetud\ contents page is
recommended.

4. Selected Text:Special VPTeX comments commands have been defined to allow th
programmer to select which sections of their program to dwmt. The commands
are (*lbegin®) to mark the start of a selected region, gHdnd*)  to mark the
end. Any text, including special comments, not containetthiwithese tags will be
ignored by VPTeX if this level of detail is selected. The stamd end of the main
program file will always be included in the documentationareliess of selection.
This feature is of particular use when preparing reportangigg particular sections
of code within long projects as only the sections of intergiit be documented.
Again, a contents page is recommended.

5. All Code and Comments: For a completely documented code listing, of particular
use for system maintenance, VPTeX can produce a complételsf a program or



9.9. WRITING CODE TO GENERATE GOOD VX 111

project’s source code, including special and normal conimeh contents page is
strongly recommended, particularly for long programs aijguots.

Note: All levels of detail support margin comments.

9.9.5 Mathematical Translation: Motivation and Guidelines

VPTeX has the option of automatically translating the pamgrcode into conventional
mathematical notation. Complex VectorPascal expressikets

myVariable:= if (iota O div 2 pow (dim-iota 1)) mod 2 = 0 then be-1;
are translated into more tidy and comprehensible mathealaépresentations like.

if(zdi'm—O,ll)modzzo _

1
Variabl
yvanable < { —1 otherwise
No action is required to get mathematical translation, ag s it is turned on (VP-TeX Op-
tions), however the benefits of using it increse with the nendf mathematical structures
in the document. In particular, the following will benefibfn mathematical translation:

Array indexing/slicing, e.g thisArray / thatArrayow, nigh

Assignments, e.g. myVarable yourVariable

Reduction operations on arrays, e.g myVariabl@oneDArray

Conditional updates (as shown above)

A number of standard mathematical function such as squate ro
o Mathematical operations, e.g¥,>§, i X j
e English names of Greek letters (lower case only), e,@, v, 0

Mathematical translation is particularly useful if the dagentation is for people without

knowledge of Pascal or a similar language. The only time pratitical translation is not

advisable is when the reader is maintaining the code iiselfhich case the need for cross
reference will usually dominate the need for clarity andveattional notation.

9.9.6 LaTeX Packages

All VPTeX documents only include packaggaphicx andepsfig . These packages are
included to allow the programmer to include graphics andmims to help document their
programs. Any LaTeX commands the programmer may wish to usetvare specific to
other packages cannot be included in VPTeX special comments



112 CHAPTER 9. VIPER USER GUIDE



Bibliography

[1] 3L Limited, Parallel C V2.2, Software Product Descrgotj 1995.
[2] Advanced Micro Devices, 3DNow! Technology Manual, 1999

[3] Aho, A.V., Ganapathi, M, TJiang S.W.K., Code Generaligging Tree Matching and
Dynamic Programming, ACM Trans, Programming LanguagesSystems 11, no.4,
1989, pp.491-516.

[4] Blelloch, G. E., N=sL: A Nested Data-Parallel Language, Carnegie Mellon Univer-
sity, CMU-CS-95-170, Sept 1995.

[5] Burke, Chris, J User Manual, ISI, 1995.

[6] Cattell R. G. G., Automatic derivation of code generatfstom machine descriptions,
ACM Transactions on Programming Languages and Systemjs ap(2.73-190, April
1980.

[7] Chaitin. G., Elegant Lisp Programs, in The Limits of Mathatics, pp. 29-56,
Springer, 1997.

[8] Cheong, G., and Lam, M., An Optimizer for Multimedia Insttion Sets, 2nd SUIF
Workshop, Stanford University, August 1997.

[9] Cherry, G., W., Pascal Programming Structures, Restdiishing, Reston, 1980.

[10] Cockshott, Paul, Direct Compilation of High Level Larages for Multi-media
Instruction-sets, Department of Computer Science, Usityeof Glasgow, Nov 2000.

[11] Ewing, A. K., Richardson, H., Simpson, A. D., Kulkarii,, Writing Data Parallel
Programs with High Performance Fortran, Edinburgh Pdr@benputing Centre, Ver
1.3.1.

[12] Susan L. Graham, Table Driven Code Generation, IEEE (iider, Vol 13, No. 8,
August 1980, pp 25..37.

[13] Intel, Intel Architecture Software Developers ManWalumes 1 and 2, 1999.
[14] Intel, Willamette Processor Software Developer’s @jiFebruary, 2000.
[15] 1SO, Extended Pascal ISO 10206:1990, 1991.

[16] 1SO, Pascal, ISO 7185:1990, 1991.

[17] K. E. Iverson, A Programming Language, John Wiley & Sdns., New York (1962),
p. 16.

[18] Iverson, K. E. . Notation as a tool of thought. Commutimas of the ACM, 23(8),
444-465, 1980.

113



114 BIBLIOGRAPHY

[19] Iverson K. E, A personal View of APL, IBM Systems Journdl 30, No 4, 1991.

[20] Iverson, Kenneth E., J Introduction and Dictionaryerson Software Inc. (ISl),
Toronto, Ontario, 1995. 4, pp 347-361, 2000.

[21] Jensen, K., Wirth, N., PASCAL User Manual and Report;igper 1978.

[22] Johnston, D., C++ Parallel Systems, ECH: Engineerinoghuting Newsletter, No.
55, Daresbury Laboratory/Rutherford Appleton Laboratisrch 1995,pp 6-7.

[23] Knuth, D., Computers and Typesetting, Addison Wesl&g4.

[24] Krall, A., and Lelait, S., Compilation Techniques foruMimedia Processors, Interna-
tional Journal of Parallel Programming, Vol. 28, No. 4, pg361, 2000.

[25] Lamport, L., BlpXa document preparation system, Addison Wesley, 1994.

[26] Leupers, R., Compiler Optimization for Media Process&EMMSEC 99/Sweden
1999.

[27] Marx, K., 1976Capital, Volume I, Harmondsworth: Penguin/New Left Review.
[28] Metcalf, M., and Reid., J., The F Programming Langu&jépP, 1996.

[29] Peleg, A., Wilke S., Weiser U., Intel MMX for MultimediBCs, Comm. ACM, vol
40, no. 1 1997.

[30] Shannon, C., A Mathematical Theory of Communicatione Bell System Technical
Journal, Vol 27, pp 379-423 and 623-656, 1948.

[31] Snyder, L., A Programmer’s Guide to ZPL, MIT Press, Caiddpe, Mass, 1999.

[32] Srereman, N., and Govindarajan, G., A Vectorizing Cdergor Multimedia Exten-
sions, International Journal of Parallel Programming,. 28, No. 4, pp 363-400,
2000.

[33] Strachey, C., Fundamental Concepts of Programminguages, University of Ox-
ford, 1967.

[34] Etienne Gagnon, SABLECC, AN OBJECT-ORIENTED COMPILERRAME-
WORK, School of Computer Science McGill University, MorateMarch 1998.

[35] Texas Instruments, TMS320C62xx CPU and InstructiornR&ference Guide, 1998.

[36] Wirth, N., Recollections about the development of R§sn History of Programming
Languages-lIACM-Press, pp 97-111, 1996.



