
Vector Pascal

Paul Cockshott, University of Glasgow

September 17, 2001

Abstract

Vector Pascal is a language designed to support elegant and efficient expression
of algorithms using the SIMD model of computation. It imports into Pascal features
derived from the functional languages APL and J, in particular the extension of all op-
erators to work on vectors of data. The type system is extended to handle dimensional
analysis. Code generation is via the ILCG system that allows retargeting to multiple
different SIMD instructionsets based on formal descrition of the instructionset seman-
tics.

Introduction

The introduction of SIMD instruction sets[9][1][20][10] to Personal Computers potentially
provides substantial performance increases, but the ability of most programmers to harness
this performance is held back by two factors. The first is the limited availability of com-
pilers that make effective use of these instructionsets in a machine independent manner.
This remains the case despite the research efforts to develop compilers for multi-media
instructionsets[6][18][17][21]. The second is the fact that most popular programming lan-
guages were designed on the word at a time model of the classic von Neuman computer.
Whilst processor architectures are moving towards greater levels of parallelism, the most
widely used programming languages like C, Java and Delphi are structured around a model
of computation in which operations take place on a single value at a time. This was appro-
priate when processors worked this way, but has become an impediment to programmers
seeking to make use of the performance offered by multi-media instructionsets. These
problems mean that it is, in practice, significantly harder to write a program that will use
SIMD features than it is to write a conventional program.

Vector Pascal aims to provide an efficient and concise notation for programmers using
Multi-Media enhanced CPUs. In doing so it borrows concepts for expressing data paral-
lelism that have a long history, dating back to Iverson’s work on APL in the early ’60s[12].

If we write the type of an array ofTas typeT []. Then if we have a binary operator
ω : (T ⊗ T) → T , in languages derived from APL we automatically have an operator
ω : (T []⊗T [])→ T [] . Thus ifx, y are arrays of integersk = x+ y is the array of integers
whereki = xi + yi.

The basic concept is simple, there are complications to do with the semantics of oper-
ations between arrays of different lengths and different dimensions, but Iverson provides a
consistent treatment of these. The most recent languages to be built round this model are J,
an interpretive language[14][3][15], and F[19] a modernised Fortran. In principle though
any language with array types can be extended in a similar way. Iverson’s approach to
data parallelism is machine independent. It can be implemented using scalar instructions
or using the SIMD model. The only difference is speed.

Vector Pascal incorporates Iverson’s approach to data parallelism. Its aim is to provide
a notation that allows the natural and elegant expression of data parallel algorithms within a
base language that is already familiar to a considerable body of programmers and combine
this with modern compilation techniques.

1

By an elegant algorithm I mean one which is expressed as concisely as possible. Ele-
gance is a goal that one approaches asymtotically, approaching but never attaining[5]. APL
and J allow the construction of very elegant programs, but at a cost. An inevitable conse-
quence of elegance is the loss of redundancy. APL programs are as concise, or even more
concise than conventional mathematical notation[13] and use a special characterset. This
makes them hard for the uninitiated to understand. J attempts to remedy this by restrict-
ing itself to the ASCII characterset, but still looks dauntingly unfamiliar to programmers
brought up on more conventional languages. Both APL and J are interpretive which makes
them ill suited to many of the applications for which SIMD speed is required. The aim of
Vector Pascal is to provide the conceptual gains of Iverson’s notation within a framework
familiar to imperative programmers.

Pascal[16]was chosen as a base language over the alternatives of C and Java. C was
rejected because notations likex+y for x andy declared asint x[4],y[4] , already
have the meaning of adding the addresses of the arrays together. Java was rejected because
of the difficulty of efficiently transmitting data parallel operations via its intermediate code
to a just in time code generator.

Type System

The type system of Pascal is extended by the provision of dynamic arrays and by the intro-
duction of dimensioned types.

Dimensioned Types

Dimensional analysis is familiar to scientists and engineers and provides a routine check on
the sanity of mathematical expressions. Dimensions can not be expressed in the otherwise
rigourous type system of standard Pascal, but they are a useful protection against the sort
of programming confusion between imperial and metric units that caused the demise of a
recent Mars probe. They provide a means by which floating point types can be specialised
to represent dimensioned numbers as is required in physics calculations. For example:

kms =(mass,distance,time);
meter=real of distance;
kilo=real of mass;
second=real of time;
newton=real of mass * distance * time POW -2;
meterpersecond = real of distance *time POW -1;
The grammar is given by:

<dimensioned type> <real type> <dimension >[’*’ <dimension>]*

<real type> ’real’
’double’

<dimension> <identifier> [’POW’ [<sign>] <unsigned integer>]

The identifier must be a member of a scalar type, and that scalar type is then refered to as
the basis space of the dimensioned type. The identifiers of the basis space are refered to as
the dimensions of the dimensioned type. Associated with each dimension of a dimensioned
type there is an integer number refered to as the power of that dimension. This is either
introduced explicitly at type declaration time, or determined implicitly for the dimensional
type of expressions.

2

A value of a dimensioned type is a dimensioned value. Letlogd t of a dimensioned
typet be the power to which the dimensiond of typet is raised. Thus fort =newton in the
example above, andd =time, logd t = −2

If x andy are values of dimensioned typestxand tyrespectively, then the following
operators are only permissible iftx = ty: +, - ,<, >, =, <=, >=. For + and -, the dimensional
type of the result is the same as that of the arguments. The operations. The operations *, /
are permited if the typestxandty share the same basis space, or if the basis space of one
of the types is a subrange of the basis space of the other.

The operationPOW is permited between dimensioned types and integers.

Dimension deduction rules

1. If x = y ∗ z for x : t1, y : t2, z : t3 with basis spaceB then∀d∈B logd t1 =
logd t2 + logd t3.

2. If x = y/z for x : t1, y : t2, z : t3 with basis spaceB then∀d∈B logd t1 = logd t2 −
logd t3.

3. If x = y POW z for x : t1, y : t2, z : integer with basis space fort2, B then
∀d∈B logd t1 = logd t2 × z.

Dynamic Arrays

A dynamic array is an array whose bounds are determined at run time. Operations on
dynamic arrays are essential in general purpose image processing software.

Pascal 90[11] introduced the notion of schematic or parameterised types as a means of
creating dynamic arrays. Thus wherer is some integral type one can write

type z(a,b:r)=array[a..b] of t;
If p:^z , then
new(p,n,m)
wheren,m:r initialisesp to point to an array of boundsn..m. The bounds of the array

can then be accessed asp^.a, p^.b . Vector Pascal incorporates this notation from Pascal
90 for dynamic arrays.

Expressions

The expression syntax of Vector Pascal incorportates extensions to refer to ranges of arrays
and to operate on arrays as a whole.

Indexed Ranges

A range of components of an array variable are denoted by the variable followed by a range
expression in brackets.

<indexed range> <variable> ’[’ <range expression>[’,’ <range expression>]* ’]’

<range expression> <expression> ’..’ <expression>

The expressions within the range expression must conform to the index type of the array
variable. The type of a range expressiona[i..j] wherea: array[p..q] of t is array[0..j-i] of
t.

Examples
dataset[i..i+2]:=blank;
twoDdata[2..3,5..6]:=twoDdata[4..5,11..12]*0.5;

3

Subranges may be passed in as actual parameters to procedures whose corresponding
formal parameters are declared as variables of a schematic type. Hence given the following
declarations:

type image(miny,maxy,minx,maxx:integer)=array[miny..maxy,minx..maxx] of byte;
procedure invert(var im:image);begin im:=255-im; end;
var screen:array[0..319,0..199] of byte;
then the following statement would be valid:
invert(screen[40..60,20..30]);

Unary expressions

A unary expression is formed by applying a unary operator to another unary or primary
expression. The unary operators supported are+, -, *, /, div, not, round, sqrt, sin, cos,
tan, abs, ln, ord, chr, succ, predand@.

Thus the following are valid unary expressions: -1, +b, not true, sqrt abs x, sin theta.
In standard Pascal some of these operators are treated as functions,. Syntactically this
means that their arguments must be enclosed in brackets, as insin(theta). This usage
remains syntactically correct in Vector Pascal.

The dyadic operators+, -, *, /, div are all extended to unary context by the insertion of
an implicit value under the operation. Thus just as-a = 0-aso too/2 = 1/2. For sets the
notation-smeans the complement of the sets. The implicit value inserted are given below.

type operators implicit value

number +,- 0
set + empty set
set -,* fullset

number *,/ ,div 1

A unary operator can be applied to an array argument and returns an array result. Simi-
larly any user declared function over a scalar type can be applied to an array type and return
an array. Iff is a function or unary operator mapping from typer to typet then if x is an
array ofr thena:=f(x) assigns an array oft such thata[i]=f(x[i])

Dyadic Operations

Dyadic operators supported are+, +:, -:, -, *, /, div, mod , **, pow, <, >, >=, <=, =, <>,
shr, shl, and, or, in. All of these are consistently extended to operate over arrays. The
operators **, pow denote exponentiation and raising to an integer power. The operators +:
and -: exist to support saturated arithmetic as supported by the MMX instructionset.

Addition operations

Operation Left Right Result Effect ofa op b

+ integer integer integer sum ofa andb
real real real sum ofa andb

- integer integer integer result of subtractingb from a
real real real result of subtractingb from a

+: 0..255 0..255 0..255 saturated addition cliped to 0..255
-128..127 -128..127 -128..127 saturated addition clipped to -128..127

-: 0..255 0..255 0..255 saturated subtraction clipped to 0..255
-128..127 -128..127 -128..127 saturated subtraction clipped to -128..127

4

Assignment

Standard Pascal allows assignement of whole arrays. Vector Pascal extends this to allow
consistent use of mixed rank expressions on the right hand side of an assignment. Given

r0:real; r1:array[0..7] of real; r2:array[0..7,0..7] of real
then we can write

1. r1:= r2[3]; { supported in standard Pascal }

2. r1:= /2; { assign 0.5 to each element of r1 }

3. r2:= r1*3; { assign 1.5 to every element of r2}

4. r1:= \+ r2; { r1gets the totals along the rows of r2}

The variable on the left hand side of an assignment defines an array context within which
expressions on the right hand side are evaluated. Each array context has a rank given by
the number of dimensions of the array on the left hand side. A scalar variable has rank
0. Variables occuring in expressions with an array context of rankr must haver or fewer
dimensions. Then bounds of anyn dimensional array variable, withn ≤ r occuring within
an expression evaluated in an array context of rankr must match with the rightmostn
bounds of the array on the left hand side of the assignment statement.

Where a variable is of lower rank than its array context, the variable is replicated to
fill the array context. This is shown in examples 2 and 3 above. Because the rank of
any assignment is constrained by the variable on the left hand side, no temporary arrays,
other than machine registers, need be allocated to store the intermediate array results of
expressions.

Operator Reduction

Any dyadic operator can be converted to a monadic reduction operator by the functional
\. Thus if a is an array, \+a denotes the sum over the array. More generally\Φx for
some dyadic operatorΦ meansx0Φ(x1Φ..(xnΦι)) whereι is the implicit value given the
operator and the type. Thus we can write \+ for

∑
, * for

∏
etc. The dot product of two

vectors can thus be written as
x:=\+(y*z);
instead of
x:=0;
for i:=0 to n do x:= x+ y[i]*z[i];
A reduction operation takes an argument of rankr and returns an argument of rankr-1

except in the case where its argument is or rank 0, in which case it acts as the identity
operation. Reduction is always performed along the last array dimension of its argument.

Implementation

The Vector Pascal compiler is implemented in Java. It uses the ILCG[7] portable code
generation system. A Vector Pascal program is translated into an abstract semantic tree
implemented as a Java datastructure. The tree is passed to a machine generated Java class
corresponding to the code generator for the target machine. Code generator classes cur-
rently exist for the Intel 486, Pentium with MMX, and P3 and also the AMD K6. Output
is assembler code which is assembled using the NASM assembler and linked using the gcc
loader. Vector Pascal currently runs under Windows98 , Windows2000 and Linux. Separate
compilation using Turbo Pascal style units is supported.

The code generators follow the pattern matching approach described in[2][4]and [8],
and are automatically generated from machine specifications written in ILCG (Intermedi-
ate Language for Code Generators). ILCG is a strongly typed language which supports

5

vector data types and operators over vectors. It is well suited to describing MMX type
instructionsets. The code generator classes export from their interfaces details about the
degree of parallelism supported for each data-type. This is used by the front end com-
piler to iterate over arrays longer than those supported by the underlying machine. Where
supported parallelism is unitary this defaults to iteration over the whole array.

Selection of target machines is by a compile time switch which causes the appropriate
code generator class to be dynamically loaded.

Conclusions

Vector Pascal provides a new approach to providing a programming environment for multi-
media instructionsets. It borrows notational conventions that have a long history of sucess-
full use in interpretive programming languages, combining these with modern compiler
techniques to target SIMD instructionsets. It provides a uniform source language that can
target multiple different processors without the programmer having to think about the tar-
get machine. Use of Java as the implementation language aids portability of the compiler
accross operating systems. Work is underway to compare the performance and elegance
of implementations of a stereo-matcher algorithm implemented in Vector Pascal with the
same algorithm implemented in C using the Intel image processing library.

References

[1] Advanced Micro Devices, 3DNow! Technology Manual, 1999.

[2] Aho, A.V., Ganapathi, M, TJiang S.W.K., Code Generation Using Tree Matching and
Dynamic Programming, ACM Trans, Programming Languages and Systems 11, no.4,
1989, pp.491-516.

[3] Burke, Chris, J User Manual, ISI, 1995.

[4] Cattell R. G. G., Automatic derivation of code generators from machine descriptions,
ACM Transactions on Programming Languages and Systems, 2(2), pp. 173-190, April
1980.

[5] Chaitin. G., Elegant Lisp Programs, in The Limits of Mathematics, pp. 29-56,
Springer, 1997.

[6] Cheong, G., and Lam, M., An Optimizer for Multimedia Instruction Sets, 2nd SUIF
Workshop, Stanford University, August 1997.

[7] Cockshott, Paul, Direct Compilation of High Level Languages for Multi-media
Instruction-sets, Department of Computer Science, University of Glasgow, Nov 2000.

[8] Susan L. Graham, Table Driven Code Generation, IEEE Computer, Vol 13, No. 8,
August 1980, pp 25..37.

[9] Intel, Intel Architecture Software Developers Manual Volumes 1 and 2, 1999.

[10] Intel, Willamette Processor Software Developer’s Guide, February, 2000.

[11] ISO, Extended Pascal ISO 10206:1990, 1991.

[12] Iverson K. E., A Programming Language, John Wiley & Sons, Inc., New York (1962),
p. 16.

[13] Iverson, K. E. . Notation as a tool of thought. Communications of the ACM, 23(8),
444-465, 1980.

6

[14] Iverson K. E, A personal View of APL, IBM Systems Journal, Vol 30, No 4, 1991.

[15] Iverson, Kenneth E., J Introduction and Dictionary, Iverson Software Inc. (ISI),
Toronto, Ontario, 1995.

[16] Jensen K., and Wirth N., Pascal User Manual and Report, Springer, 1978.

[17] Krall, A., and Lelait, S., Compilation Techniques for Multimedia Processors, Interna-
tional Journal of Parallel Programming, Vol. 28, No. 4, pp 347-361, 2000.

[18] Leupers, R., Compiler Optimization for Media Processors, EMMSEC 99/Sweden
1999.

[19] Metcalf, M., and Reid., J., The F Programming Language, OUP, 1996.

[20] Peleg, A., Wilke S., Weiser U., Intel MMX for Multimedia PCs, Comm. ACM, vol
40, no. 1 1997.

[21] Srereman, N., and Govindarajan, G., A Vectorizing Compiler for Multimedia Exten-
sions, International Journal of Parallel Programming, Vol. 28, No. 4, pp 363-400,
2000.

7

