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Chapter 1

Introduction

Although we are entirely unaware of it, computation is central to all aspects of
our existences, that is applying rules to information to produce new informa-
tion, usually to make a decision about what to do next!. Every day, we solve,
or try to solve, a myriad of problems, from the utterly trivial to the bafflingly
complex. To do this we deploy some processes of reasoning, often unarticu-
lated, and often aided by large doses of what we might all “common sense” or
“gut feeling” or “intuition”. And often, our reasoning is not as definitive as we
might like, leading us to conclusions that are wrong or tentative or contrary to
what we might prefer.

It is striking that our reasoning is most accurate where the information and
rules are most precise, in particular where we use numbers and rules deriving
from mathematics, such as those for arithmetic and geometry and logic. Again,
we carry out most of this sort of computation quite unconsciously, except when
we get it wrong. However, we do so using standard representations and rules
that we learnt as children, and that we expect other people to share. One big
strength of this standardisation of numeric reasoning is that it can easily be
made explicit, and so repeated and checked, by oneself or other people, until
it is right. Another big strength is that we can build machines, like calculators
and computers, to carry out computations for us, and we can agree that these
machines do actually embody the rules and information we hold in common.

Now, we actually perform very sophisticated computations all the time. In
the course of a day, we might, say:

o check whether we have the right change for an automatic ticket machine;

o decide how much food to buy to cook for visiting friends as well as the
household;

e make sure that the shop bill has accounted for everything we bought;

Here we are using “information” in the general sense of facts or knowledge about some cir-
cumstance, rather than the precisely defined technical conception of information discussed in the
rest of this book.
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e decide what order to cook the food in, to make sure all of each course is
ready at the appropriate times;

o work out how many days we can afford to spend on our spring vacation,
if we've already commited some to a summer holiday and need to leave
some over for for a family celebration;

o decide if it’s cheaper to take the train but spend a night in a hotel on the
way or fly directly to our destination.

These sorts of computations seem trivial; certainly they are small and simple
enough for us to perform in our heads. Nonetheless, they actually require
considerable competence in mental arithmetic and sequencing of activities, as
becomes clear if we try to explain how to do them blow by blow to someone
else.

It is important to notice that we do not generally need fine precision for
these sorts of daily computations. In the above examples, we want enough
ticket machine change or food or time for cooking or holiday days left or travel
cost saving, where “enough” allows a reasonable margin of error. So, we accept
that we may make mistakes but are happy with “ball park” figures.

For more complex, or more costly, computations however, such as planning
a new kitchen or an extensive holiday, we require greater assurance and preci-
sion. Here, we readily turn first to pencil and paper, next to a calculator, and,
increasingly, to standard software on a personal computer, such as a spread-
sheet. We do so, perhaps, because we believe that these offer a hierarchy of
increasing checkability and reliability as mechanisation increases and human
computation decreases. Indeed, these tools enable us to focus on making mod-
els of problems, at which human beings are supremely accomplished, rather
than performing complex computations, where we are prone to inaccuracies
and mistakes.

Now, sometimes things still go wrong when we use apparently reliable
tools. Almost always, the mistakes are our own fault, for example if we en-
ter the wrong data or faulty equations into a spreadsheet.

Nonetheless, we are plainly aware of limitations to our tools. Thus, it’s sur-
prisingly easy to try to carry out a calculation to more places than a pocket
calculator can support. More to the point, we constantly notice our personal
computers going “too slowly” or running out of memory as we demand more
and more of them. However, these limitations do not seem insurmountable be-
cause we have got used to the continuous cheapening of computers and mem-
ory, accompanied by increases in their speed and capacity, either using new
technologies or by making better use of existing ones.

For example, just from looking at advertisements, the speed of a single com-
puter processor seems to have stayed at around 3 GHz since the turn of the
century. However, we are now offered personal computers made up of multi-
ple cores, first two, next four and eight, with no apparent limit to the number.
Thus, the limited speed of one processor can be compensated by using lots of
them.



For example, digital cameras and personal music players now use solid
state memory where previously they were based on magnetic tape, magnetic
disks, or CDs or DVDs. And laptops and “web books” no longer necessarily
have hard disks, let alone CD or DVD writers.

We have also got used to a very different style of accessing and storing
information, on remote machines run by other people, rather than on some
tangibly physical device on a desk or in a pocket. Just as CDs killed cassette
tapes and LPs for music, and DVDs displaced video for films, now direct down
loading to media players of intangible codes is replacing personal ownership
of physical copies?.

Contrariwise, we trust more and more material which might once have
been considered our personal responsibility to external repositories. Thus, we
not only implicitly accept remote maintenance of our email folders by our ser-
vice provider, but also explicitly upload what we still regard as “private” pho-
tographs and documents to unknown physical locations.

Finally, we routinely take advantage of complex computations performed
remotely on our behalf. For example, we increasingly optimise flights for
multi-location holidays, check weather forecasts or find routes for road jour-
neys, all using on-line services rather than consulting time tables, barometers
and maps.

Thus, even if there are restrictions on the machines we can own ourselves,
there seem to be no bounds to the capacities of the shadowy world of services
and servers at the other end of the Internet. And even if we constantly run
up against the limits of current technology, or what we can afford, then all
our experience suggests that the former will eventually be overcome, if not the
latter.

Alas, as we explore in the rest of this book, there are deep reasons why such
optimism in unlimited technological progress is absolutely unfounded, even if
relatively appropriate. First of all, when we try to give a precise characteri-
sation to the notion of abstract computation, we discover that certainty in our
reasoning is undermined by troubling paradoxes at the core of mathematics.
And secondly, when we look at the physical characteristics of our universe, we
find that there are fundamentals limits to the properties of the concrete comput-
ers we might construct.

Now, we are all familiar with the idea that some things are just not phys-
ically feasible: at least not within physics as we currently understand it. For
example, we are generally accepting that time travel, perpetual motion, and
faster than light speeds are only possible in science fiction worlds. Nonethe-
less, every year people come up with new attempts to transcend these physical
bariers. And every year, scientists and engineers explore and ultimately refute
such attempts.

Similarly, there have been many attempts to develop abstract hyper-computational
systems or concrete hyper-computers, which seek to transcend the physical and
mathematical limits we have just alluded to. Thus, as well as exploring lim-

2 And books may yet succumb to eReaders.
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its to computations and computers, we will also discuss attempts to overcome
them, and consider why they are ultimately ill-founded.
The rest of this book is organised as follows:

o list of chapter summaries

1.0.1 Acknowledgements



Chapter 2

What is computation

2.1 The apparent mystery of maths

In an influential paper [81] Wigner asked why it was that maths was so "un-
reasonably effective’ in describing physical reality. The question he asked are
similar to those we are dealing with in this book. Our topic is, on the surface,
slightly narrower. We are dealing with computing rather than maths in gen-
eral. But if we look at what Wigner has to say, we find that he too is concerned
primarily with the practical application of maths, and that practical applica-
tion to physics always involves doing real computations. So Wigners concerns
make a good starting point.
He starts with a perhaps apocryphal tale:

There is a story about two friends, who were classmates in high
school, talking about their jobs. One of them became a statistician
and was working on population trends. He showed a reprint to his
former classmate. The reprint started, as usual, with the Gaussian
distribution and the statistician explained to his former classmate
the meaning of the symbols for the actual population, for the av-
erage population, and so on. His classmate was a bit incredulous
and was not quite sure whether the statistician was pulling his leg.
"How can you know that?" was his query. "And what is this sym-
bol here?" "Oh," said the statistician, "this is pi." "What is that?" "The
ratio of the circumference of the circle to its diameter." "Well, now
you are pushing your joke too far," said the classmate, "surely the
population has nothing to do with the circumference of the circle."

Posed in this way, the fact that mathematics proves so useful to science and
to understanding the world in general does seem quite remarkable. But look
at this example. Is it really mathematics, or is it computation that is proving
useful?

The Gaussian distribution, 7 etc are being used in order to perform particu-
lar calculations, by means of which the statistician is intending to make predic-

9
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tions about future population. Most times that we come across examples where
maths proves useful, it is not abstract maths that is directly useful, but applied
mathematics. Applied maths are used to perform calculations, and these, ei-
ther guide us in our practical engineering or allow us to make predictions of
experimental science. So we can shift Wigner’s question and ask instead about
the remarkable usefulness of applied mathematics.

Prior to the universalisation of automatic computers, there did not exist
the contemporary distinction between computation and mathematics. The one
was seen as just a necessary component part of the other. Both were intellec-
tual activities, both were performed by mathematicians, albeit with different
specialisms. Now, when computing is done by machines, we tend to think of
them as distinct things: maths an intellectual discipline, computation a rote au-
tomatic process. Of course everyone concedes that the actual programming of
computers is a tricky intellectual task which may involve mathematical skill.
But it is on computing that science and engineering now depend for practical
predictions. Whether they are working at Boeing it is in the design and control
of an airliner or in the Met Office working on long term climate forecasts. So we
can now focus in a bit on Wigner’s question and ask why is it that computers
can be so unreasonably effective in the practice of science?

So long as the question was posed in its original form it seemed an insu-
perable enigma. True enough, Wigner did give an answer. He attributed the
effectiveness of maths to the spatial and temporal invariance of the laws of
physics. That no doubt plays its part, but the answer remains one that would
appeal mainly to physicists whose vision of the practical application of mathe-
matics was very much in their own field. It does really answer the query about
7 in his initial anecdote.

One can allow that the maths required to do physics would be far more
complicated were the laws of physics not spatially invariant, without gaining
much insight into why maths should work in other domains. Why does maths
work for predictions about populations, or in the analysis of genetic inheri-
tance?

Hamming, following up on Wigner asked:

Furthermore, the simplicity of mathematics has long been held to
be the key to applications in physics. Einstein is the most famous
exponent of this belief. But even in mathematics itself the simplicity
is remarkable, at least to me; the simplest algebraic equations, lin-
ear and quadratic, correspond to the simplest geometric entities,
straight lines, circles, and conics. This makes analytic geometry
possible in a practical way. How can it be that simple mathematics,
being after all a product of the human mind, can be so remarkably
useful in so many widely different situations? [38]

We can visualise what Hamming is talking about in Figure 2.1. There we have
newton using the ideas of geometry to elaborate his "Mathematical Princi-
ples of Natural Philosophy". These are pure thoughts, but, remarkably, the
mathematics mirrors what is happening in the solar system. There seems an
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The physical world

Newton

Figure 2.1: Newton thinks

uncanny correspondence between some simple principles of geometry in one
man’s mind and the movements of planets millions of miles away.

To explain his ideas to others, Newton had to resort to pictures, diagrams
and arguments on the printed pages of his great book. The book itself was
material, and copies survive to this day. While the thinking which went into
writing the book was fleeting and perished along with the man, the maths
seems eternal, independent of the man and of his paper book. It is as able to
predict heavenly motions now as it was in the 17th century.

If we think of things in this way, as a correspondence between two quite
different domains — that of thought and that of reality — the whole process
seems so remarkable as to tempt one to ascribe some mystical properties to
mathematics.

Thought — Math = Reality
Mystic connection

But now look at Figure 2.2. It depicts the early days of space exploration. A
boffin sits at his old valve computer and gets it to work out the course that will
take a probe to Mars.

At one level this shows the same process as Figure 2.1, but the very physi-
cality of that big grey metal box in front of the boffin hints at something differ-
ent. The similarity is that Newtons laws, and their associated mathematics are
being used in each case. But the fact that the calculations are now taking place
in a machine makes it harder to see the process as being one of a correspon-
dence between mathematical thought and reality.

To do his calculations the NASA scientist would have had to have fed the
computer with a whole lot of data obtained by astronomers. He will have
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Computer model Reality

Figure 2.2: NASA computes

had to develop programs to represent the dynamics in question. And he then
set it off working. We say he will have had to develop programs, but, that
is not strictly necessary. The computer in the picture is actually an analogue
one, which was programmed by rewiring it using the patch panel behind the
operator.

So the correspondence here is actually one between the dynamics one phys-
ical system — the analogue computer, and the dynamics of another — the rocket
that the designer wishes to control.

Programming
Dynamics of computer —— Dynamics of Reality
Modeling connection

The diagram above is representative of a lot of what we now call ‘comput-
ing’. In this book will be examining just how it is that we can set up a physical
system to emulates another system. Our approach is that of practical computer
scientists concerned with real computing systems, ones that are either build-
able now, or could in principle be built. We think that this computer science
perspective also helps with other problems raised by Wigner.

The great mathematician fully, almost ruthlessly, exploits the do-
main of permissible reasoning and skirts the impermissible. That
his recklessness does not lead him into a morass of contradictions
is a miracle in itself: certainly it is hard to believe that our reasoning
power was brought, by Darwin’s process of natural selection, to the
perfection which it seems to possess. [81]

Does it demand a very high level of evolved reasoning power to do what a
great mathematician does?

Does this make unreasonable demands on evolution?

The objection that we never had much selective pressure on us to master
calculus during the paleolithic is fair enough. But need we imagine a specific
selective pressure in the past for every behavioural trait that we observe in the
present?
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In one sense the answer has to be no. The diversity of human cultural be-
haviour is so great that nobody seriously contends that it is all in the genes.
The social behaviour of the bee, yes, but the social behaviour of humanity no.
The calculus is clearly a cultural product. It is something that arose at a specific
time with Newton and Leibniz, and something that is learned by individuals
rather than being an innate skill. This, however, still leaves open the question
as to why we are able to do the reasoning required by calculus. The specific de-
tails of calculus had to be developed by Newton, but why did he or any other
person have the reasoning ability to deal with something so abstract?

One possibility is to consider the implications of a very simple computer,
the Turing Machine, described in Chapter 4. This simple device has a universal
mathematical ability.

The key point is that one does not need anything more than a Turing Ma-
chine equivalent process on the part of the mathematician. A mathematician
does not master calculus just by innate mental power. They use a set of learned
rules plus external aids: chalk and blackboards, etc. Our dependence on exter-
nal computing aids, from simple paper and pencils to digital computers, is
another theme we explore.

The computational power of the Turing Machine is universal. Similarly, a
person, with a sufficient starting set of mathematical rules plus external no-
tational aids, also has a universal mathematical ability. One does not need to
assume a series of specific evolved abilities in the brain to handle the whole
diversity of maths. All one needs is a certain threshold of ability. Provided a
certain threshold, the Turing Universality Threshold is passed, then the compu-
tational system composed of mathematician, innate reasoning primitives and
external notations will also be universal.

It is true, of course, that physics chooses certain mathematical con-
cepts for the formulation of the laws of nature, and surely only a
fraction of all mathematical concepts is used in physics.

A possible explanation of the physicist’s use of mathematics to for-
mulate his laws of nature is that he is a somewhat irresponsible
person. As a result, when he finds a connection between two quan-
tities which resembles a connection well-known from mathematics,
he will jump at the conclusion that the connection is that discussed
in mathematics simply because he does not know of any other sim-
ilar connection. It is not the intention of the present discussion to
refute the charge that the physicist is a somewhat irresponsible per-
son. Perhaps he is. However, it is important to point out that the
mathematical formulation of the physicist’s often crude experience
leads in an uncanny number of cases to an amazingly accurate de-
scription of a large class of phenomena. This shows that the mathe-
matical language has more to commend it than being the only lan-
guage which we can speak; it shows that it is, in a very real sense,
the correct language. [81]
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A point made by Wolfram [84] is that there may be multiple different ways of
approaching this with different mathematical models. It is a matter of what
mathematical tools were available to the modeler that determines how they
represent it. Consider the problem of feedbacks occurring in cellular biology.
This can be modeled using differential equations, it can be modeled using pro-
cess algebra, or it can be modeled using boolean algebra. Because the modeling
is now done using a computer, then all of these come down to the use of differ-
ent software to model a real system.

We are no longer surprised to find multiple software packages available
for some task. The mathematical techniques that software packages use are
one way these packages may differ. Wigner agrees that only a fraction of all
mathematical concepts have turned out to be of use in physics, similarly, only
a tiny fraction of all the possible programs are suitable for a given computing
task. What is interesting is not that some maths and some programs are useful,
but the process by which useful programs and mathematical techniques are
developed. Hamming observes that:

The idea that theorems follow from the postulates does not cor-
respond to simple observation. If the Pythagorean theorem were
found to not follow from the postulates, we would again search for
a way to alter the postulates until it was true. Euclid’s postulates
came from the Pythagorean theorem, not the other way.[38]

This is a very good point and fits in with the view that the development of
mathematics should be seen a form of software development. Chapter 4 will
look at the relationship between issues in software development and those that
arise in mathematical proof.

One answer to Wigner’s problem is that the simple maths and the simple
geometric entities described by him, are systems with a low information con-
tent, and can be generated by processes with a low information content. This
argument can be developed on the basis of material in Chapter 5.

2.2 Counting sheep

I have tried, with little success, to get some of my friends to under-
stand my amazement that the abstraction of integers for counting
is both possible and useful. Is it not remarkable that 6 sheep plus
7 sheep make 13 sheep; that 6 stones plus 7 stones make 13 stones?
Is it not a miracle that the universe is so constructed that such a
simple abstraction as a number is possible? To me this is one of the
strongest examples of the unreasonable effectiveness of mathemat-
ics. Indeed, 1 find it both strange and unexplainable. [38]

In the above quotation from his paper The unreasonable effectiveness of mathemat-
ics Hamming points to how computing got started. People learned to count
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out of practical necessity. Once animals had been domesticated and were be-
ing herded, the shepherds needed to know whether they had lost any sheep.
Suppose you set of with a herd in the morning and then return to the pen at
sunset. How, if you cant count can you tell if you have lost any?

If sheep were more placid you line up your sheep and put stones in front
of them, one per sheep. More practically, set up a pile of pebbles outside their
pen. As the sheep come out take pebbles from the pile and put them in a bag.
Allocate 6 sheep to one shepherd and 7 to another, get them to lead the sheep
up to pasture and back. When the sheep come back, line the sheep up ( or
let them into a pen one at a time ) and pull one stone out of the bag for each
sheep. If they do not correspond, then you know a sheep has gone missing ( or
another sheep has been picked up along the way). At this stage of development
the society need not have any specific language to refer to numbers, the stones
substitute for words. Menninger[58] cites the Wedda of Ceylon as still being at
this level in the 1960s.

This can be extended to deal with two shepherd’s two sons each of whom
takes part of the flock to different pastures. The elder son is given the greater
part of the flock and a jar of his stones is set aside, one stone to each sheep he
led away:. It is 7 stones in Hamming’s example. The younger son takes the rest,
putting a stone in his own jar for each sheep he takes. When they come back
the father can determine if either son has lost a sheep by comparing the stones
with the sheep as they are penned for the night.

Hamming identifies in this simple procedure a real marvel. ‘Is it not a mir-
acle that the universe is so constructed that such a simple abstraction as a number is
possible?” he writes. But is it really such a marvel?

What is required for it to work?

Suppose, instead of mere pebbles, the shepherds went one better and made
little clay models of their sheep, each in the likeness of a particular sheep.
Given that people can become sufficiently familiar with their sheep to recog-
nise them as individuals, this is not impossible. Now when Snowflake steps
out of the pen he puts the clay Snowflake into the jar, as Misty trips along, in
goes clay Misty etc. In the evening clay Snowflake comes out of the jar as the
real Snowflake comes home. When, at dusk, clay Misty is left in the jar, the
shepherd fears poor Misty met Mr Wolf.

This system is more complicated since individual sheep must be recog-
nised. But it brings out the essential properties of sheep and tokens that are
exploited in other token based counting mechanisms.

Is there anything remarkable about this?

Not really, all it requires is that stones and clay tokens don’t evaporate, and
that the bag or jar you kept them in has no holes. There is nothing mysterious
about pebbles. The mystery only arises if you think that there is an abstract
domain of numbers quite separate from counting technologies. If we focus
instead on the actual historical development of enumeration systems, each step
is pragmatic and understandable. From the use of tokens by herders stored in
perishable bags, a second step developed. Suppose we have a more advanced
form of society with a temple-state which administers economic resources. A
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The number 132
The number 34

DO | 2900

Figure 2.3: The proto-Elamite numeral system using alternate base 10 and 6 for
its numbers.

herder is dispatched from one settlement to another with a herd of sheep. He
is given a bag recording, with tokens, the number of sheep he set out with.
At the other end the officials compare the sheep he delivered with the tokens.
The problem is that if he simply takes a bag of sheep tokens there is nothing
to stop him meeting his brother along the way and diverting a couple of sheep
and throwing away a couple of tokens. Everything still tallies at the end of the
journey.

To get round this bags were replaced by sealed clay containers inside which
the tokens were placed [61]. These were marked with the temple seal to verify
who put the tokens in the container. This provided a tamper proof way of
sending and keeping a count of stock.

Next it was realised that it was possible to mark the outside of the container
with impressions showing how many tokens were inside. If there were 4 sheep
token inside, then a sheep token would be pressed into the outside of the con-
tainer 4 times whilst the clay was still soft. It was but a small step then to
dispense with the tokens inside and just use solid clay tablets with indicators
on the front of what would previously have gone in the container. Several sys-
tems were initially used to write down numbers of tokens. Base 60 was used
for inanimate objects, as in Figure 2.3. A base 10 notation was used for animals,
an alternating base 60 and base 120 system for rations[27].

At this point you have the development of a written number system, and
with the symbols for the numbers, the idea of the numbers existing indepen-
dently of the things they count took hold of peoples imaginations.

If you look at the number system in Figure 2.3 it uses a number of distinct
signs for ones, tens, sixties etc. Within one of these scales, a number is denoted
just by repeating the symbol. So 3 is three indentations using the stem a small
stylus. 30 is three indentations using the end of a small stylus, etc. There is a
limit to the number of units that we can take in with a glance. Our ability to
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| the number 132

the number 34

Figure 2.4: A token based computing system used in part of Northern Europe
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milleseconds
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Figure 2.5: The time taken to recognise how many dots are present in a group
is almost constant up to 4 and above that recognition time slows down.

take in a small number at a glance is called subitizing. Up to 4 dots, arranged
randomly can be recognised in a quick glance [57], but above 4 our time to
recognise the number rises, and above dots people have to count. If the dots
are arranged in regular patterns however, this aids our ability to quickly judge
how many there are. A number system like the proto-Elamite one builds on
our inherent subitizing ability to recognise the number of units and tens in a
written number. If a people lack both the language to describe numbers or
a technology to represent them their ability to handle numerosity is limited to
what is provided by our inherited subitizing faculty[36]. The subitizing faculty
seems to be primitive in primates rather than being a derived human character-
istic. Chimpanzees share the ability to recognise small numbers and can even
be taught to associate these with written numerals[73].

Subitizing is limited to very small numbers and seems to be a purely vi-
sual process. We have overcome these initial limits by the use of our language
ability and by use of external aids.
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Figure 2.6: A primitive digital computer displaying the numbers 2 and 5.

Using multiple symbols, with a circle representing 10 is more complicated
that simply putting stones in bags, or model sheep in jars. An intermediate
step in the development was the use of special tokens representing 10 sheep,
or 10 goats etcetera[61]. We are so used to doing sums with Arabic numbers
that computational systems based on tokens or pictures of tokens seem a bit
cumbersome until we realise that much of our daily computations are still done
using these primitive computational aids. Figure 2.4 shows a token computing
system that is still in wide use. If you compare it to Figure 2.3 you can see that
the same basic principles are present in both systems. Different token types
or symbols represent different scales of quantity, and accumulation of tokens
model accumulations of the things they represent.

Let us consider how these could be used for our original example of count-
ing sheep. Suppose there are what we would call 32 sheep in the pen. The
farmer has a bag of unit sheep tokens and another bag of tokens each of which
represents 10 sheep. As the beasts are led out, the farmer puts unit sheep to-
kens into a jar one by one. When all the sheep are out, he piles all the tokens
in his jar on the ground. He then takes groups of 10 of the units sheep tokens
from his pile and puts them back in his unit bag. Each time he does this he
puts 10-sheep token into his jar. At the end he is left with 2 unit tokens in his
original pile, and 3 of the 10-sheep tokens in his jar. To record the number of
sheep being sent with the shepherd he now makes 2 cup shaped marks and 3
dots.

The invention of tokens of different value overcame the limit to calculation
posed by the weight of a mass of individual tokens.

So the process of recording a number in the clay tablet would have re-
quired some prior computational aids - tokens in our assumption. But we have
skipped over how the farmer got the piles of 10 tokens. Well the obvious com-
putational aide for this is shown in Figure 2.6. We are all born equipped to
count to 10. That explains why 10 occurs so often in notations for numbers.
Think of the Roman or European number system in Figure 2.7. The first two
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Figure 2.7: Roman numbers and their origins in finger counting according to
Ifrah [43].

rows of the table are show the close relationship between the symbols for the
numbers up to 5 and the corresponding hand-signs. The rows below that for
the 10s and to 50 and 100s to 500 show a recursive application of the principle
derived from the 1s and 5.

Another technology that may have fed into the Roman number system is
that of tallying, the carving of notches on sticks to count things[43]. These
markings remain in common use, using paper and pencil. They rely on our
subitizing ability to recognise patterns of strokes up to 4.

2.3 Counting materialised in our own bodily move-
ments

2.3.1 Fingers

Counting on the fingers is both a motor process and a visual process, with the
visual process acting as a reminder for the motor sequence. If the use of the
fingers is as shown in Figure 2.7 then visual reminders are not needed, the
thumb holds down the fingers until they released. This allows one handed
counting whilst the visual attention and right hand are used for another task.
The thumb imposes a sequence on the release of the fingers, diminishing the
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Figure 2.8: Notched tally sticks are another way of counting in multiples of 5.
A tally for 12 is shown alongside a modern mechanical tally.
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Figure 2.9: Sequencing for counting

mental effort involved.

Lakoff and Nunez[48] argue that much of our mathematical ability is grounded
in primitive conceptual and motor schema primitive to the nervous system.
Motor control processes, they argue, have a basic schema of components, some
of which may be omitted in particular actions:

1. Readiness to act,

2. Starting up,

3. The main process

4. Possible interruption or resumption

5. Iteration
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6. Checking for goal achievement
7. Perform completion actions
8. Finished state

A motor schema may include nested subschema that have a similar structure to
the main schema. In the case of finger counting this schema would map onto
the steps of (1) place thumb over index finger, tense index finger, watch for
event; (2) observe an event e.g. a sheep leaving a pen; (3) move thumb causing
finger to fly up; (5) iterate going back to step 1; (6) are all 4 fingers released?;
(2) observe an event; (7) complete process by raising the thumb.

This is a comparatively simple iterative process, with the nervous sequenc-
ing proceeding independently of the count - the count itself being held on the
hand as a mechanical register.

2.3.2 Voice

What computational capacity must our brains have to allow us to count aloud?

Counting aloud is a motor process, a more complex one than finger count-
ing since it is one in which the sequencing has to be all internally driven by
the nervous system. The fingers are no longer there outside the brain to act
as mnemonics. It presupposes a process something like what is shown in Fig-
ure 2.9. This involves a type of sequencing that electrical engineers studied
under the rubric of finite state automata. A finite state automaton is a physi-
cal system that has a finite number of states, transitions between those states,
and actions. They were examined in the context of electronic control circuits
by Moore[59] and extended to linguistics by Chomsky[13]. They have since be-
come a foundation block for the analysis of computer languages and the design
of computer hardware.

Chomsky had been investigating the possibility of formally specifying nat-
ural languages. He had classified grammars into classes. These classes of
grammars are now referred to as Chomsky class 0, class 1, class 2 and class
3 grammars. It turned out that Chomsky class 2 and class 3 grammars are
most suitable to describe programming languages, and the concepts involved
in these are also relevant to understanding what goes on when a person counts
out loud. To grasp what these different classes of grammars are we need to go
into a little formal notation.

The syntax or grammar of a language can be thought of as being made up
of a 4 tuple (T'; N; S; P) where:

T stands for what are called the terminal symbols of the language. In a
human language these terminal symbols are the words or lexicon of the lan-
guage. In a computer language they are things like identifiers, reserved words
and punctuation symbols.

N stands for what are called the non-terminal symbols of the language.
In a human language a non-terminal would be grammatical constructs like a
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going—red—and—amber

Finite State Atomaton

going-red

v:‘

P={
going-red — Red going-red-and-amber
going-green — Green going-amber
going-red-and-amber — Red-and-amber going-green
going-amber — Amber going-red

}

Figure 2.10: Production rules and behaviour of a traffic light.
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sentence, a noun clause or a phrase. A computer language is likely to have a
large number of non-terminals with names like clause, statement, expression.

S is the start symbol of the grammar. It is one of the non terminals. Its
meaning will become clear shortly.

P is a set of productions or rewrite rules. These tell you how to expand a
non-terminal in terms of other terminals and non-terminals.

This sounds a bit dry, but it will be clearer if we give an example. Suppose
we wish to define a grammar that describes the ‘speech’ of a traffic light. A
traffic light has a very limited vocabulary. It can say red or amber or green or
red-and-amber. These are the terminal symbols of its language.

T = { Red, Green, Amber, Red-and-amber }

At any moment in time the traffic light is in a current state and after some
interval it goes into a new state that becomes its current state. Each state is
described by one of the colours of 7. This can be expressed as a set of non-
terminal symbols which we will call:

N = { going-red, going-green, going-amber, going-red-and-amber }

We will assume that when the power is applied for the first time the light
enters state going-red. Thus

S = going-red

A traffic light has to go through a fixed sequence of colours. These are the
syntax of the traffic light language. Which sequence it goes through is defined
by the productions of the traffic light language. If the light is in going-red then
it must output a red light and go into going-red-and-amber. We can write this
down as:

going-red — Red going-red-and-amber

This is an individual production in the traffic light language. The whole set
of productions is given in Figure 2.10.

This combination of (7; N; S; P) ensures that the only sequence of colours
allowed by the traffic light are the cycles shown in the diagram.

The traffic light grammar is what Chomsky classified as type 3 and what
computer scientists now call a regular grammar. Regular grammars can be
produced by finite state machines. Finite state machines are popular among
electrical engineers constructing simple control devices since they can be con-
structed with very few components. If we look back at Figure 2.9 you can see
that the motor control structure shown there, is similar to the finite state ma-
chine in Figure 2.10. The difference is that the traffic light control process goes
in a cycle, whereas counting is potentially unlimited. What sort of grammar is
required to express say counting up to 100 in English?

Clearly one could do it with a class 0 grammar but that would require the
brain to hold a finite automaton with 100 states for the purpose. This is obvi-
ously doable, since people can learn poems much longer than that, but it does
not seem plausible that it is done that way since to count to 1000 we would
have to learn a finite state machine with a 1000 states. Instead we make use
of patterns to save on learning so many things by heart. We make use of the
repeating pattern from 1 to 9 in counting aloud from 21..29 or 31..39. The tech-
nical issue is how this sequence is made use of. If we counted as follows:



24 CHAPTER 2. WHAT IS COMPUTATION
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Figure 2.11: Finite state machine suitable for simple sequencing can be built
out of a register chip and a read only memory(ROM) chip. In the picture the
register latches a new address for the ROM each clock cycle. The ROM outputs
anext state and a set of wires which go to control things like the lights in Figure
2.10. Thus each cycle it jumps to a new state. The behaviour of the machine is
then defined by the table loaded into the ROM. One or more sense inputs can
also be provided which provide additional address inputs. The sense inputs
could be fed by things like the pedestrian crossing button. The presence of
the sense inputs allows the next state transitions to be conditional on the sense
input. Since the sense inputs are addresses, each sense input used means a
doubling of the table size to handle both the true and false variants of the sense
input.
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Figure 2.12: The repeated pattern invoked when counting aloud in English
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twenty, one, two, three, four, five, six, seven, eight, nine, thirty, one, two,
three,...

then what Chomsky called a class 2 or context free grammar would suffice
for counting. Class 2 grammars have productions of the form:

a—b

where a is a non-terminal symbol and b is some combination of terminals
and non terminals. Class 2 grammars are more powerful than class 3 because
they allow the use of nested patterns. We can for example write down context
free grammar that defines how we say the numbers from 1 to 999999 in English.
The grammar below is an extension and clarification of one given by Longuet-
Higgins[64].

Lexicon of English Numbers

word number role

one 1 digitword
two 2 digitword

ten 10 firstten

nine 9 digitword
eleven 11 teenword
nineteen 19 teenword
twenty 20 tenword
ninety 90 tenword
hundred 100 hundredword
thousand 1000 thousandword

Production rules

number — uptothousand |thousands|thousandsplus

andword — and

numberword — tenword |teenword |digitword |firstten

uptohundred — numberword| tenword digitword

hundreds — digitword hundredword

hundredsplus — hundreds andword uptohundred

uptothousand — uptohundred|/hundreds|/hundredsplus

thousands — uptothousand thousandword

thousandsplus — thousands andword uptohundred| thousands hundred-
splus

In the rules above we use the standard convention that | marks an alterna-
tive production. Consider the number 149,234 which we pronounce one hun-
dred and forty nine thousand two hundred and thirty four. We can draw a
parse tree of how this can be produced by the grammar above:
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The same grammatical derivation allows us to say the hundreds of thou-
sands as allows us to say the hundreds. This grammar is certainly no more
complex than we use in day to day speech, so saying an individual large num-
ber just involves learning a few additional rules of the type we are already
familiar with. It is a well established principle of grammar theory[42] that con-
text free languages can be produced by a stack automaton. A stack machine
is the composition of an FSM and a stack onto which the state word can be
pushed or from which the state word can be popped. This allows the automa-
ton to perform nested operations. In the case above, the nested operation is the
saying of a number in the range 1...999. Is this enough for counting?

No, because a classical stack machine can only look at the top of the stack.
Suppose we are counting as follows:

one hundred and forty nine thousand two hundred and thirty four

one hundred and forty nine thousand two hundred and thirty five

one hundred and forty nine thousand two hundred and thirty nine

one hundred and forty nine thousand two hundred and forty

one hundred and forty nine thousand two hundred and forty one

The italic letters indicate the words that we have to "stack” in our mind to
go onto the next step. The transitions between the final digits could be carried
out using the simple automaton in Figure 2.12. This may look like a simple
stacking operation, but it is not.

In order to say each number in the correct order we have to have access
to all the stacked words so that we can repeat them whereas a classical stack
machine can only see the top word of the stack. This means that the grammar
required for counting, as opposed to saying one number, is context sensitive. But
since natural languages do contain context sensitive components to their gram-
mars, it is plausible that the process of counting rests upon the same linguistic
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computing ability that is used to produce normal speech.

If we relied on the primitive ability of the motor control system to perform
sequences of actions that correspond to regular grammars, then the ability to
count would have been greater than that allowed by subitizing, but still small.
By using our more advanced grammatical abilities we can overcome these lim-
its and count much higher.

2.4 From aides memoir to the first digital calculat-
ing devices

The process of counting aloud is error prone. We can easily loose track of the
numbers we are reciting. So the fallibility of our short term memory poses
another limit, this time to unaided mental computation. Hence the reliance
on tallies and counters for practical tasks. Tallies can be simple marks as in
Figure 2.8 or can be mechanical devices. But these just count, the most basic
computing operation. How did we get beyond counting to adding?

Well if you are counting with pebbles in jars, then all you need to do is pour
the contents of one jar into the other and you have done an addition. This op-
eration is reflected still in language. When baking a cake you add the sugar
to the flour in the bowl. Physical addition as pouring is the primitive oper-
ation, arithmetic addition the derivative operation. If what you are pouring
are counting pebbles, then pouring has the same effect as addition. Take two
flocks of sheep into a single pen one after the other, and, supposing that you
have pebble jars counting each flock on its own, then pouring one jar into the
other gives you the total number of sheep in the pen. There is no mystery to
this, just our reliance on sheep and pebbles not mysteriously vanishing.

Next assume that you have tokens in your jars, tokens which can represent
different numbers of sheep as introduced on page 18. Again you simply add
the contents of one jar to the other and you will have an accurate record of the
number of sheep in the two flocks. Why does this work?

Because we have a procedure for translating the high valued tokens back
into unit tokens.

We could either take both jars individually and whenever we find a 10
sheep token in the jar replace it with 10 individual sheep tokens, or we can
wait till after we have put all the mixed tokens into a single jar before we do
the translation. Whichever order we do it in, we end up with the same number
of unit tokens in the final jar. Nowadays we teach children that 10(b + ¢) =
100 + 10¢, which is just an abstract way of talking about the same process.

The old practices persist. Who when collecting the coins from both pockets
into one bothers to count the coins first and add their numbers?

No need. The old addition as pouring still works well enough. For business
or state accountants though, more formal ways of dealing with collections of
coins had to be developed, and for this purpose people reverted to using beads
or stones, the value of which depended on their position on a reckoning board
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Figure 2.13: The Salamis reckoning table, the Greek letters denote units of
coinage and indicate the values of counters in different columns. 1 drachma=
6 obols. It is shown ready to add 51 drachmas ( lower half ) to 162 drachmas
(upper half). To perform the addition the counters on the lower half are pushed
up to the upper half, moving the corresponding row of counters in the upper
half up to make space. Subsequently the representation is renormalised by re-
moving 10 counters from any drachma column with more than 9 and adding
one to the column to the left.
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or counting table, abakion in ancient Greek, an early one of which was found
in Salamis, illustrated in Figure 2.13. It appears to have been designed to do
additions in units of the then Greek monetary system of Talents, Drachma and
Obols. Unlike counting with coins, where the numeric value is marked on the
coin, with the abakion, the value assigned to a counter depended the row in
which it was placed.

If two numbers are to be added tokens are arranged above and below the
line as shown. To perform the actual addition, counters on the lower half are
slid to the upper half, sliding the corresponding rows of counters in the upper
half up to make space. This step has already performed the physical addi-
tion. The top half of the columns now contains the correct value, but it may
be denormalised. That is to day some columns may have too many tokens
in them — more than 9 for the drachmas, but more than 1 for the 3, 1, & obol
columns. Subsequently the drachma representation is renormalised by remov-
ing 10 counters from any column with more than 9 and adding one to the col-
umn to the left. The obol representation is renormalised by adding 1 drachma
and taking away 6 obols if there are more than 5 obols in total.

The step from the Greek abakion to the more recent abacus is a small one.
The main shift is that the Salamis abakion was a two register device, whereas
most modern abacuses are single register. According to Menninger ( [58] pp.
305-315), the Roman hand abacus, Figure 2.14, derived from the abakion spread
to Asia where modified variants of it are still used. In the 20th century a hand
operated device that was, in essence, an abacus was mass produced as a pocket
calculator as shown in Figure 2.14(b). One of the authors remembers using
these in school.

The Romans continued to use large reckoning tables like the Salamis one,
on which they ’calculated’ using calculi or small pebbles. The pebbles that first
served as counters were later replaced by disks like those used in the modern
game of draughts.

Multiplication

We have been arguing that computing techniques were ways that people pre-
dicted or modeled the world. This is clear enough with counting and adding
which originate with the need to model movable possessions. The requirement
to multiply arises as society becomes more complex. Architecture requires
multiplication to determine quantities of bricks needed to construct walls, pyra-
mids, tile floors etc. The organisation of work teams requires calculation total
quantities of rations that people will eat. Extensive trade involves calculating
the price of a cargo given the price of a unit. Suppose we know the sides of a
rectangular floor to be tiled as 12 by 17. The 12 and the 17 can be represented in
some way as counters, tokens, or in a written notation the answer likewise. A
simple technique is to lay out pebbles in a regular rectangular pattern, 12 peb-
bles by 17, the resulting group of pebbles can then be carried to the tile maker,
or counted and the result taken to the tile maker. This is direct physical mod-
eling of the floor to be tiled with the pebbles, but at the same time it performs
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Figure 2.14: Pocket abacuses two millenia appart. (a) Diagram of a Roman
hand abacus. Note that it holds two rows one to hold the units the other the
fives; successive columns indicate powers of ten. The body was a flat bronze
plate with movable studs which slid in slots. (b) The Addiator, an early 20th
century pocket abacus that used sliders rather than beads and which was op-
erated with a stylus. To add one inserted the stylus and moved the appropriate
slider down, unless a red colour showed in which case one moved it up and
round to perform a carry.
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Figure 2.15: Multiplication on a 4 register reckoning table. The left pair of reg-
isters is used for working, the right to hold the two numbers to be multiplied.
The working registers are shown in the sucessive phases of the calculation.

what we would now call multiplication, though we would scarcely recognise
it as such.

Doing multiplication this way is slow. We tend to think of multiplication as
being some form of short hand procedure which can achieve the same result.
Menninger describes how reckoning tables were used to compute multiplica-
tions by a much quicker method. Figure 2.15 shows a 4 register reckoning table
whilst 54 is being multiplied by 32.

Doing the multiplications requires that the operator learn by heart the mul-
tiplication tables up to 10 - just as children have to do now. Here we encounter
another of the great abiding accelerators of computation - the lookup table.
Tables can be memorised, or they can be written down - a large part of the
Rhind papyrus, one of the first maths texts known consists of tables. Their
great merit is that they remove the cost of repeated calculation, substituting
for it the much easier task of looking something up. Here a temporal limit to
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calculation is avoided by the use of a less complex process.
We can sumarise the technologies for computation described so far in the

following table:
Technique Skill Operations Range
subitizing inbuilt counting only to 4
counting on fingers learned counting adding to 10
counting aloud rote learning count to hundreds
unary tokens simple learned count,add to tens
scaled tokens recursive,learned count,add to thousands
base 60 recursive,learned count, record millions
reckoning tables skilled,recursive +,-,X millions
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Chapter 3

Mechanical computers and
their limits

With large enough reckoning tables, papyrus for notes and enough time, very
large and complex calculations could in principle be done. But the process of
reckoning is slow and, when dealing with extended calculations, human error
creeps in. To overcome these limits, mechanism was needed.

Mechanical computing started surprisingly early. The earliest known me-
chanical computer has been dated to between 150BC to 100BC[32], but given
its sophistication it may be supposed that it had earlier predecessors.

3.1 Antikythera

In 1900 a group of sponge divers sheltering from a storm anchored off the is-
land of Antikythera. Diving from there they spotted an ancient shipwreck with
bronze and marble statuary visible. A number of valuable artifacts were recov-
ered and taken to the National Museum in Athens. Further diving in 1902 re-
vealed what appeared to be gearwheels embedded in rock. On recovery these
were found to be parts of a complicated mechanism, initially assumed to be a
clock. Starting in the 1950s and going on to the 1970s the work of Price[21][22]
established that it was not a clock but some form of calendrical computer. A
key to this clarification was the use first of gamma ray photography and then
of computer tomography[32] to reveal details of mechanism beneath the ac-
cretions of millenia of marine corrosion. A number of reconstructions have
been made both physical and in software. Figure 3.1 shows one of these. It is
now clear what the machine did, though why it was built remains a matter for
speculation. Our description of its function follows [72] and [22].

The machine had two faces: the front with a central dial, the back with two
major and two subsidiary dials (Figure 3.1.(a)). The front dial had two pointers,
one of which bore a solar, the other a lunar globe. The pointers showed the
positions of the sun and moon both in the zodiac and relative to the calendar.

35
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Figure 3.1: A modern physical reconstruction by T. van Vark, reprinted by per-
mission of the builder. (a) The front dial showing the lunar and solar pointers
against zodiac and calender rings. (b) The rear face showing the Metonic and
Saros cycle dials with spiral scales. (c) The mechanism linked to and driving
the hypothesised planetary dials.
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The calendar was denoted by a scale ring with 365 days. The scale could be
advanced by one day every 4 years using a retaining pin which could be fitted
into one of 365 holes in the frame behind the movable scale.

The back dials are more complex. The upper back dial shows what is called
the Metonic cycle of 235 lunar months!. This is the period in which the the
lunar and solar calendars come into synchrony. 19 solar years correspond to
235 lunar months, so after the end of this cycle the phases of the moon will
again be the same on the corresponding calendar day. In order to gain greater
precision on the dial it is arranged in 5 deep spiral with a pin in a moving
slider on the pointer going into the spiral. As the pointer turns the slider moves
gradually outwards. The spiral arrangement increases the angular resolution
of the dial.

The lower back dial uses the same spiral dial mechanism but in this case
it displays the Saros cycle of 223 lunar months. The Saros cycle is relevant
for predicting lunar and solar eclipses. If a lunar or solar eclipse occurs then
another similar one will occur 223 lunar months later. The Saros cycle is 65851
days. Since it is not an integer number of days the geographical position from
which eclipses are seen shifts by 120° each cycle. The 54 year Exeligemos cycle
is needed to bring the geographical position of from which lunar eclipses can
be seen back into alignment. For solar eclipse paths of visibility, the calculation
is more complex. A small auxiliary dial shows the Exeligemos cycle. Another
auxiliary dial shows the Callipic cycle which is four Metonic cycles less one
day. The Callipic cycle improves the accuracy of reconciliation of the lunar and
solar calendars.

The interpretation of the dials is based both on the fragmentary captions
which have survived on their surfaces and on a mutually consistent recon-
struction of the internal workings of the machine. The sophistication of the
mechanism, when uncovered by Price, was astonishing, given what had pre-
viously been known about ancient Greek computing technology. It involves
a large number of gear wheels with complex interactions. In order to under-
stand these we need to grasp certain preliminary principles of how gearwheel
computing works.

Addition The first point is to understand that wheels can implement addition
by addition of angles. In Figure 3.2 we see a pair of concentric wheels with
digits round the edge being used for addition. Assume that the two wheels
are free to rotate both absolutely and relative to one another. To add 3 to 4 we
first rotate the inner wheel until its zero is lined up with 3 on the other wheel,
then read off the number on the outer wheel corresponding to 4 on the inner
wheel. This basic mechanism was used in many ready reckoners and circular
slide rules.

A lunar month is the period between corresponding phases of the moon in successive lunar
cycles.
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answer

Figure 3.2: Wheels can do modular addition by addition of angles.

Figure 3.3: Multiplication by a constant. Rotation of wheel A by —144° will
result in rotation of wheel B by 72°.
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Figure 3.4: Differential gearing.

Multiplication by a constant. If two wheels contact tangentially and A has
diameter a and B has diameter b then the wheel A will rotate at a rate of =
times the rate of rotation of wheel B. If the wheels are cogwheels with matching
sizes of teeth, then the ratio of their diameters will be the ratio of their tooth
numbers. This is shown in Figure 3.3.

Note that this implies multiplication by rational numbers rather than arbi-
trary real numbers.

Differential gears If gear C is mounted on gear B, and if B and A rotate at the
same rate, then so will C.
AA=AB=AA=AC

In the frame of reference of B the rotation of C will be —* of the rate of rotation
of A also in the frame of reference of B. But the rotation of A in the frame of
reference of B is just AA — AB. So the full equation for the rotation rate of C is

AC = AB + (AA—AB)%C
or b
AC = Cz AB - ZAA

This mechanism allows the computation of linear functions of differences be-
tween rates.

Non linear functions The 3 principles above would be sufficient to construct
a mechanical model of the positions of the moon, sun and planets if these all
followed uniform circular orbits. A problem arises however with the elliptical
orbit of the moon. The angular speed of the moon is not constant. Kepler’s law
that equal areas are swept out in equal periods by its orbit, means that close
to perigee its angular velocity against the fixed stars is greater than at apogee.
This is termed the anomalous motion of the moon.
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groove in B in mounted on C

Figure 3.5: Variable speed coupling using ecentric axes. Wheel B has a different
axis b than that of wheel C. A slot in B is engaged by a pin d mounted on C. C'
will complete one revolution for every revolution of B, but its rotation speed
will change as B goes round, being fastest relative to that of B when the pin
is horizontally to the right of b and slowest when it is horizontally to the left.
When simulating lunar orbital motion, the more rapid orbital motion at perigee
would be simulated by having the pin d horizontally to the right at perigee.
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Apollonius of Perga (circa 262 BC to circa 190 BC) proposed to model the
lunar motion by either of two models. In the one shown in Figure 3.6 involves
the assumption that the moon rotated in a circular orbit around a point some
distance from the center of the earth[60]. The other is the theory that we are
more familiar with from Ptolemy, that the moon moved on an epicycle on an
otherwise circular orbit. Apollonius proved the equivalence of the epicycle and
eccentric models.

The major contribution to the anomalistic motion of the moon is the fact
that the elliptical orbit is off center with respect to the earth. The deviation
from circularity of the ellipse, is, compared to this relatively small. Thus an ec-
centric circular model gives a very good approximation of the lunar position.
A computing machine like the Antikythera, which uses the mechanism in Fig-
ure 3.5 will give predictions of lunar position that are as accurate as the naked
eye astronomy of the ancient world could observe?.

Our current records of ancient astronomy do not indicate knowledge of Ke-
pler’s law at the time the Antikythera device was built. Despite this the device
contains a mechanism to approximate the effects that we now attribute to Ke-
pler’s law. The technique used is to have two wheels with slightly different
axes, coupled via a pin and slot mechanism like that illustrated in Figure 3.5.

The mechanical approximation mechanism used in the Antikythera device
corresponds closely with the eccentric model of the lunar orbit. The line of
sight from Earth to Moon in Apollonius” model (Figure 3.6(a)) is physically
modelled by the grove in wheel B (Figure 3.5). The Moon in Apollonius model
is represented by the pin d and the center of the lunar orbit by the axis ¢ ( both
in Figure 3.5). If we compare the two figures we can see that the mechanism in
Figure 3.5 directly implements the Apollonius” model of the lunar orbit. The
mechanism is a simplified representation of a component actually used in the
Antikythera device.

It is easier to construct an eccentric coupling of the sort shown in Figure
3.5 than it is to make a direct mechanical implementation of Kepler’s law. The
choice of model proposed by the Greek astronomers to explain the lunar orbit
may thus have been influenced by what they could feasibly build into a com-
puter. Appollonius of Perga who proposed the eccentric model for lunar orbits
also developed the theory of ellipses in his work on conic sections so he would
have been well equipped to propose ellipses as a basis for orbits. The prefer-
ence of the Greek astronomers for circular motions might have been influenced
by a concern for mechanisation.

We talk about scientists having a ‘model” for some physical process that
they seek to explain. By this we tend to mean a conceptual model. But a con-
ceptual model does not produce numerical results until the conceptual model
is implemented in a physical model. The Antikythera device is a beautiful il-
lustration of the interaction between conceptual and physical models. There
is a one to one correspondence between geometrical mechanisms proposed by
the ancient astronomers, and the physical geometry of one of the computing

2For a heterodox view of the optical technology available to Greek astronmers see[74].
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machines they used. Today, the correspondence is less evident since we use
general purpose computers. But the correspondences will still be there. The
conceptual model will now be expressed algebraically, and that algebra will
translated into expressions in Fortran, Matlab or some other computer nota-
tion for explicit calculation. The difference is that we can now have explicit
representations of algebra rather than explicit representations of geometry in
our machines.

With a device like the Antikythera mechanism, predicting eclipses became
just a matter of turning a handle, something far simpler and less error prone
than the numerical solution of kinematic equations using reckoning tables.

3.1.1 Was the Antikythera device an analogue computer?

In the web literature there are references to the Antikythera device as an ana-
logue computer. Is this correct?

It depends on how we understand the term analogue. One sense of ana-
logue, is to bear analogy to. The Antikythera device is built in such a way as to
be analogous to operations of the cosmos, as understood by its builders. So in
this sense it is an analogue device.

Another interpretation of analogue computer is one that works by means of
continuous rather than discrete quantities. Again, in this sense, the antikythera
device is analogue, since the dials on the front give continous readings of lunar
and solar angles.

But if we look at it from a different aspect, the device is digital, that is to
say it performs mathematics in discrete operations. Look back at Figure 3.3.
The ratio that this pair of gearwheels computes is always going to be a ratio-
nal number, a ratio of the integral numbers of teeth on the two wheels. The
multiplications performed by the machine were thus digital.

It is also arguable that its mode of operation was semi-digital, in that it
seems to have been advanced by one ‘clock cycle’ per day. Each day the han-
dle on its main driving wheel was rotated once, and the date pointer on the
face would move on by an amount equal to one whole day. Because the in-
ternal multiplications were by rational numbers, the machine would not have
drifted over time. Having completed one Metonic cycle, it would have gone
on to compute the next with equal accuracy. Insofar as the machine drifted
with respect to the actual motions of the moon, it would be because the gear-
ing ratios were not specified to a sufficient number of digits. This drift, of the
calculated position of the Moon from its observed position over multiple cy-
cles, is characteristic of digital calculations. Digital calculations must always
express ratios as ratios of whole numbers, and to get more and more accuracy
when simulating some natural process we are forced to use larger and larger
numbers in the numerator and denominator.

In modern terms, the Antikythera device did digital arithmetic, but used
analogue input and output devices. The analogue scales used for the answer,
although in principle continuous, would in practice usually have been read of
as discrete numbers of days. Had one wished for more precision, an additional
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Figure 3.6: (a) The contrasting models of lunar orbits proposed by Apollonius
and Kepler. (b) Apollonius proof of equivalence of the epicyclic and eccentric
models. E is earth, M moon, D the center of orbit of the eccentric model, C
the center of the epicycle. If the rotation of the epicycle is exactly the same
magnitude but in the reverse direction to the orbital rotation, then CM must be
parallel to ED, EDMC must be a paralellogram, and so the path of the moon is
in each case a circle centered on D.
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dial, which rotated faster could have been used. This is the principle used in
clocks. A clock has a solar pointer ( the hour hand ) that completes two rota-
tions every apparent rotation of the Sun. To enable us to be able to tell the time
to greater accuracy we then have minute and second hands that rotate 12 times
and 720 times faster. By appropriate multiplication of scales, a cog-wheel com-
putational mechanism can add least significant digits to its output. Clocking
down the main output, can add leading digits to the output : Antikythera does
this with its Callipic cycle dial.

Limitations The techniques used in the Antikythera device were limited to
the performance of the operations of angular addition and subtraction along
with multiplication by negative constants. Final readout accuracy was limited
by the mechanical precision of dials. Arithmetic is modular.

3.2 Late mechanical computers

The main use of computers in the first half of the 20th century was for warfare,
particularly for naval warfare. It was here that the greatest computational de-
mands lay. The development of long range guns and steam power meant that
by the start of th 20th century it was no longer possible for navies to to simply
aim their guns using open or telescopic sights. The ranges at which sucessful
firing between warships occured rose from 7km at the Battle of Tsushima in
1905, to 25km at the Battle of Calabria in 1940. By 1914 the speeds of ships had
risen so much that their relative velocities could exceed 100kmph.

At ranges above a few kilometers, shot from naval guns came down in a
plunging fashion. To hit another ship it was not sufficient to aim directly at the
ship, gunners had to know the range of the target ship and aim their guns high
so that the shot would fall on the target. This problem could be broken down
into a number of sub-problems.

1. The bearing of the target had to be found.

2. The range had to be estimated. Initially this was done using stereo match-
ing ( See Figure 3.7(c)). Later radar was used to get a more accurate esti-
mate.

3. The relative velocity of the two ships then had to be estimated. The initial
shell velocity might be around 800m/s. A shell might be in flight for 20
or 30 seconds. A ship moving with a relative velocity of 60kmph to the
firing ship could have moved some 500meters during the time of flight.

4. The range and bearing that the target would be at the end of flight had
be estimated.

5. The up to date range and bearing had to be translated into an appropriate
elevation and deflection of the gun before firing.
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(a)

(0)

Figure 3.7: Gunners had to have an accurate estimate of range to prevent shot
from falling short or far. (a) Schematic representation of fall of shell. (b) A
salvo straddling USS Iowa in 1923 during ranging practice. (c) A model by
Rob Brassington of the Argo Pollen gyro stabilised stereoscopic rangefinder
used by the Royal Navy.
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Figure 3.8: Vector addition of the relative motion of two ships.

All these calculations had to be done in real time, with the time between shots
being of the order of 30 seconds. Early in the century it was realised that it was
quite impractical to do the calculations by hand, both because that would have
been beyond the trigonometrical ability of most gunnery officers, and because
it would have been far too slow. The well funded admiralties of the day could
command the attention of skilled engineers, scientists and instrument makers,
so it was not long before mechanical solutions were devised.

The techniques that were arrived at, 2000 years after the Antikythera de-
vice, show a strong family resemblence to that earlier real-time calculator. They
have a similar mode of display: based on dials; similar construction : brass
frames and gearing; many of the same mechanical implementations of arith-
metic techniques. We will focus on a couple of the devices invented for the
purpose, for a more comprehensive account readers should consult Brooks[9].

3.2.1 Estimating rates of change

A moving ship has a course bearing and a speed. Together these can be repre-
sented as a vector. In modern computing we tend to think of vectors as a list of
numbers, so a ship steering a course due South at 10 meters per second could
be described by the pair [0,-10] these being the components of its velocity in a
cartesian coordinate system whose x axis was aligned with the equator. A ship
sailing West at the same speed would have a velocity vector [-10,0] and a ship
sailing North East a velocity vector [7.07, 7.07] since it would be moving at just
over 7 meters per second North and a similar amount East. Now let us look
at the concrete example in Figure 3.8. Ship A is moving with velocity vector
[0,-14] and ship B is moving with a velocity vector [15,-3]. We want to know
the combined velocity of B relative to A. To do this we subtract the velocity of
A from that of B : [15,3] -[0,-14] = [15,11].

This gives us the velocity of B relative to A in world coordinates. In order to
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aim a gun we need to break this velocity down into two components, one along
the line of sight, and one perpendicular to the line . If we were doing that now
we would use multiplication by a rotation matrix to get this effect. Back in the
early 1900’s that would have involved a prohibitive amount of equipment but
anaval officer Lieutenant Dumaresq[24] came up with a device, that, although
at first sight a bit baffling, actually uses some beautifully simple principles.

Look at Figure 3.9(a). It shows the first principle: vector addition by direct
geometric implementation. The Dumaresq consisted of a circular frame grad-
uated its upper edge from 0° to 180°, Red and Green relative to the Fore and
Aft Bar which is mounted on the frame. The frame itself was fixed with this
bar parallel to the Fore and Aft line of the ship.

Under this bar a slider was mounted which traveled along the bar carrying
an index cursor which could be moved aft from the centre along a scale grad-
uated from 0 to 35 knots. This scale measured the ships own speed. On the
slider was a rotating ruler, also marked in a scale of knots. The ruler had to
be aligned with the enemy course relative your own ship’s course, that is to
say the angle between the bar and the ruler had to be the same as the angle
between your course and the enemy course. Since the ruler is scaled in knots,
a line from the Dumaresq center to the point on the ruler corresponding to the
enemy speed will be the enemy’s relative velocity vector.

The Dumaresq modeled geometry with geometry and avoided the detour
into pairs of numbers that we would do on a modern computer.

There remained the problem of how to transform a relative velocity vector
in the frame of reference of the ship into one in the frame of reference of the
gun. We said that the modern technique would be to multiply the vector by
a rotation matrix. The 1905 solution was to use a rotating disk on which was
marked a system of cartesian coordinates giving velocity parallel with and nor-
mal to the line of sight. The disk was rotated until the arrow on it was aligned
with the target, after which the range rate and deflection normal to the line of
sight could be read off the scale. The task of the modern ‘rotation matrix” was
achieved using a matrix of lines that physically rotated.

3.3 Analogue mechanical multiply/accumulate

We now come to another new technique used in the gunnery computing de-
vices, an integrator. Up until now we have discussed mechanical multiplica-
tion by a constant, achieved via gearing ratios. If we consider the problem
faced by those dealing with ranging we can see that this would not have been
enough.

Range estimates via the stereo rangefinders came through intermittently,
and the gunners had to have intermediate estimates of range. Suppose we
know range ry at time ¢, and using the Dumaresq we have an estimate ' of the
rate at which the enemy ship is approaching along the line of sight. We need
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Figure 3.9: Operating principle of the Dumaresq.
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Figure 3.10: A Dumaresq analogue mechanical computer used in naval gun-
nery computations.The one illustrated is a Wind Dumaresq which in addition
to giving corrections for relative motion of the ships also provides an additional
compensation term due to the wind. Image from a model by Rob Brassington,
by his permission.

Figure 3.11: The original integrator developed by Thomson.
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A mechanical integrator had been developed by William Thomson, later
Lord Kelvin and his brother James Thomson in 1875 [75, 76], an illustration
of his design is shown in Figure 3.11. His one was built into a more complex
complex apparattus able to extract Fourier components of a signal. We will de-
scribe the simpler version used in the Vickers Range Clock[20]. Look at Figure
3.12. We have a flat horizontal wheel or turntable driven by a clock such that
it rotates once every minute, and that we have a slider S we can use to record
r’ say in 100meters per minute. The slider carries a friction roller F that bears
on the surface of W and is driven round by it. If we move the slider, then the
friction roler moves with it. As it is moved closer to the center of the turntable
the rotational velocity of F will fall, as the relative gearing rate between F and
W alters. If F is moved past the axis of W to the other side, it will rotate in the
reverse direction. The effect is to provide a variable multiplication of the rota-
tion of the time clock by the range rate. This was then transfered to the range
clock dial which moved at a rate corresponding to the approach or recession of
the enemy.

Whenever an actual range observation, the rotating dial of the range clock R
was moved round in order to bring the observed range into alignment with the
range clock pointer P. The range clock would then point to the current range
and would give estimates of the likely range as it changed.

The representation in Figure 3.12 is very schematic, actual integrators had
a more compact arrangement often with the range clock dial above and coaxial
with the turntable.
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The basic technology of Dumaresq and Range clock had been developed by
1906. In the next decade, the pressure of the arms race meant that mechanical
computer technology advanced rapidly. Whereas originally, the transfers of
information between Dumaresque and range clock were manual, they became
increasingly automated with information being transmitted by what amounted
to asynchronous digital serial transmission between different parts of the ship.
By the middle of the Great War, highly integrated machines like the Dreyer
Table and the Argo Plotter Clock were in use ( see Figure 3.13). The naval inte-
grators derived from an earlier one built in 1876 by James Thomson, brother of
Lord Kelvin who acted as a consultant to Arthur Pollen in the development of
the Argo clock. Thompson’s original mechanism had been used by Kelvin to
analyse tidal motions. The integrator mechanism used in the range clock was
later applied by Hartree[39] to more general scientific calculations during the
1930s.

The machines developed during the Great War provided the basis for a
later generation of mechanical computers used by leading navies during the
war of 1939 to 1945. Dumaresqs remained in use on small ships, but vessels
above the size of a destroyer were fitted with machines descended from the
Argo clock. These typically combined mechanical computations with digital
electrical input and output. These mechanical gunnery computers remained in
use in US Navy battleships until the first Gulf War.

Limitations These were all essentially mechanical analogue machines and
were limited in that:

o Their accuracy would be limited to around 3 decimal digits of precision.
Given that the margins of error of the original input data were much
worse than this, the limited precision of computation was not significant.

e They were dedicated to performing a single suite of tasks.

Their most significant advance was the ability to multiply variables and to in-
tegrate.

In the rest of this chapter we will consider how the limitations in accuracy
were addressed by the developers of mechanical computers. In the next chap-
ter we will look at how the concept of a general purpose machine was arrived
at.

3.4 Mechanising the abacus

There is a line of development that stretches from the Antikythera device, via
clocks, down to the fire control computers of the 20th century. It is family
of computating machines that developed to meet the needs of astronomy and
physics. There was a distinct line of development that took off from the abacus
and was initially dedicated to commercial calculations. An abacus performs
exact integer arithmetic and can, by adding more rows to the device, be built
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Figure 3.13: Mechanical computers used during the Great War. Top the Dreyer
Table. In the middle is an automatic Dumaresq which controls a range integra-
tor whose turntable is built in to the circular support of the Dumaresq. On
either side are graph plotters which produce traces of the relative courses of
the enemy ship. Scatter plots on these record the fall of shot, and a regression
of these could be estimated using a rotating disk with scribed parallel lines.
Bottom the control panel of the Argo Pollen range corrector. Both images are
renders of digital models by R. Brassington.
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Figure 3.14: Top: use of a single toothed wheel as a carry mechanism. 1 rotation
of A generates 1 or a rotation of B. This was later generalised by Odhner who
in 1874 invented the pinwheel. Bottom: use of a pinwheel to add a variable
amount to the take off wheel.

to calculate to any desired number of significant figures. Such precision was
essential to commerce. Suppose you are a 17th century banker lending 100,000
of Thaller at an interest rate of 2.5%. You would expect to get back 2,500 Thaller.
If one did calculations using a machine accurate to only 3 significant figures,
then all it would tell you is that you ought to charge between 2,000 and 3,000
Thaller, which makes a huge difference to your profit.

A chain of gears linked in successive 1:10 ratios, will allow numbers to be
recorded accurately to a high degree of precision, but they only allow addition
using the least significant digit wheel. If you want to repeatedly add numbers
less than 10 to a running total, that is fine. But suppose you have a sequence
of 6 such geared wheels and you want to add 20,000 to the total. You try and
move wheel 5 on by two positions. What happens?

You find that the wheel is stuck since in order for wheel 5 to move round by
% of a rotation, the least significant wheel must rotate 1000 times. Friction will
make this impossible. A means of overcoming this was invented by Schickard
who in 1623 designed the first digital mechanical calculator using a gearing
mechanism based on the principle shown in Figure 3.14. This allowed a carry
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to take place between successive digit wheels such that as the units wheel made
one rotation it would advance the 10s wheel by one place. On the other hand
a rotation of the 10s wheel by one place would, in general, not move the units
wheel since they would be decoupled. In 1645 Pascal developed an alterna-
tive carry mechanism which involved the units wheel raising a weighted arm
which then fell on the tens wheel when the transition from 9 to 0 occured. This
further reduced the mechanical force required to propagate a carry[65, 45].

Limitations These early digital calculators were limited to performing addi-
tion. If you wanted to perform subtraction one had to use complement arith-
metic. Suppose that you have a 3 digit Schickard or Pascal type machine and
want to subtract 7 from 208, you first subtract 7 from 1000 in your head to
give 993 and then do the sum 208 + 993 = 1201 on the machine. But since the
machine is only 3 digit, the thousands digit does not appear and we get the
answer 201.

3.4.1 Digital multiplication

Multiplication on an abacus or reckoning table as described on page 32 re-
quired the user to memorise multiplication tables. It also involved a nested
loop algorithm. Given 4 reconing table registers, A, B, C, D with A, B contain-
ing the numbers to be multiplied, D the total and C a temporary. Registers D
and C contain no beads initially. One proceeded as follows:

for i = 1 to number of digits in A do
for j = 1 to number of digits in B do
in your head set temp = A[i] * B[]J] this yields a 2 digit number
place this number in positions C[i+]j] and C[i+7j-1]
Add the contents of register C to register D using standard method

If one wanted to do this mechanically, a major objective would be to obvi-
ate the need to memorise multiplications. An algorithm involving no mental
arithmetic would be to use repeated addition to gain the effect of multiplication

for i = 1 to number of digits in A do
for j = 1 to number of digits in B do
for k= 1 to A[i] do
Cli+j-11 = B[]]
Add the contents of register C to register D using standard method

This could have been done on a Pascal machine but it now involves 3 nested
loops. We can reduce this to 2 loops if we have a more sophisticated addition
mechanism. Let n be the number of digits in B.

for i = 1 to number of digits in A do
for k=1 to A[i] do
C[i..i+n-1] = B[1l..n]

Add the contents of register C to register D using standard method
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Figure 3.15: Brunsvega Model 13 pinwheel calculator showing the result of
multiplying 23 by 23 using the algorithm of Leibniz. The register we have
termed D is at the bottom and can slide sideways with respect to the barrel of
pinwheels in the center. The barrel has 23 set on it. The barrel is the register
B in our description of the Leibniz algorithm. A rotation of the large handle
on the right will add the contents of the barrel to the appropriately shifted
register D. The register at the top, A in our description, holds a count of the
number of additions performed in each position. A reverse rotation of the
handle performs subtraction. Produced 1952 - 1964.
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The key step here is to transfer the whole of B into an appropriately shifted
position in C and add it to D in a single step. It was Leibniz achievement to see
a way to building a machine to implement this algorithm[65]. Assuming that
all numbers are held as gear positions, he had to make two innovations:

1. The sliding carriage allowed number B to be placed in a mechanical reg-
ister which could be moved left and right with respect to D.

2. The stepped gearwheel allowed number B to be held in a form which
allowed a single rotation of register B would add register B to register
D. The stepped wheel solved the problem of having a variable num-
ber of cogs by using a wheel in which the number of cogs varied along
its length. A normal gear wheel moved along the stepped one’s length
would engage a different number of cogs depending on its position.

An improvement on the stepped wheel was the invention of the pinwheel in
Figure 3.14 which allowed a more compact device.

Variable toothed wheels of different designs along with sliding carriages
were incorporated in mass produced commercial calculators from the 19th cen-
tury until they were replaced by electronic ones in the 1970s. Figure 3.15 shows
a widely used model of pinwheel calculator that remained in production until
the 1960s.
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5.1 Triumph of digital computation

Although Turing had advanced the idea of the universal digital computer dur-
ing the 1930s, there was right up to the end of the 1960s an active tradition of
analogue computing which was only gradually replaced by digital techniques.
The tradition of analogue gun control computers continued, as we have men-
tioned!, well beyond the 1940s. Through the 1950s and 1960s analogue elec-
tronic computers were serious rivals to digital onese for many tasks. The ana-
logue approach ultimately lost out because of the twin problems of accuracy
and programmability.
Analogue machines were significantly less accurate than digital ones. Wass[80]

stated that

“Errors as small as 0.1% are hard to achieve; errors of 1% are not
unusual, and they are sometimes as large as 5%-10%. This is in
striking contrast to digital machines,” ( page 3)

This meant that analogue computers had to be applied in areas where high ac-
curacy was not as important as speed of operation. They were used in aerody-
namic control applications such as missile guidance where their errors could
be tolerated. In these applications the basic aerodynamic coefficients of the
equations being solved were known to only about 10% accuracy, whereas the
real-time response needed could not be attained by then existing digital ma-
chines.

Analogue machines were programmed by plug boards. Units to carry out
operations of adding, subtracting, multiplying, differentiating etc were inter-
connected by removable wires in the same way as in a manual telephone ex-
change. Output was typically in the form of real time CRT traces of the graph of

1Page 51.
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the function being computed. Storage of analogue quantities remained a con-
stant problem. MacKay[56] describes the use of modified Williams[82] tubes as
analogue stores. Bergman[3] found that over a process of 8 read /write cycles
with such the cumulative error amounted to 10%.

Sources of error in such machines were

1. Systematic scaling errors due to uncertainty in the parameters of the re-
sistors and other passive components being used.

2. Distortions due to non-linearities in the amplifiers used.

3. Random fluctuations due to environmental factors. These include ther-
mal noise in the amplifiers, and in the case of Williams tubes the effects
of stray magnetic fields on the trajectories of the electrons.

These problems are representative of the difficulties that plague any at-
tempt to carry out accurate analogue computation.

5.2 Analogue computing with real numbers

In principle an analogue device can be thought of as computing with real num-
bers. These real numbers can be divided into two classes, the parameters sup-
plied as inputs to the calculation and the variables that take on time varying
values as the computation proceeds. Whilst in a digital machine the param-
eters and the variables are uniformly represented by strings of bits in some
digital store, in an analogue machine they are typically of different types. The
variables in an electronic analogue computer for example are instantaneous
voltages, whilst the parameters are provided by the physical setting of resis-
tors, capacitors etc. These components are subject to manufacturing errors and
the provision of higher specification components becomes exponentially ex-
pensive.

“That the machine is digital however has a more subtle significance.
It means firstly that numbers can be represented by strings of digits
that can be as long as one wishes. One can therefore work to any
desired degree of accuracy. This accuracy is not obtained by more
careful machining of parts, control of temperature variations, and
such means, but by a slight increase in the amount of equipment in
the machine. To double the number of significant figures, would in-
volve increasing the amount of the equipment by a factor definitely
less than two, and would also have some effect in increasing the
time taken over each job. This is in sharp contrast with analogue
machines, and continuous variable machines such as the differen-
tial analyser, where each additional decimal digit required neces-
sitates a complete redesign of the machine, and an increase in the
cost by as much as a factor of 10.” [79]
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The parameters and variables are, in the mathematical abstraction, trans-
formed by operators representing addition/multiplication etc. In an actual
analogue computer these operators have to be implemented by some appa-
ratus whose effect is analogous to that of the mathematical operator. The anal-
ogy is never exact. Multipliers turn out to be only approximately linear, adders
show some losses etc. All of these mean that even were the variables perfect
representations of the abstract concept of real numbers, the entire apparatus
would only perform to bounded accuracy. But no physically measurable at-
tribute of an apparatus will be perfect representation of a real number.

Voltage for example, is subject to thermal and ultimately quantum noise.
We can never set up an apparatus that is completely isolated from the envi-
ronment. The stray magnetic fields that troubled Bergman will never totally
vanish. It may be objected that what we call digital computers are built out
of transistors working with continuously varying currents. Since digital ma-
chines seem to stand on analogue foundations, what then privileges the digital
over the analogue?

The analogue character of, for instance, voltage is itself a simplification.
The charge on the gate of a transistor is, at a deeper level, derived from an
integral number of electrons. The arrival of these electrons on the gate will be
subject shot noise. The noise will follow a Poisson distribution whose standard
deviation ~ /n, with n the mean number of electrons on the gate. It is clear
that by raising n, making the device larger, we control the signal to noise level.
For large enough transistors this noise can be reduced to such an extent that the
probability of switching errors becomes negligible during the normal operation
of the computer. It is only if we make devices too small that we have to bear
the cost of lower reliability. We look at this in more detail in section 5.7.1.

Suppose we have a device, either electronic or photonic, that measures in
the range 0..1 and that we treat any value above 0.6 as a boolean TRUE and
any value below 0.4 as a boolean FALSE and say that in between the results
are undefined. Similar coding schemes in terms of voltage are used by all logic
families. For simplicity we will assume our measurements are in the range 0
volt to 1 volt.

Now suppose that our switching device is designed to be fed with a mean
of 100 quanta when we input a TRUE to it. Following a poisson distribution
we have ¢ = 10, so we need to know the probability that the reading will be
indeterminate, below 0.6 volt, or how likely is it that only 60 quanta will arrive
given shot noise; i.e. a deviation of 4 o from the mean. Using tabulations of the
normal distribution we find that this probability is 0.0000317.

Consider a computer with a million gates each using 100 electrons. Then 31
of the gates would yield indeterminate results each clock cycle. This is unac-
ceptable.

Assuming the million gates, and a 1 Ghz clock and that we will tolerate only
one indeterminate calculation a day we want to push this down to a failure
probability per gate per cycle of about 10712 or 90. This implies o = 0.044 volts
which can be achieved when our capacitor is sufficiently large that about 500
electrons will generate a swing of 1.0 volt. The figures are merely illustrative,



62CHAPTER 5. HEAT, INFORMATION AND GEOMETRY PAUL AND LEWIS

and posed at a level of abstraction that would apply to both electronic and
optical computers, but they illustrate the way reliability and number of quanta
used to represent TRUE and FALSE trade off against one another.

Our digital computers are reliable because they use a large number of de-
grees of freedom, for example a large number of quanta of charge, to represent
one bit. The number can be chosen so that the probability of a read error is very
low, and then following a read, the signal can be regenerated. This prevents the
progagation of errors that are the bane of analogue computing.

5.3 What memories are made of

Turing’s initial idea of a universal computer was, as described in the last chap-
ter, one that used a tape memory. During the Second World War he had expe-
rience with the code breaking computer’s code named Colossus[41, 33] which
was built to break into the German 'Fish” code. These machines used very
high speed paper tape readers as a read only store. Most were destroyed af-
ter the war, but a few were retained for the generation of one time pads on
punched tape for use in British diplomatic ciphers. But the use of tape was
not an essential part of Turing’s conception of a digital computer. His Auto-
matic Computing Engine, designed in 1945 replaced tapes with mercury delay
lines[79]. The essential point was that the memory could be used to hold either
instructions or data. This had been implicit in his original paper[77]. Based on
his experience since then he was by 1950 giving a very general definition of a
digital computer:

The idea behind digital computers may be explained by saying
that these machines are intended to carry out any operations which
could be done by a human computer. The human computer is sup-
posed to be following fixed rules; he has no authority to deviate
from them in any detail. We may suppose that these rules are sup-
plied in a book, which is altered whenever he is put on to a new
job. ..... A digital computer can usually be regarded as consisting of
three parts:

(i) Store.

(ii) Executive unit.

(iii) Control.

The store is a store of information, and corresponds to the hu-
man computer’s paper, whether this is the paper on which he does
his calculations or that on which his book of rules is printed. (Turing[78],
page 436)

His mature conception of the memory is that it addressed randomly rather
than sequentially

The information in the store is usually broken up into packets of
moderately small size. In one machine, for instance, a packet might
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(0

Figure 5.1: Memories available to Turing in the 1940s. (a) Mercury delay
lines, shown with Maurice Wilkes designer of EDSAC. (b) Magnetic drum. (c)
Williams Tube. Pictures (a)&(c) Wikimedia, (b) photo by Nial Kennedy:.

consist of ten decimal digits. Numbers are assigned to the parts of
the store in which the various packets of information are stored, in
some systematic manner. A typical instruction might say:

’Add the number stored in position 6809 to that in 4302 and put the
result back into the latter storage position.’

Needless to say it would not occur in the machine expressed in En-
glish. It would more likely be coded in a form such as 6809430217.
(Turing[78], page 437)

At the time that Turing was designing ACE or working at Manchester, de-
signing a suitable random access store was still a considerable problem. Al-
though the conceptual design was for a store that could be accessed as a series
of numbered slots, the actual implementations available were all cyclical.

In the Williams Tube[82, 53] a cathode ray tube was raster scanned to read
out bits deposited as electric charge on the surface, an inherently cyclical /serial
process.

In the drum store, the data was written to a set of tracks on the drum and
read by fixed heads at slightly offset positions. Data from any head could be
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randomly selected but one had to wait for a particular word to come back
round as the drum rotates.

In a delay line the sound waves passed down a mercury filled tube and
were picked up at the other end to be regenerated[55]. In both cases the lim-
itation on the computers performance was the cycle time at which data came
back round. On average one would expect memory access for a random word
to take approximately % the memory cycle time.

The first genuinely random access memory did not come until the in inven-
tion of magnetic core planes such as the one shown in Figure 5.2. With these
the access time could be much faster than in delay lines or drums. Time to
access a core plane of n bits could be modeled as:

tm = alog(n) +by/n+c

where the logarithmic term a log (n) derives from the decode logic that selects
row and column lines, the by/n term derives from the time it takes for the signal
to propagate along the row and column lines, and the constant term c is the
time taken for a single core itself to respond to being selected. Why does it take
this form?

Well in the photo the plane has 32 rows and 32 columns. When an access
is performed one of the rows is selected. To select one row thus takes 5 bits
since 32 = 2°. So the signal that selects the row must have had to pass through
5 AND gates. Activation of a row will cause all 32 bits on that row to be read
out along the column lines. The bit that is wanted must be selected from these
32 using another 5 address lines. So the total number of AND gates involved
in the critical path will be 10. There will be 5 to select the row and 5 for the
column. There are 1024 bits in the memory, and log, (1024) = 10.

Next consider the time to propagate along the rows and down the columns.
For a randomly chosen memory cell, the row signal has to propagate half way
across and the column signal has to propagate half way down the column. So
the mean propagation distance in our example will be 22 4 32 = 32 cells. So in
Figure 5.2 what we have is

tym = 10a + 32b+ ¢

with a being the delay through an AND gate, and b the propagation time across
a distance of 1 cell, and ¢ the time for the selected core to switch.

Clearly, for large arrays, the square root term will dominate. In consequence
there will be an optimal size of plane. Suppose that with the technology of 1961
the optimal size was 1024 bits. Rather than creating a plane of 4096 bits whose
propagation time would have been twice as great, it would have been better
to fit the machine with 4 planes of 1024 bits at a cost of only two more AND
gate delays. The optimal size depended on the relative sizes of the constants a
and b both of which would change over time as AND gates improved, and as
physically smaller cores meant that the signal propagation distances fell.

During the 1970s the preferred technology for computer memories changed
from induction to capacitance. Capacitive memories became commercially vi-
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Figure 5.2: (a) Magnetic core memory storing 1024 bits of information, dating
from 1961, made by Control Data Corporation. (b) First German 1 megabit
Dynamic Random Access Memory chip, 1989, made by VEB Carl Zeiss Jena.

able with the Mostek 4096 bit dynamic RAM chip in 1973. These quickly dis-
placed core memory because they were faster, cheaper and more compact. If
you look at the DRAM shown in Figure 5.2(b) you can see that it was made of
64 smaller arrays, illustrating our previous argument that there is a sweet point
for a given two dimensional memory array technology. An array size that min-
imises both decode and propagation delays. For larger memories one creates
multiple of these optimally sized arrays. It is not accident that both the core
memory and the DRAM were organised as two dimensional arrays. A combi-
nation of logic, economy, and thermodynamics have forced this approach onto
computer designers.

It is a logical approach because the organisation of memory as a grid allows
the decode logic to be shared across many memory cells. In the old 1024bit
core memory, each row or column wire would have been fed by an output
of a five level decode tree, a deeper version of Figure 5.3. A p level decode
tree requires 2P — 1 demultiplexers, so our core matrix will have required 31
demux’s for the rows and 31 for the columns, in general this approximates to
2y/n components for an array of n bits. If each memory bit was fully decoded
then n demultiplexers would be used, so the grid arrangement uses much less
resource in gates.

There is another reason why two dimensional arrays are advantageous. We
should remember that computers are labour saving devices. They are only
worth using if the total work set free by using the machine exceeds the total
work that goes into making it. If we look at the calculator shown in Figure
3.15, its cost in the 1950s was around two month’s average earnings. It would
only be worth while for somebody to buy one if they were an accountant or
had some other job that involved them in a great deal of calculation over a
long period.
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Figure 5.3: Three level decode tree.

By 1972 when the first mass produced electronic calculator, the Sinclair ex-
ecutive, was launched in Britain, its price was the equivalent of two weeks
wages. Today a basic four function electronic calculator costs the equivalent
of about 20 minutes average wages. At today’s price, the time saved on even
occasional calculations, will make buying a calculator worth while for most
families. The fall in price which is most obvious with calculators, but has af-
fected all computing equipment, is a consequence of the adoption of what is
basically a printing technique to produce electronic logic. The chip layout is
transfered to the chip by a parallel photographic process. This allows all tran-
sistors on the chip to be simultaneously manufactured. Successive generations
of chips have small and smaller features on them. Improvements in imaging
technology - the ability to use and focus ever shorter waves of electromagnetic
radiation - have allowed repeated halvings of feature sizes. These halvings of
feature sizes translates into an exponential growth in the number of transistors
per hour that a state of the art plant can make. Despite the growth in capi-
tal costs of chip plants[63] this has still led to an exponential cheapening of
transistors.

But for this to work it has been essential that there exists an axis normal
to the circuit along which its constitutive information can be transmitted in
parallel. In a three dimensional universe, this constrains us to make two di-
mensional printed products.

Prior to the adoption of printing techniques, some three dimensional core
arrays were built. But core memories were manufactured sequentially, thread-
ing wires through the cores one at a time. Indeed, although machines were
built to automate construction, it was in the end found cheaper to use orien-
tal cheap labour to make them by hand[66]. For cores there was not the same
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imperative to adopt a purely planar organisation.

Suppose that we did try to mass produce chips with a 3D structure. Since
the manufacturing process is basically a printing process, at least one printing
step would be required for each layer of our 3D structure. If we want to in-
prove our gate count on a 2D chip by a factor of 4 we can do so provided we
can print each feature at half the size. Using the third dimension, we could
also increase the number of gates by a factor of 4 by having 4 times as many
manufacturing steps to lay down 4 times as many layers. If we grow gates by
shrinking feature sizs the number of manufacturing steps remains constant. If
we do it by adding layers the cost rises at least in proportion to the additional
layers. In fact the cost metric will be worse than this for a multi-layer chip
since manufacturing errors will grow exponentially with the number of lay-
ers used. For these reasons 3D chip manufacture has never been economically
competitive. do

Another factor is the problem of heat dissipation. A three dimensional
structure can only conduct or radiate away heat from its surface. If heat is to
be removed from the interior it has to be made porous and liquid or gas blown
through to cool it. This was feasible with cores since they were porous, but it
is much more of a problem with silicon chips. These have to dissipate their
heat from their surfaces, and as circuit technology has advanced, the problem
of heat dissipation has become more severe.

5.4 Power consumption as a limit

The first generations of electronic computers used vacuum tubes or ‘valves’
as they were called to perform binary switching. In a valve the cathode has
to be heated by a red hot element, in consequence a valve computer used
huge amounts of power. Lavington recounts how amazed people were by
the amount of power used by the Manchester Mk1 in 1948[53]. Power con-
sumption was substantially reduced in the second and third generations of
mainframe computers which used discrete transistors or small scale integrated
circuits[1, 66]. The key to the inexpensive mass production of electronic com-
puters was the development of the microprocessor, initially as a device for
cheapening the production of desktop calculators[12].

541 CMOS

The first generation of microprocessors like the Intel 4004 shown in Figure
5.4(a), used what are called PMOS transistors. These were followed shortly
after by NMOS chips like the 8080 and then from the mid 1980s CMOS chips
have dominated. The aim of successive changes in circuit technology has been
to combine circuit speed with power economy.

To understand what is involved look at the NMOS gate shown in Figure
5.5. The diagram shows a cross section through a gate with air above and
silicon below. The silicon is doped in two ways N-type doping which imparts
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Figure 5.4: Intel and AMD microprocessors. (a) 4004 PMOS 4 bit chip, 1971.
This was the first microprocessor and was designed to be used in Busicom
desk calculators. (b) 8080 NMOS 8 bit chip, 1974. This was used in the first
generation personal computers like the Altair 8800 or IMSAI 8080. (c) Intel
80386 CMOS 32 bit chip. (d) AMD Athlon-64 dual core CMOS 64 bit chip,
2005.

(a) (b)

Figure 5.5: NMOS gate (a) in the off state, (b) in the on state.
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Figure 5.6: Left to right: Basic NMOS transistor symbol, NMOS NOT gate,
NMOS NAND gate, CMOS NOT gate. Note the pull-up resistors on the NMOS
NOT gate and. When the output of the NMOS NOT gate is low, a current will
flow through this resistor to ground through the transistor. In the CMOS case,
the output is connected either to high or to ground with no leakage current.

a negative charge, and P-type doping which imparts a positive charge. The
two N-type regions are labeled S and D for Source and Drain. In the middle,
labeled G, is the gate, a capacitor plate which is isolated from the silicon by a
layer of insulating silicon dioxide. The gate acts as a switch that can be opened
or closed by applying a voltage to it.

In the off situation shown in Figure 5.5(a), current can not flow from the
source to the drain as it is opposed by the bias voltage between the N-type sil-
icon of the source and the P-type silicon under the gate. If a positive charge is
applied to the plate G, however, it induces a N-type depletion zone immedi-
ately under the gate. Consequently there is a continuous N-type region from
the source to the drain and current flows. In a PMOS gate the source and drain
are built of P-type silicon and in the off mode the channel is N. In this case
a negative charge on the gate induces a P-type depletion zone between the
source and drain.

CMOS chips combine the use of both NMOS and PMOS gates, the motiva-
tion being to reduce power consumption. If we look at the NMOS gates in Fig-
ure 5.5 we see that when the output is low a leakage current will flow through
the pull-up resistor to ground. The CMOS gate avoids this leakage current by
connection the output either to high or to ground. Thus there is no static cur-
rent flow for a CMOS gate. The only current flow occurs during switching in
order to overcome the capacitance of the circuit attached to the output of the
gate. This led to a considerable economy in the use of power when the initial
transfer from NMOS to CMOS technology occurred.

As clock speeds rose however the currents required to overcome capac-
itance rose so much that power consumption has again become a pressing
problem. Let us construct an ultra-simple model of the power consumption
of a CMOS processor. We can approximate a CMOS chip by a collection of
capacitors a portion of which charge and discharge on each clock cycle. This



70CHAPTER 5. HEAT, INFORMATION AND GEOMETRY PAUL AND LEWIS

charging and discharging dissipates power. For our simple model we will con-
sider only the capacitance of the gates themselves not of the wires between
them The capacitance of a parallel plate capacitor is given by

C = £8.854 x 10—12§

where C'is capacitance in farads, A area in square meters, « is the dielectric con-
stant of the material between the plates and d their separation in meters. For
the silicon dioxide insulator used in most chips « is 3.9. Let us initially con-
sider only the capacitance of the CMOS gates themselves, ignoring the wires
for now. Since the capacitance of the gates is inversely proportional to gate in-
sulation thickness, as feature sizes are made smaller, the capacitance tends to
rise as the thickness of gate insulation falls. Since the insulation under gates
is thinner than under wires, the gates contribute a disproportionate amount to
the total capacitance.

Consider a gate that is 65nm square and has an oxide thickness of 1.2nm (
realistic figures for about 2008) :

gate dimensions 65x 10~ ?meters
gate area 4.2x1071° sq meters
distance between plates 1.2x1072 meters

Capacitancel.2 x 10716 farad

The charge on the gate will be the product of the working voltage and the
capacitance =vC, and the power used will be P = fv?C where f is the clock
frequency. If we operated the gate at 3.3v and had a clock speed of 1 GHz then
each gate would use a power of about 1.37¢ watts. This does not seem much
until you take into account how many gates there are in a modern chip. An
AMD K10 for example has of the order of 5x10° gates. The power used will
depend on the fraction of the gates which switch each cycle, if 10% switch each
cycle the total power consumption of the chip would be about 65 watts. Clearly
the model above is very approximate. The fraction of gates switching each
cycle are a guess, and we have made the simplifying assumption that gates are
squares the of edge the minimum feature size. We have ignored capacitance on
wires since the thickness of insulation here is much larger, and also neglected
resistive losses.

Despite the simplifications, our estimated power consumption agrees rea-
sonably well with the figures given by AMD for the Agena version of the K10
which consumes between 65 and 140 watts for clock speeds between 1.8GHz
to 2.6GHz.

As clock speeds rise so does power consumption. As feature sizes shrink,
and thus the insulator thickness falls, this too increases power consumption
per sq cm of chip surface. The result is shown in Figure 5.7. The processor
becomes physically dominated by the equipment required to remove excess
heat. The rate of heat flow away from the surface of the chip is already more
than can be handled by simple conduction. To augment this heat pipes[25]
have to be used, Figure 5.7(c). We are approaching the limit of heat dissipation
that can be practically handled by low cost techniques. Mainframe computers
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in the past used liquid cooling[16], but this is expensive and not suitable for
mass produced machines.

Our account of computing has led from primitive arithmetical aids to de-
vices more like little steam engine boilers. This seems strange.

But there turns out to be a deep relationship between computing and ther-
modynamics, and it is thermodynamics that, on the basis of current under-
standing, fundamentally limits the power of our computing.

5.5 Entropy Lewis

Revision of this with respect to classical thermodynamic

5.6 Shannon’s Information theory

The establishment of information theory as a science occurred in the middle of
the last century and is closely associated with the name of Claude Shannon. If
anyone was father to the information revolution it was him. Shannon’s revo-
lution came from asking new questions, and asking them in a very practical
engineering context. Shannon was a telephone engineer working for Bell Lab-
oratories and he was concerned with determining the capacity of a telephone
or telegraph line to transmit information. He [70] formalized the concept of in-
formation through trying to measure the efficiency of communications equip-
ment.

To measure the transmission of information over a telephone line, some def-
inite unit of measurement is needed, otherwise the capacity of lines of different
quality cannot be meaningfully compared. We need to quantify information.
According to Shannon the information content of a message is a function of
how surprised we are by it. The less probable a message the more information
it contains.

Suppose that each morning the news told us

There has been no major earthquake in the last 24 hours.

We would soon get fed up. It conveys almost no information. If instead we
hear:

We have just heard that Tokyo has been devastated by a force 8 earthquake.

This is real news. It is surprising. It is unusual. It is information.

A daily bulletin telling us whether or not a quake had happened would
usually tell us nothing, then one day would give us some useful information.
Leaving aside the details, if an announcement were to be made each morning,
there would two possible messages

0 ‘No big earthquake’

1 ‘There has been a big quake’
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Figure 5.7: Heat exchangers used in modern desktop computers. (a) The heat
exchanger used for a 4 core Intel processor. The large finned heat exchanger is
cooled by an axial fan and heat is led up to it from the processor and graphics
chips by heat pipes. (b) The heat exchanger system used for the G5 processor
on an Apple computer. (c) The principle of the heat pipe. 1. Vapour evaporates
absorbing heat. 2. Vapour flows to cold end. 3. Vapour condenses releasing
heat. 4. Wick conducts liquid back.
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Binary Code Length  Meaning  Probability

0 1 False, False 3
10 2 False, True 2
110 3 True, False 2
111 3 True, True :

Table 5.1: A possible code for transmitting messages that are true # of the time

If such messages were being sent by wire, one could encode them as the pres-
ence or absence of a short electrical pulse, as a binary digit or ‘bit” in the widely
understood sense of the word. We normally assume that a bit is the informa-
tion required to discriminate between two possible alternatives.

Shannon defines a bit more subtly as the amount of information required
for the receiver of the message to decide between two equally probable alterna-
tives.

For example, a sequence of tosses of a fair do contain one bit per toss, and
can be efficiently encoded so that heads are 1 and tails 0.

Shannon’s theorem says is that if we are sending a stream of 0 or 1 mes-
sages affirming or denying some proposition, then unless the truth and falsity
of the proposition are equally likely these Os and 1s contain less than one bit
of information each. In which case there will be a more economical way of
sending the messages. The trick is to use a system where the more probable
message-contents gets a shorter codes.

For example, suppose the messages are the answer to a question which we
know a priori will be true one time in every three messages. Since the two
possibilities are not equally likely Shannon says there will be a more efficient
way of encoding the stream of messages than simply sending a 0 if the answer
is false and a 1 if the answer is true. Consider the code shown in Table 5.1.
Instead of sending each message individually we package the messages into
pairs, and use between one and three binary digits to encode the 4 possible
pairs of messages.

The shortest code goes to the most probable message, the sequence False
False with probability 2 x 2 = 3. The codes are such that they can be uniquely
decoded at the receiving end.

For instance, suppose the sequence ‘110100" is received: checking the Table,
we can see that this can only be parsed as 110, 10, 0, or True, False, False, True,
False, False.

To find the mean number of digits required to encode two messages we
multiply the length of the codes for the message-pairs by their respective prob-
abilities: A ) ) ) .

g T2XgH3x g +3x 5 =1-~1889 (5.1)
which is less than two bits.



74CHAPTER 5. HEAT, INFORMATION AND GEOMETRY PAUL AND LEWIS

Shannon came up with a formula which gives the shortest possible encod-
ing for a stream of distinct messages, given the probabilities of their individual
occurrences.

H == pilog,p; (52)
i=1

The mean information content in a collection of messages comes by multiply-
ing the log of the probability of each message by the probability of that mes-
sage. He showed that no encoding of messages in 1s and 0s could be shorter
than this.

The formula gave him an irreducible minimum of the number of bits needed
to transmit a message stream: the real information content of the stream.

In his 1948 article Shannon notes:

Quantities of the form H = — """ | p;logp; play a central role in
information theory as measures of information, choice and uncer-
tainty. The form of H will be recognized as that of entropy as de-
fined in certain formulations of statistical mechanics where p; is the
probability of a system being in cell i of its phase space. H is then,
for example the H in Boltzmann’s famous H theorem. We shall call
H = — > p;log p; the entropy of the set of probabilities p1, ..., py,.

So here we get a critical result: information and entropy are the same.

5.7 Landauer’s limit

Information is not a disembodied abstract entity; it is always tied to
a physical representation. It is represented by engraving on a stone
tablet, a spin, a charge, a hole in a punched card, a mark on paper,
or some other equivalent. This ties the handling of information to
all the possibilities and restrictions of our real physical word, its
laws of physics and its storehouse of available parts.[49]

We discussed earlier how difficult it was to get rid of the heat generated by
current CMOS circuits. That argument was based on currently existing tech-
niques for building logic gates. Human ingenuity being what it is, we should
expect that novel designs of gates will arise in the future that allow components
to be still smaller, and to use less energy.

The decisive factor in cooling is the number of watts per sq cm of heat re-
leased. Provided that the shrinkage in area goes as fast as or faster than the
shrinkage in power consumption we will be OK. The most obvious step is to
reduce the voltage at which the chip operates - and this has indeed been done
over time. But there is an interaction between gate voltage and reliability. As
you shrink gate voltages, the reliability of the gate in the face of thermal noise
declines.
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5.7.1 Thermal noise

The thermal fluctuations of voltage on a capacitor in a CMOS chip give rise to
a thermal noise voltage [44] which has the form

[kT
U, = Yol (5.3)

As the capacitance of the gate falls the thermal noise rises. Note the sim-
ilarity of this to the distribution discussed on page 61. The discrete nature of
charge lies at the base of the thermal noise as it does with shot noise. If we
assume that gate oxide layers have hit an effective lower limit at about 1 nm,
then capacitance is going to scale proportionately to A?> where ) is the mini-
mum feature size on a chip. If we reduce the A from 40nm to 20nm the area
of a gate capacitor will fall from 160 nm? to 40 nm?. Thus by equation 5.3, if
we halve the feature size on a chip, we double the thermal noise voltage. To
provide an adequate protection against the occurrence of errors it is necessary
for the operating voltage level of the chip to be scaled with the thermal noise
such that the voltage difference between a 1 and 0 is about 11 or 12 times U,,.
From this it follows that if we keep shrinking our transistors, we will have to
start increasing the operating voltage of the chips to provide a sufficient noise
threshold.

This obviously has serious implications for power consumption per unit
area since power consumption is proportional to the square of the voltage. It
means that continual shrinkage of CMOS gates will hit a noise limited floor
to power consumption per sq cm that will scale inversely with the square of
the feature size. A halving of feature size will lead to a quadrupling of power
consumption at a given clock speed. In effect this sets a floor to the amount of
energy that a CMOS gate can use and still perform reliably?.

But this seems tied to the particular properties of CMOS and raises a more
general question : is there an ultimate lower limit to the amount of power that
a computer must use?

This was asked by Landauer[50, 51, 52] and the answer he gave was yes.
His argument was based on an ingenious combination of the theorems of Boltz-
mann and Shannon.

He first observed that two of the three basic gates from which we build
our digital logic (AND, OR, NOT) are information destroying (Figure 5.8 ).
Whenever data goes into an AND gate, two bits go in but only one bit comes
out. Since information and entropy are equivalent this amounts to an entropy
reduction operation. But entropy reduction is prohibited in any closed system
by the second law of thermodynamics.

What happens to the entropy of the missing bit?

It can not just vanish, it has to be turned into heat. If the entropy of the logic
goes down, the entropy of the environment must rise to compensate. Using

2Gee also Equation 6.16.
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INPUTS OUTPUTS  BITS LOST
NOT GATE %><F | | 0
AND GATE j} 2 ! !
OR GATE i} 2 1 1

Figure 5.8: The basic gates used in modern computers. All but the NOT gate
destroy information.

Boltzmann'’s constant again he derives the minimum energy that is wasted by
discarding a bit as 7 In(2)Joules®.

We can fit this into our previous calculation of the power used by K10 pro-
cessor and find out what would be the minimum power that it could use. We
make the same assumption about the number of active gates as before, and
assume that it is working at room temperature.

k = Boltzmann’s const 1.38 x 10723

T = Temperature 300 degrees Kelvin
In(s) 0.693

e = kT In(2) = energy per gate  2.87 x 10~2! Joules
n = number of active gates 50,000,000

f = frequency 1GHz

p = fne = power 1.43 x 10~* Watts

This is a very small amount of power. The actual K10 uses about a million
times as much power ( page 70). So there is plenty of room for improvement
before we hit the ultimate limit of thermal efficiency for our computers!

So there is a limit. Why worry? Be happy! It is far away!

There are several reasons to worry.

One has to consider first that Landauer’s limit is very much a lower bound
for a gate. A gate dissipating energy at this rate so close to the thermal noise
level would be too unreliable for practical use. But if we ignore that for now,
and pretend that you really could have a computer using only the Landauer
energy, the rate of improvement in computer technology has been such that
we would soon reach even that limit. The first computers used triode valves
which used about 5 watts for each gate. The Manchester Mk I on which Turing
worked as a programmer was the first programmable general purpose elec-
tronic computer. It had about 4000 valves and used 25 Kilowatt[53, 54, 55]. It

3The In(2) term arises because Boltzmann’s constant is defined in terms of natural logs and
information is defined in terms of logs.
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operated at a clock speed of 85KHz so that to perform one logical operation
with a triode was using about 6 x 1075 Joules, the calculations on page 70 indi-
cate that the gates on the K10 use about 2.6 x 10~ Joules per logic operation.
So over a 60 year period gate efficiency has improved by a factor of about 10'°.

Efficiency has been improving by tenfold every six years. If this trend con-
tinues, then around 2045 gate efficiency will hit its ultimate thermodynamic
limit.

But that looks only at the efficiency question. We have to consider the
growth in processor power too. This can be bounded by the product of the
clock speed and the number of logic operations performed each clock cycle. In
practice, due increasing complexity of logic to achieve a given instruction mix,
this upper bound is not met, but let us use the optimistic measure for now.
Since between the 1949 Mk I and the 2007 K10 the gate count of a machine has
risen from 4 x 10 to 5 x 108, a factor of 10° and the clock speed rose by a factor
of about 10%. The number of logic operations per second have been growing
by a factor of 10 every 6.5 years. If this growth continued, how long would it
be before even a machine working at maximal Landauer efficiency would be
generating too much heat for us to keep it cool?

The K10 generates about 200 Watts per sq cm. It can be cooled, but the limit
of what can be done by conductive plus air cooling is probably of the order
of 1IKw per sq cm. Suppose we envisage a future computer chip 1 cm by 1lem
operating at maximum Landauer efficiency and putting out 1Kw. Let us call

this the Last Chip. How many logic operations per second could it do?

. 10% Joules _ 23 : s
Clearly the answer is 54=5 75751 foujes = 9-48 x 10°°. Since we have esti

mated that our K10 is doing around 5x10'6 logic operations per second, this
allows our Last Chip to be about 10 million times more powerful than any-
thing we have today. At current growth in processing power this level of per-
formance could be attained in about 40 years - say around 2050.

These very crude calculations imply that, if historical trends continued, we
would reach 100% Landauer efficiency about 2045 and that about 5 years later,
even chips running at this efficiency level will become thermally limited. So
although the Landauer limit is some years away, it can be expected within the
working careers of students reading this book.

5.8 Non entropic computation Paul& Lewis

The discovery of the Landauer limit prompted research into whether it was
in principle possible to build computers that would use less energy. One ap-
proach was that put forward by Fredkin and Tofoli[31] who invented a new
class of logic gates which they called conservative logic. They made the ambi-
tious claim that:

The central result of conservative logic is that it is ideally possi-
ble to build sequential circuits with zero internal power dissipation.

([31], p.3)
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The key idea was to get round what they saw as the limit in conventional
logic technology that it was not reversible. We have seen how the AND gate
takes in two bits and outputs only one. If one could devise a new family of
logic gates which met the conditions that:

o they had the same number of outputs as inputs;

o their logic functions were reversible, i.e., from the output of the gate you
can determine what the inputs must have been;

then there would be no loss of information as the gates operated. If there was
no loss of internal information or internal entropy, then there would be no need
to shunt entropy into the external environment as heat. Hence given a suitable
reversible gate family, one could in principle build zero power computers. The
set out to answer four questions:

Question 1. Are there reversible systems capable of general-
purpose computation?

Question 2. Are there any specific physical effects (rather than
mere mathematical constructs) on which reversible computation
can in principle be based?

Question 3. In Section 4, we have achieved reversibility of com-
putation at the cost of keeping garbage signals within the system'’s
mechanical modes. In a complex computation, won't garbage be-
come unmanageable if we cannot dissipate it? And won’t the need
to dissipate garbage write off any energy savings that one may have
achieved by organizing the computation in a reversible way?

Question 4. Finally, without damping and signal regeneration,
won't the slightest residual noise either in the initial conditions or
in the running environment be amplified by an enormous factor
during a computation, and render the results meaningless?

([31], p.13)

The came up with adequate responses to the first three questions but, in our
opinion, failed on the last one. Whether or not one considers their proposal to
be plausible, it certainly remains instructive.

A number of such gates would be possible, but they gave as an example the
so called Fredkin gate in Figure 5.9. They showed that if one fed in 0 or 1 into
appropriate inputs one could emulate the classical AND and NOT gates with
Fredkin gates. The fact that no bits were being thrown away did mean that you
would have to keep hold of a series of garbage bits generated in the calculation.
This might seem to offer no advantage over old style logic gates, since one has
merely postponed discarding entropy by encoding it in the garbage bits. What
happens to these at the end of the calculation?

If you just put them into a bit sink, you generate heat and have gained noth-
ing by using Fredkin gates. Their ingenious solution was to do the calculation
in 3 stages:
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a b
x1 | yl
x2 y2
a x1 x1|b yl y2
0 0 0|0 0 O
0 0 10 1 O
01 0|0 0 1
0 1 1 0 1 1
1 0 0|1 0 O
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

Figure 5.9: The the Fredkin gate with its input output table.

1. Put the input variables V' and the required constants C into the gates and
compute the boolean result R plus the garbage G.

2. Perform a copy of the result into a final register . This operation is
destructive and liberates [T of energy where [ is the length in bits of
the result register.

3. Send the information in < R,G > back through the logic in the reverse
direction, restoring the original V and C.

Since the same C' is used every time you do the calculation, the only cost of
the whole operation is pre-setting V' and setting I’ so the bit cost in terms of
entropy is just the sum of the input variables plus the output variables. The
energy cost no longer depends upon the number of logic steps performed, only
on the size of the question and the size of the answer.

They have now answered their first and third question, what about physical
realisability?

For this they proposed billiard ball logic as shown in Figure 5.10. They ar-
gue that spheres of radius % moving with unit velocity along a grid and then
undergoing elastic collisions can be thought of as performing logic operations.
By inserting reflectors at appropriate positions it is possible to get the switch
gate shown in Figure 5.10(b). By appropriately routing 4 of these switch gates
in sequence, they showed that one can logically realise the Fredkin gate.

Fredkin and Tofoli argued that they have good precedents for the model
they proposed:

In the past century, a satisfactory explanation for the macroscopic
behavior of perfect gases was arrived at by applying statistical me-
chanical arguments to kinematic models of a gas. The simplest
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mirror

pandg K\C

a _I___~ qandnotp X and not ¢

|
I
v
p and not q
x and ¢
qand p )
mirror

(a) (b)

Figure 5.10: Billiard ball interaction gates. (a) Elementary collision. (b) The
switch gate. The descending bit C switches the bit X between two possible
paths and then continues on its way. Note that the logical output bit C may not
be the original ball.

such model represents molecules as spheres of finite diameter. Both
molecules and container walls are perfectly hard and elastic, and
collisions are instantaneous. ([31], p.18)

This is true historically. Boltzmann in his Lectures on Gas Theory[7], did
indeed assume molecules were spheres of the sort used by Fredkin and Tofoli,
but he also paid considerable attention to the scattering properties of collisions
between molecules ([7] Chapter 1.4). If we look at Fredkin and Tofoli’s propos-
als from this standpoint we have to conclude that their gate model is unviable
even within the theoretical framework of rigid perfectly elastic spheres. The
problem lies with the exponential instability of collision paths.

Consider Figure 5.11. In this diagram the two balls should meet in the mid-
dle on vertical ingoing and outgoing paths shown as dashed lines. In the Fred-
kin model the balls should approach at 90 degrees rather than 180 degrees, but
by choosing our frame of reference appropriately we can ignore all but the ver-
tical component of the intended approach. The ingoing path of ball B is shown
as being perturbed to the right resulting in an off center collision. The conse-
quence of which is for the outgoing path to be perturbed by a greater amount
than the ingoing one. The perturbation shown is quite large, but even for a
small initial perturbation a similar growth in perturbation occurs with each
collision. A system of colliding spheres is chaotic, the behaviour of the whole
system quickly becomes randomised.

Perturbations are unavoidable. Collisions with the reflectors will give a
thermal component to the energies of the balls equivalent to k7" which will
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| correct path of ball A
I

~ correct collision of balls

Perturbedoutput
path of ball B

I
| correct path of ball B
I

Figure 5.11: In the event of a perturbed collision between two balls, the devia-
tion of the outgoing path from the correct path is greater than the deviation of
the incoming paths.
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Vdd vdd
@ (b)

Figure 5.12: (a) A CMOS gate uses energy charging and discharging its capac-
itor through the resistance of the circuit that connects it alternately to power
and ground. (b) If we place an inductance in the path we can reduce the poten-
tial accross the resistance and thus reduce resistive losses at th cost of a slower
operation.

become amplified with each collision. After a few layers of logic, the output of
the gates will become completely non-deterministic and you will be left with
what one should have expected from the kinetic theory of gases, ‘molecules’
bouncing about in a maximally entropic fashion.

For the billiard ball logic to work one has to postulate the complete isola-
tion of the information encoding degrees of freedom from all thermal noise.
For a mechanism operating classically this is impossible. Fredkin’s model did
however prepare the way for Feynman’s proposal to use quantum mechanics
to implement reversible gates[29, 30].

5.8.1 Adiabatic CMOS gates

We said when discussing power consumption in CMOS (page 69 ) that CMOS
circuits used power because they were charging and discharging capacitances
every cycle. Let us look at this slightly more closely. Figure 5.12 shows a con-
ceptual model of a CMOS gate which is alternatively charged and discharged
through the resistance of the path leading between the gate and either the
power supply or ground. In practice the resistance to ground and to high
would not be the same, but that is not important for what follows. Earlier,
we estimated the energy loss used by the gate by considering the energy dis-
sipated as the charge on the gate is allowed to fall in potential from Vdd ( the
supply voltage ) to ground. What actually happens is that the potential energy
on the capacitor is turned into heat overcoming the resistance of the resistance
on the path to ground.

The power consumed by a resistor is the product of the voltage accross
the resistor and the current flowing. Initially, when the switch connecting the
capacitor to ground is thrown, the voltage accross the resistance is Vdd, but as
the capacitor discharges, the voltage falls so the rate of power dissipation peaks
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then falls off. Suppose that we could reduce the voltage accross the resistor to
less than the full power supply drop from the start. In principle this can be
done by placing an inductance in the path. The initial voltage drop will now
be split between the inductor and the resistor, and in consequence the resistor
will heat up less leading to a more efficient overall operation. This mode of
operation of CMOS gates is called adiabatic.

It is in principle possible to integrate inductors onto chips[11] but the cost
in area of doing this is relatively high. Researchers in the area have instead
adopted the approach of globally ramping the power supply up and down
using external inductors in the power supply path to the chip. The Charge
Recovery Logic family designed by Knight and Younis[46] works that way, and
also requires a considerable growth in the number of transistors used for each
logic gate in order to accomodate the fact that the operations are now done
using AC rather than DC power. Younis[85] gave a design for a NAND gate
which involved 32 transistors. A normal CMOS NAND requires 4 transistors.
There is thus an eightfold increase in components required.

The other downside, is that the speed at which we can discharge or charge
the gates goes down, so we have to operate the circuit at a slower rate. This
would seem to defeat the purpose of the exercise since heat generation is only
a problem in high speed circuits. But it turns out that if we slow the discharge
down significantly then the power losses through the resistor become propor-
tional to the square of the frequency at which we operate the circuit. Suppose
that as a result of using using adiabiatic operation we reduced the clock speed
of a 100 watt processor chip from 1GHz to 100Mhz. Using conventional cir-
cuit the power would drop to 10 watts. But if we used an adiabatic circuit the
power loss on each transistor would have fallen to only 1% of what it origi-
nally was. Allowing for having 8 times as many transitors we could expect the
adiabatic circuit to be using 8 watts at 100MHz. But of course if we had sim-
ply reduced the clock speed of the original chip to 100MHz, power would also
have fallen to 10 watts without the extra manufacturing cost of using 8 times
as many gates.

But the number of transistors you can fit on a chip is a function of your
manufacturing process. At any given time the maximum transistor budget is
fixed. An adiabatic computer using 8 times as many transitors for each prim-
itive logic gate would have less logic gates and thus would need to be of a
simpler architectural design. It might have to be a 32 bit processor instead of a
64 bit one, it might have less internal parallelism, no dual instruction issue etc.
This means that our 100MHz adiabatic chip would have less computing power
than the conventional CMOS chip slowed down to 100MHz.

If we essay more drastic cuts in frequency, the adiabatic technology begins
to show some advantages. At 25MHz the adiabatic chip is using 0.5 watts.
To cut the conventional chip’s power down this low we would have to run
it at 5 Mhz. It is plausible that the adiabatic chip would now be doing more
computing work for the same energy as the conventional one. So for some
applications, for example where battery usage has to be kept to an absolute
minimum, and where computing requirements are modest, adiabatic circuits
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have arguable advantages.

It is harder to see them competing with mainstream processors. In princi-
ple, by throwing in enough slow adiabatic processors running in parallel one
might be able to do the computing work that can be done with a current 3GHz
processor chip and still use less electrical power. But the cost of buying 50
CPUs instead of one would be prohibitive, to say nothing of the impossibility
of getting the 50 CPUs to run software that is currently designed to run on one
processor. It is true that levels of parallelism are expected to rise anyway, but
this is parallelism accompanied by an increase in performance. It is unlikely
that people would be willing to spend a lot money and effort on parallelism at
the same level of performance just to save modest amounts of electricity.



Chapter 6

Quantum computers

Lewis to do this , but should cover at least the issues of
1. computability limits of quantum computers, and key quantum algorithms
2. implementation techniques being investigated for them
3. the coherence problem

4. error correction

6.1 Quantum limits to real number representations

However, all other considerations aside, the idea of being able to represent real
numbers physically to any desired degree of accuracy turns out to be in direct
contradiction with quantum mechanics. To understand the significance of this
statement, it is important to recognise that quantum theory and its extension,
quantum field theory, obsolete and replace classical physics, and that this has
been so comprehensively demonstrated empirically that it is beyond reason-
able doubt. In its fundamental (micro-) nature, the world is not classical, and
classical models can never be more than approximations applicable in a limited
domain. Recent developments in quantum theory suggest that the classical ap-
pearance of the world is, in fact, an artefact of decoherence, whereby the state
vector of a quantum system becomes entangled with the environment [62] and
that consequently quantum mechanics can indeed be seen as a universal theory
governing macroscopic as well as microscopic phenomena. In what follows,
we use only the basic axioms of standard quantum theory [23], in particular
those governing the deterministic time-evolution of an undisturbed quantum
system according to Schrodinger’s equation and the discontinuous change of
state vector experienced when a system is measured. From these principles it
is easy to demonstrate that there are fundamental limits on the.accuracy with
which a physical system can approximate real numbers. Suppose we wish to

85
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build an analogue memory based on setting, and later retrieving, some prop-
erty of a material body, A. To be suitable for analogue representation of real val-
ues to arbitrary accuracy, any such property must be continuously variable and
s0, according to quantum theory, can be represented as a Hermitian operator
with a continuous spectrum of real eigenvalues. The most obvious approach
to storing a real number in analogue fashion would be to use a positional co-
ordinate of A, with some appropriate degree of precision, as the measurable
property. Since only one coordinate is required, in what follows we will as-
sume that A moves in only one dimension and that the value stored is given
by its 2 coordinate, an eigenvalue of the z-position operator X.

It is clear that any such system will have limits imposed by quantum me-
chanics: the aim here is to establish just how those limits would constrain any
conceivable technology. As a first approximation, assume that A is a free body
and is not therefore placed in a potential field. A natural scheme might store a
real value, say, xv, at time ¢, by placing A at a point, at distance z = xy £ Ax
from some origin. Az is the acceptable limitation on the precision of the ana-
logue memory, determined by the physical length of the device and the number
of values it is required to distinguish. If 10¥ real values (R x log210 bits) are
allowed and the maximum value is L (the length of the device), then

L
T 2x 10R

We will denote the interval [zy — Az, zy + Az] by Iy

In quantum mechanical terms, just prior to ¢y, A is described by a state
vector |¢g) (Dirac’s formalism). Placing A at the chosen point involves “col-
lapsing” |1o) into a new state confined to a positional subspace spanned by the
eigenkets |z) with z € Iy = [zy — Az, v + Axg] . Az represents the accu-
racy of the measuring device and it is essential that Azy < Az so that Iy C Iy
Define K > 1,by K = £

This process of “state preparation” is entirely equivalent to performing a
measurement on A which leaves it somewhere in the required subspace. Un-
fortunately, any actual measurement has a non-zero probability of failing to
yield a result in Jj. In fact, the probability of success is given by:

Az 6.1)

zyv+Axg
P2y — Az < 2 < 2 + Azg) = / (o) da 62)

v 7AI0

It is reasonably easy to circumvent this problem however. Since the store
operation, being a measurement, returns a positional value, it is easy to tell at
once if it has failed (if the value lies outside /p) and we can assume that any
number of further attempts can be made until success is achieved. For the sake
of simplicity suppose the store operation succeeds on the first attempt at time,
to, whereupon the new state vector of A is given by:

1 v +Axg

|w€> = N

|z) (z|pv) dz (6.3)

[Ave 7A{L’0
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where N is a normalisation constant. In wave mechanical terms, this de-
scribes a wave packet confined to the region . From the postulates of quan-
tum mechanics, at a time immediately following ¢, a second measurement on
A will also retrieve a value within Iy; however, if left undisturbed, |¢,) will
evolve deterministically, according to the Schri;ceinger equation and a later
measurement will have no such guarantee. The Schrodinger equation can be
solved analytically for certain shapes of wave packet, such as the Gaussian
but a more general argument is presented below, applicable to a packet of any
form. The conclusions are universal and the argument can be extended easily
to a packet in a locally constant potential field (e.g. generated by neighbouring
atoms). The key point is that, as soon as the wave packet is formed, it begins
to spread (dispersion) outside Iy. So long as it remains inside the interval Iy
a retrieve operation (measurement) will yield a result in I, but once compo-
nents outside Iy, develop, the probability of a read error becomes non-zero and
then grows rapidly. Let At be the maximum time interval after ¢, during which
a measurement is still safe. The analogue memory must be refreshed by per-
forming a new measurement before or an erroneous result may be generated.
Note that any real measurement on an interval of length xy will take at least
22 where c is the speed of light in vacuum, since a light beam must travel to
an from A to perform the measurement. It follows that if At < 2% then the
memory will not be feasible.

Since momentum and position are conjugate observables, their z-dimensional
operators X and P, obey the commutation relation

X,P,] =ih (6.4)

where £ is Planck’s constant divided by 27. From this it follows that the
uncertainties (root mean square deviations over a quantum ensemble of iden-
tical systems) in the initial (timet) values of x and the p, satisfy the so-called
“Uncertainty Relation’

h
Apy Awo > 5 (6.5)

Since the mass of A written m,, after the ‘store’ measurement at ¢y, A is
moving with an expected velocity of % away from the prepared position.
Naively, therefore, one might expect that at time At, A will have travelled a
distance of 2222 away from its prepared position. This however is a quasi-
classical argument and underestimates the problem, as one might suspect from
noting that the Uncertainty Relation is an inequality and % a lower bound. The
actual positional uncertainty, Az, after the critical time At (at which the spread-
ing wave packet exceeds its safe bounds), can be obtained via an application of
Ehrenfest’s Theorem from which it can be concluded ([14] p342) that:

2
Ag? = (Ap"”‘m) + (Azp)? (6.6)

ma
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In order to determine the theoretical limitations of this system we can now
place an upper bound on At. Since

1. Az = KAxy,
2. 2x 108%Az = L and,

it follows that the maximum value At after which the memory becomes unsafe
is given by:

\/K2—1 L2 2mA

At < 7
=T KT Cax102R " h ©7
It is easy to verify that
VK2 -1 1
max ([(2 = 5 (68)
Approximating 7 ~ 10734 gives,
At < 0.25 x 1034728 x L2my (6.9)
For viability, At > 22¥ 50, since ¢ & 3 x 108(ms™!):
8 102R—42
ma> ol TV (6.10)

3L L

This depends on the value being stored. However, the memory must work
for all values of xy so we can set 2y = L. We now have a final result:

ma x L > 2.6 x 1028742 (6.11)

or alternatively

ma x Ax > 1.3 x 108742 (6.12)

The limitation is is applicable to any scheme which relies on the physical
position of an object to store a real number. To increase the range of a positional
analogue representation by 1 bit of precision requires the mass xlength product
to increase by approximately a factor of 4. It is very easy to see that a system of
this type cannot scale unless allowed to grow arbitrarily in physical size, with
consequent implications not only for the feasibility of construction but also for
the speed at which stored data might be retrieved.

In contrast to a digital machine where the resources used to perform higher
accuracy computation grow linearly with the number of bits of accuracy, the
resources needed by the analogue machine grow exponentially with the accu-
racy of the calculation.
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The following table gives approximate values for the parameters required
for one-dimensional analogue positional memories at several values of preci-
sion (in bits), where possible for L=10m. The 32-bit example requires masses of
the order of a few atoms of uranium placed to an accuracy of 2.5nm, technically
not an outrageous scenario.

Precision (Rlog, 10) Length Approx Mass 2Az
32 10m  5x107%"kg 2.3 x107°m
64 10m 10~ *kg 5.4 % 107¥m
128 5km 6 x 103'kg 1.4 x107%m

However, above 32-bit precision the systems become increasingly implausi-
ble even with exotic technologies. For the 128 bit example, L is chosen to ensure
that Az exceeds the Planck Length, L, ( 1.6x10735m), which is the minimum
precision possible in any physical measurement of position. However even ac-
commodating this fundamental constraint,m 4 is of the order of 50 solar masses
and must occupy a space at least equal to its Schwarzschild radius, S4. As this
is given by:

Sa=ma x1.48 x 10727 (6.13)

A would be at least several km across even if it was a black hole. When dealing
with objects with sufficient gravitational fields, the Uncertainty Principle has to
be modified to take account of gravitational forces and, while the detail is still
not fully settled, in most current theories of quantum gravity it is believed[68]
to take a form such as:

h Ap
> pp—— .
Az > 5 pkap N (6.14)

where k is a constant. This inequality (the so-called Generalised Uncer-
tainty Principle) is interesting because it predicts that when dealing with mas-
sive objects that the Ax associated with a given Ap may significantly higher
than in the non-gravitational case. The GUP also confirms that the uncertainty
in position can never be less than L, regardless of how imprecise the momen-
tum knowledge is: this is in agreement with the claim that L, is the smallest
measurable quantum of length. We conclude:

1. Any physically build-able analogue memory can only approximate the
reals and there are very definite limits as to the accuracy achievable.

2. Analogue storage of reals, will for high precision work, always be out-
performed in terms of device economy by digital storage.

3. Physically build-able analogue computers can not rely upon the avail-
ability of exact stored real numbers to outperform digital computers.
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Figure 6.1: Comparative power used in CMOS and quantum gates as a func-
tion of error rate. Derived from [44].

6.2 Error rates in classical and quantum gates

We will discuss quantum computing in greater depth in Chapter 6, but this
is an appropriate place to look at the power-consumption limits of quantum
computing.

Both classical and quantum computer gates are subject to stochastic errors.
In the classical case these are thermodynamic in character, in the quantum gates
they are due to vacuum or zero point noise.

Banacloche[34, 35] shows that for a quantum logic gate the error rate ¢, is
given by

€ > —= 6.15
q E ( )
where f is the frequency of operation, i Planck’s constant, and E the energy
used to operate the gate.

For a classical gate the error rate is given by

2 -E
€c > —=€FT 6.16

2V (6.16)
where 7' is the gate temperature and E is the minimum energy dissipated in
the classical circuit in the course of the operation. The exponential increase in

the error rate with rising temperature is why cooling is so important.
If we consider clock frequencies in the GHz range, we can look at the mini-
mal power dissipated by CMOS and quantum gates as a function of their error
rates. These are shown in in Figure 6.1. At any error rate below 1076 the
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CMOS system has a lower energy requirement. Current CMOS technology can
achieve error rates in the order of 10~2°. To achieve this error rate the quantum
gate would require around 100 Joules for each switching operation. A single
quantum gate operating in the GHz range would be using of the order of 100
Megawatts of power[44].

Whilst quantum computing does hold promise as a means of reducing the
complexity of algorithms it seems unlikely that it will allow us to escape from
the power consumption limits posed by classical computing.
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Chapter 7

Hyper computing proposals

— Lewis and Paul

There have been many attempts to articulate new systems for computability
that are claimed to transcend the limitations of Church-Turing systems, termed
for example hypercomputing or super-Turing. Copeland[15] provides a thorough
summary. Our view is that none of these proposals have yet made a convincing
case for dropping the fundamental theoretical basis on which computer science
has rested until now. In this final chapter we will review some of the alternative
models of computation that have been put forward recently. We will look at:

1. Proposals to use infinities in Turing machines.
2. Proposals to use infinitely precise analogue computers.
3. Proposals to use black holes for computing.

4. Proposals to use new calculi.

7.1 Infinite Turing machines

Universal Computers proposed by Turing are material apparatuses which op-
erate by finite means. Turing assumes that the computable numbers are those
that are computable by finite machines, and initially justifies this only by say-
ing that the memory of a human computer is necessarily limited. By itself this
is not entirely germane, since the human mathematician has paper as an aide
memoir and the tape of the TM is explicitly introduced as an analogy with the
squared paper of the mathematician.

Turing is careful to construct his machine descriptions in such a way as to
ensure that the machine operates entirely by finite means and uses no tech-
niques that are physically implausible. His basic proposition remained that:
“computable numbers may be described briefly as the real numbers whose ex-
pressions as a decimal are calculable by finite means.”.

93
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Turing thus rules out any computation by infinite means. If infinite com-
putation were to be allowed, then the limitations introduced by the TM would
not apply.

Copeland[15] proposes the idea of accelerating TMs whose operation rate
increases exponentially so that if the first operation were performed in a mi-
crosecond, the next would be done in %ys, the third in % us, etc. The result
would be that within a finite interval it would be able to perform an infinite
number of steps.

The machine could for example compute 7 exactly:

Since a Turing machine can be programmed to compute 7, an ac-
celerating Turing machine can execute each act of writing that is
called for by this program before two moments of operating time
have elapsed. That is to say, for every n, the accelerating Turing
machine writes down the nth digit of the decimal representation of
m within two moments of operating time ([15] p. 284)

Another supposed advantage is that they make the halting problem readily
solvable. The accelerating machine simulates the specified TM for an infinite
number of steps within a finite period and gives a definite answer as to whether
or not it will halt.

This obviously evades Turing’s stipulation that computations must be by
finite means, and, in the process, evades all possibility of physical realisation.
A computing machine must transfer information between its component parts
in order to perform an operation. If the time for each operation is repeatedly
halved. then one soon reaches the point at which signals travelling at the speed
of light have insufficient time to propagate from one part to another within an
operation step. Beyond this speed the machine could not function.

In a hypothetical Newtonian universe without the constraint of a finite
speed of light, this particular obstacle would be eliminated, but one would
immediately face another. In order for the Newtonian machine to compute
infinitely fast, its ( now presumably mechanical ) components would have to
move infinitely fast and thus require infinite energy. Given that the machine
would be dissipative [50] the heat released would raise its temperature to an
infinite extent causing it to disintegrate.

Hamkins[37] discusses what could be computed on Turing machines if they
were allowed to operate for an infinite time, but Turing ruled this out with
obvious good reason.

Etesi and Nemeti[28] extend the idea of accelerating Turing Machines by
proposing a gravitational mechanism by which the acceleration can be done.
They sugges the use of a pair of computers with one (A) orbiting and another
(B) falling towards the event horizon of a Kerr black hole. As the computer (B)
approaches the event horizon its time is slowed down relative to the passage
of time for (A). The closer it gets to the event horizon the slower its passage
of time gets relative to that of (A). They propose that computer (A) be made
to work through the infinitely many instances of some recursively enumerable
set. An instance they cite is running through the infinitely many theorems of
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ZFC set theory to see if any are false. If among the infinite set one is found to
be false, a light signal is sent to (B) indicating this. Because of the slowdown of
time for (B), things can be so arranged as to ensure that the light signal arrives
before the event horizon is crossed.

Esti and Nemeti show remarkable ingenuity in working out the details of
this scheme. They have a plausible response to the most obvious objection:
that the light signal from (A) would be blue shifted to such an extent that (B)
could not detect it. They suggest that (A) computes the degree of blue shift
that the signal would experience and selects a suitably long wavelength and
modulation system to compensate. This is not, however, an adequate response.
There remain two serious objections:

1. Computer (B) is assumed, like any other TM, to operate with clock ticks.
The clock cycle is the smallest time within which the machine can re-
spond and carry out any action. There will, within (B)’s frame of refer-
ence, be a finite number of clock ticks before the event horizon is crossed.
Consider the last clock tick before the horizon is crossed, i.e. the clock
cycle that is in progress as the horizon is crossed. Prior to the start of
this cycle, machine (A) will have only searched a finite number of the
theorems of ZFC set theory. During the final clock cycle of (B) the entire
infinite residual of the set of theorems are checked by (A). But any mes-
sage sent from (A) whilst processing the infinite residual must occupy
less than a clock cycle from (B)’s perspective. As such it will be too brief
to register at (B).

Any signal that (B) can respond to will correspond to (A) only having
searched a finite part of the infinite set of theorems.

2. If we consider things from the standpoint of (A), what we are demand-
ing is that it continues to operate reliably, searching through theorems,
not just for millions years, but for an infinite number of years. The as-
sumptions of infinite reliability and an infinite energy source to keep (A)
operating, are clearly impossible.

3. For A to orbit the black hole for an infinite amount of time, the black hole
would have to exist from now till infinity. If Hawking[40] is right black
holes have very long but still finite existences.

7.2 Infinitely precise analogue computers

We have already discussed the limits that quantum measurement poses on the
possibility of constructing computing machines that would store information
in an analogue mechanical fashion. Our example was given in terms of a mass
whose position encoded a number. The idea of encoding numbers in mechan-
ical positions is not absurd, machines described in Chapter 3 used this sort of
encoding. But we demonstrated in Section 6.1 that there is an inherent limit to
the accuracy of such encoding.
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Turing Machine Polynomial Halting function analogue
] — = — Hypercomputer

Figure 7.1: Da Costa’s proposal.

A general motivation for the construction of such machines is given by Da
Costa in a paper ambitiously titled How to build a hypercomputer[18]. The greater
part of this account is given over to a mathematical justification of why the
construction of a hypercomputer is feasible. Da Costa relies on the concept of
an universal Diophantine polynomial. He cites Martin Davis [19] as describing
an algorithmic procedure out of which, given a Turing machine with input a
M, (a), we obtain a polynomial p,,(a, x1,...) so that it has roots if and only if
the Turing Machine converges (outputs some result). From this he then defines
a real valued and real parametered halting function such that the function will
be less than 1 if the Turing Machine halts and greater than one if it goes into
an infinite loop. This function it should be noted initially requires an integral
over an infinite range, though he later proposes to compactify this.

Given this mathematical solution it is he says, just a matter of engineering
to build the machine.

If we could have this halting function, surely we could just get a conven-
tional computer to evaluate it?

But we know can not do this because were we able to do that because of
Turing’s proof. The problem is that we cannot compute on a TM the required
infinite integrals - these integrals substitute for the potentially infinite time re-
quired to determine if a TM will halt. Da Costa writes that building the hy-
percomputing machine from the mathematical specification is just a matter of
engineering.

Well in that case it is a matter of engineering more suited to Olympians than
us mere mortals since it requires, among other things, encoding 7 in the ma-
chine to an infinite precision. Da Costa gives us no clue as to how he proposes
to achieve this degree of precision. Others have rashly come forward with con-
crete proposals. It is rather easy to come up with ideas for computing devices
which have a superficial plausibility because they are expressed in terms of
idealised physical models in which some real world constraints are absent. In
this section we will look at a few such proposals. In every case we shall see that
their apparent plausibility rests on a judicious choice to ignore key features of
the physical world as understood today.

7.2.1 Newtonian computing

Newtonian mechanics is a particularly beguiling area for those exploring the
possiblities of infinitary computation. What we call Newtonian mechanics is
both that form of abstract maths originating in the calculus of Newton, and a
set of laws that allow us to use this mathematical apparatus to make predic-
tive models of reality. The abstract maths was initially controversial with its
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fluxions and infinitesimals[83]. But its predictive powers proved to be so great
that philosophical doubts about the idea of infinite divisibility were put into
abeyance.

When Newtons laws are used in a practical sense what they do is stiplu-
late a set of algorithms for making finite predictions about things like observed
planetary positions. They specify at a relatively abstract level what a mathe-
matician should do to compute the position of for example Saturn on a par-
ticular day. The calculations may be done by hand or they may be done on a
computer.

Suppose they are done on a computer. There are then a large number of
possible programmes, in various programming languages that are valid appli-
cations of Newton’s laws to the problem. According to the care with which the
codes have been written, the numerical precision of the floating point calcula-
tion etc, these will give results of greater or lesser accuracy. But whatever we
do, the predictions are always given as computable numbers — to some chosen
finite number of digits.

The fact that calculations are always to a finite precision is not a fundamen-
tal problem. We can always choose a number of digits sufficient for a given
practical purpose — whether it is pointing a telescope or navigating a probe to
Jupiter. We can choose an algorithm in which the numerical errors will be a lot
less than our uncertainties in observation and measurement of the actual an-
gular position of Saturn or the actual orbit round Jupiter that our probe takes
up.

Because we can use Newton’s laws to write algorithms that compute move-
ments to an arbitrary degree of numerical precision, a temptation arises to be-
lieve that in the reality physical bodies do move with an infinite accuracy.

It has been known since the early 20th century that, whilst Newtonian me-
chanics makes excellent predictions of a wide range of physical systems, at
extremes of velocity, density and very small scales its success falters. Classical
physics seems to falter at just the places where a relentless pursuit of its logic
would lead us to inifinities. Quantum theory was introduced in Einsteins pa-
per on the photo-electric effect[26] in order to deal with the paradox created
for classical electrodynamics by one such inifinity - the so-called ultraviolet
catastrophe. Einstein opened his paper by pointing to the inadeqacies of a
continuum approach, in this case the continuum presupposed by Maxwell’s
theory:

A profound formal distinction exists between the theoretical con-
cepts which physicists have formed regarding gases and other pon-
derable bodies and the Maxwellian theory of electromagnetic pro-
cesses in so-called empty space. While we consider the state of a
body to be completely determined by the positions and velocities of
avery large, yet finite, number of atoms and electrons, we make use
of continuous spatial functions to describe the electromagnetic state
of a given volume, and a finite number of parameters cannot be re-
garded as sufficient for the complete determination of such a state.
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According to the Maxwellian theory, energy is to be considered a
continuous spatial function in the case of all purely electromagnetic
phenomena including light, while the energy of a ponderable object
should, according to the present conceptions of physicists, be rep-
resented as a sum carried over the atoms and electrons. The energy
of a ponderable body cannot be subdivided into arbitrarily many
or arbitrarily small parts, while the energy of a beam of light from a
point source (according to the Maxwellian theory of light or, more
generally, according to any wave theory) is continuously spread an
ever increasing volume.[26]

His response was to propose that light was quantised in the form of photons,
and from this eventually followed the rest of the quantum theory.

If a modern paper suggests that some form of classical mechanics allows
certain forms of infinitary calculation, what does this mean?

1. that one can logically deduce that certain equations will produce infini-
ties in their solutions?

2. that certain real physical attributes can take on infinite values?

In the light of quantum theory we have to answer no to the last question even
if we say yes to the first. If the maths you are using to represent the material
world gives infinities in your equations, then that tells you more about the
errors in your mathematical model than it does about reality.

Smith [71] gives as an example of uncomputability in Newtonian physics
certain N-body problems involving point masses interacting under gravity. Be-
cause these can approach arbitrarily close to one another, at which point their
mutual gravitational attraction becomes arbitrarily high, he suggests that one
could so configure a set of initial conditions that the particles would move
through an infinite number of configurations in a finite time interval. He ar-
gues that no Turing machine could simulate this motion in a finite time. This
could be interpreted either:

1. as a limitation on the ability of computers to simulate the world;

2. or as a means by which, with suitable encoding, a physical system could
be used to determine algorithmically uncomputable questions.

But let us consider the very properties that would allow this infinitary process -
infinite velocities, point masses with position and no magnitude. These are the
very points where Newtonian mechanics breaks down and has to be replaced
with relativistic or quantum mechanics. The ability of a theory to produce
infinities points to a weakness in conceptualisation. Smith, concurs, he goes
on to show that once relativistic constraints on either velocity or density are
introduced, the equations of motion for the system give finite results, and in
consequence become algorithmically soluble.
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The infinities in the initial differential equations thus emerge as a conse-
quence of the axiomatic structure of the calculus rather than a property of the
real world.

Beggs and Tucker [2] also explore of the extent to which Newtonian me-
chanics would allow the hypothetical construction of infintely parallel com-
puting engines. They do not claim that such machines could actually exist, but
ask: what sort of mechanics would allow such machines to exist?

This is an interesting, if speculative line of enquiry. But to pursue it one
has to be consistent. It would be reasonable enough, when investigating the
hyothetical computational possibilities of a Newtonian universe, to ignore con-
straints imposed by relativity theory and quantum theory. But Newtonian me-
chanics imposes other constraints that may not immediately be obvious.

Beggs and Tucker derive the ability to perform hypercomputation from an
infinite plane of conventional computers, which purport to use tricks of New-
tonian mechanics to allow infinitely fast transmission of information.

They use two tricks, on the one hand they propose to synchronise the clocks
of the machines by using infintely long, rigid rods. The rod is threaded through
all the machines and a push on the rod starts all the computers synchronously.
They conceed that for this to happen the rod must not only be perfectly rigid,
but it must either be massless or have a density which exponentially tends to
zero as one moves away from the starting point. This is necessary if the rod is
to be moved by applying a finite force.

It is not clear in what sense such rods can be said to be Newtonian.

There is an old technical term for rods like this: wands. When Turing had
recourse to ‘Oracles’” he deliberately used magical language to indicate that this
recourse was make-believe.

They propose that the infinite collection of computers will be able to return
results to an initiating processor using an ability to fire cannonballs up and
down along parabolic trajectories at arbitrarily high velocities. The arrival of
such a cannonball transmits a binary truth value. They further propose that
in a finite time interval an infinite number of cannonballs can be projected, in
such a way that at any given instant only one is in flight.

Their argument is that given a projectile of mass m we can project it at
arbitrarily high speed if we use enough energy. Given a distance b that the
cannonball has to travel, we can make the time of flight arbitrarily small by
selecting a sufficiently high velocity of travel. The proposal is that one use
cannons and an arbitrarily large supply of gunpowder to achieve this. This
argument is contradicts Newtonian mechanics on several points.

1. The immediate problem is that whilst there is according to Newton no
limit to the ultimate velocity that a particle subjected to uniform accel-
eration can reach, this velocity is not reached instantaneously. Let us
suppose we use perfect cannons, ones in which the accelerating force f
due to the combustion of gunpowder remains constant along the length
of the barrel.

Achieving this is very hard, it requires all sorts of constraints on the way
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incomming cannonball
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Figure 7.2: Cannonballs and their clearances.

target

the powder burns. It was a sought after but never achieved goal of 19th
century ballistic engineering, much experimentation with powder grain
size went into the quest, see for example [69].

The acceleration of a ball of mass m will then be s = % A cannonball
spends a period in the cannon ¢ being accelerated that is proportional to
the velocity ultimately attained. Thus whilst the flight time £ tends to
2 4+ 2 does not.

zero as velocity increases, total travel time

2. There is a further problem with assuming that cannons can attain an
arbitrary velocity. As one increases the charge in a gun an increasing
amount of the work done by the powder consits in accelerating the pow-
der itself down the barrel. The limiting velocity achievable is that of the
exit velocity of the gas of a blank charge. This, in turn, is limited by
the speed of sound in the driving gas. For a highly energetic hydro-
gen/oxygen explosion this sets a limit of about 2100 m/s. Techniques
such as hybrid explosive and light gas guns can produce a limted im-
provement in velocity[17], but certainly not an arbitrary speed. Rail guns
[67] can achieve higher velocities using electromagnetic acceleration. It is
not clear whether eletro-magnetic propulsion is permissible in Beggs and
Tucker’s chosen model of mechanics.

3. There is also a problem of trajectory Begg and Tucker further assume
parabolic trajectories to ensure that the cannonballs fly clear of interven-
ing obstacles like other cannons prior to hitting their targets, see fig. 7.2.
The balls will take a finite time for gravity to retard their upward veloci-
ties.

Even on its own Newtonian terms, the proposed hypercomputer is incon-
sistent. It is analogous to Fredkin’s billiard ball computer, superficially plausi-
ble but on examination, inconsistent.

7.2.2 Bournez and Cosnard’s analogue super-Turing computer

An examination of a concrete example of another couple of proposed super-
Turing analogue computers[8, 5] illustrates the sorts of errors that would vitiate
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Figure 7.3: An analogue computer proposed by Bournez and Cosnard. Repro-
duced from [8].
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its operation. Bournez and Cosnard propose to use two real valued variables
corresponding to the z, y coordinates of particles, (presumably photons) pass-
ing through plane P in Figure 7.3. The binary expansion of these real valued
coordinates could then be used to emulate the left and right parts of a TM tape
[47, 10]. They argue that the machine could, in addition, be used to simulate a
class of two stack automata whose computational powers might exceed those
of TMs. The gain in power comes from the ability of their proposed stack au-
tomaton to switch on the basis of the entire contents of an unbounded stack,
rather than on the basis of what is directly under the TM head. They sug-
gest that if one had available iterated real valued functional systems based on
piecewise affine transforms, such analogue automata could be implemented.
In the proposed physical embodiment given in Figure 7.3, multiplication by
reals would be implemented by pairs of parabolic mirrors, and translation by
arrangements of planar ones.

The authors, in striking contrast to researchers active in the area 50 years
earlier, fail to identify the likely sources of error in their calculator. Like any
other analogue system it would be subject to parameter, operator and variable
errors. The parameters of the system are set by the positions and curvatures of
the mirrors. The placement of the mirrors would be subject to manufacturing
errors, to distortions due to temperature, mechanical stress etc. The parabolic
mirrors would have imperfections in their curvature and in their surfaces. All
of these would limit the number of significant digits to which the machine
could calculate. But let us, for the moment, ignore these manufacturing errors
and concentrate on the inherent uncertainty in the variables.

Because of the wave particle duality any optical system has a diffraction
limited circle of confusion. We can say that a certain percentage of the photons
arriving from a particular direction will land within this circle. The radius of
the circle of confusion is inversely proportional to the aperture of the optical
system and directly proportional to the focal length of the apparatus and to the
wavelength of the photons used. The angle to the first off-center diffraction
peak A® is given by

sin(AO) = A (7.1)
A
where A is the aperture and A the wavelength.

By constraining the position of the photon to be within the aperture, we
induce, by the principle of Heisenberg, an uncertainty in its momentum within
the plane of the aperture.

To see what this implies, we give some plausible dimensions to the ma-
chine. Assume the aperture of the mirrors to be 25mm and the path length of a
single pass through the system from the first mirror shown in Figure 7.3 back
to Plane P to be 500mm. Further assume that we use monochromatic light with
wavelength A = 0.5u. This would give us a circle of confusion with a a radius
Af(z,y)]\lirror ~ 10u.

If plane P was - of a meter across the system would resolve about 5000
distinct points in each direction as possible values for f(x, y). This corresponds
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to about 12 bits accuracy.

The dispersion A, ) arirror accounts only for the first pass through the
apparatus. Let us look at the parametric uncertainty in z, y to start out with.

One wants to specify x,y to greater accuracy than f(x,y) so that A, , <
Ajf(z,y)- Assume we have a source of collimated light whose wavefronts are
normal to the axis of the machine. A mask with a circular hole could then con-
strain the incoming photons to be within a radius < 10x. Any constraint on the
position of the photons is an initial aperture. If this aperture < 10y, its diffrac-
tion cone would have a A® =~ 0.05 radians. Going through the full optical
path the resulting uncertainty in position A, ,)rask(a,. ) ~ 25mm. We have
Af(x,y)]\lask(Am,y) >> Af(m,y)Mirror-

The narrower the hole in the mask the more uncertain will be the result
flx,y). In other words the lower the parametric error in the starting point, the
greater the error in the result.

There will be a point at which the errors in the initial position and the
errors due to the diffraction from the mirrors balance: when A, )arirror +
Af(zy)Mask(a,.,) < Azy. From simple geometry this will come about when
the ratio A, ,/L =~ /A, , so

Ayy ~ VIX 7.2)

where L is the optical path length of the computation. For the size of ma-
chine which we have assumed above, this implies A, , = 500u. Its accuracy
of representation of the reals is thus less than 8 bits(= - log,( 10582571)), hardly
competitive with existing digital computers.

The evaluation of f(x,y) corresponds to a single step of a TM program. If n is
the number of TM steps, optical path length is nL. By (7.2), the optimal initial
aperture setting A, , o< y/n. Each fourfold increase in the execution length of
the program, will reduce by 1 bit the accuracy to which the machine can be set
to compute.

If we want to make an optical machine more accurate we have to make it
bigger - the growth in the size of astronomical telescopes bears witness to this.
For every bit of accuracy we add, we double the linear dimensions. If M is the
mass of the machine, and b its bit accuracy then M 23b,

For a conventional digital VLSI machine, M b and the mass of the arith-
metic unit grows as blog b. For any but the least accurate calculations this sort
of optical analogue machine will be inferior to conventional machines.

7.2.3 Optical prime factorisation

The fame accorded to Shor’s prime factorisation algorithm encouraged another
attempt at the use of interference as a mechanism for prime factorisation. Shor
relied on quantum interference, whereas this proposal relies upon optical in-
terference. Blakey’s design for a prime factorisation machine[5, 4] displays
considerable geometric ingenuity.
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Figure 7.4: The hyperbolic curve y = N/x passes through the grid points that
are prime factors of N, illustrated with N = 12

It addresses the problem of finding the prime factors of a large integer. This
problem is classically of order \/n for an integer n. Basically one just tries
dividing all possible factors up to the square root, at which point you will have
found all the factorisations. /n. Blakey observes that if you have a grid in two
dimensions as in Figure 7.4, then a hyperbolic curve y = N/z will pass through
the prime factors of V.

He then asks can we set up a physical apparatus that will generate the re-
quired grid and a hyperbolic curve. His suggested equipment is shown in
Figure 7.5.

A point source of light S along with a group of 3 mirrors is used to setu
up a grid pattern of constructive and destructive interference accross the plane
between the mirrors M,, Ms. The hyperbola is then created as the plane in-
tersection between the conic arc P, C' and the mirror plane. Along the circle C
which forms the base of the cone there are photo detectors.

The principle of operation is that:

Diminution of second-source radiation due to its having passed
through an integer (that is, maximally active) point in the first-
source interference pattern (which models the grid of integer points)
is detected at the sensor; the coordinates of points of such detection
can, Turing-computationally trivially, be converted into the coordi-
nates of the sought integer points on the cone. These latter coordi-
nates are factors of n.([6], page 4)

It is unclear why the interference caused by the standing wave pattern in
the mirror plane is supposed to impede the passage of light beams on the path
from P to C. Light beams pass through one another without effect. One only
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Ml

Figure 7.5: Left, plan view of the machine, M; mirrors, S light source. Right, ap-
paratus to generate the hyperbola as a conic section. P is another light source,
and C a circle arc made up of detectors.

observes interference if there is more than one possible route that a photon
can have taken between source and destination. The photons arriving at the
detectors on C can only have come from P, so there will be no interference
between these and the photons emited from S.

As described the machine would not work. It can be modified in a sym-
pathetic wayt to make it work roughly as intended. Blakey does not mention
the use of any photosensitive materials. One could imagine a modification of
his design so that, during a first phase, an initially transparent photosensitive
plate is placed in the mirror plane. The light from S could be used to expose the
plate, darkening it at points of constructive interference. There are of course a
variety of other ways one could lay out such a grid, but Blakey’s interference
patterns are one possible technique.

Given that we have a grid, is the rest of the design plausible?

The basic design seems to assume that a very fine grid will cast a shadow
pattern that will also be a very fine grid. But this is not so. A grid with
holes whose size is comparable to a wavelength, will act as a two dimensional
diffraction grating, which will split the original light rays from P into a strong
principle component and a several diffracted component. There will be no
shadows cast by the grid and hence the desired effect on the detector will not
be observed, since the principal component will seem to pass directly through
though with diminished brightness.

To get a shadow cast you would require a grid that was large relative to
the wavelength of the light and the focal length used. Figure 7.6 illustrates
the constraints. One constraint that Blakey fails to take into account is that the
sensors will have gaps between them and there is the possibility that the peak
in brightness corresponding to a hole in the mask will conicide with a gap.
This is an instance the well known problem of aliasing in digital photography.
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But ignoring that problem for a moment, let us consider how to overcome the
bluring caused by diffraction. We could to constrain the separation between
the principle and first diffracted components arriving on the sensor array to be
no more than half the separation between sensors. This gives us the constraint

w/A < %B/F (7.3)

Let us add the further constraint that A = ¢B with ¢ > 1 in order to have
enough sensors to have some hope of compensating for the aliasing problem.
Let us set ¢ = 2. We thus have the derivation

w _ B
2B 2F
2wF = 2B?
B =vVwF

Since we can only currently build sensors of this density of about 4cm accross,
we can use Blakey’s diagrams to fix a plausible value of the focal length F to be
about 2cm. Let us assume we use visible light with a wavelength 0.7 microns.
This gives us a figure of B the sensor separation, of about 0.1 mm and a grid
spacing of twice that. If we assume that the practical size of the grid is set by
the sensor dimensions to also be about 4cm we see that the optical apparatus
could hope to determine the prime factors of numbers up to about 200. Finding
prime factors in this range is not a serious problem for digital techniques. Since
the prime numbers used in cryptography tend to be of the order of 2256 it is
evident that the analogue technique is of far too low a precision to be of use.

The algorithmic complexity would be worse than on an orthodox machine
the problem would be to find the maximum brightness over the sensors, which
are of order N so the time complexity is N rather than v/N on the conventional
computer. The space complexity is N? since the area of the grid grows in this
manner.

7.3 Conclusions

We have reviewed a number of proposals for trans Turing machines. In each
case we have seen that the machine does not live up to its promise. Now in
one sense this is not surprising since many designs of conventional computers
have faults in them initially. A computer is something very complicated and it
is hard to get the design right initially. Bugs are uncovered in the initial designs
as you try and fill in details. Some bugs survive until the first prototypes are
built and tested.

Unless and until a hypercomputer is built we have to reserve engineering
judgement on whether it is possible for one to exist. The current proposals all
seem to hit snags well before the prototype stage.
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Figure 7.6: Detailed view of how a mask interacts with a sensor array. The
wavelength of the light is w, the separation of the mask and the sensor array is
F,and A, B are the separations of the mask holes and the sensors respectively.

But suppose that a machine could be built that would solve come hyper-
computational problem what use would it be?

Suppose that it gave us answers about some uncomputable function. We
would not be in a position to verify whether the answer was correct unless
there was an independent way of verifying it by algorithmic means. We would
need multiple different designs of hypercomputer, working in different ways
so that they could check each other for consistency.

But in what sense would this hypercomputer be a computer?

It would not be a general purpose computer. If it had general purpose com-
puting abilities, up to the level of self emulation, then it would be possible to
construct a self referential problem analogous to the paradoxical problem that
Turing constructed to demonstrate the halting problem.

Instead it would a special purpose measuring device rather than a general
purpose computer. A Turing Machine can not answer the question " how much
do I weigh’. From the standpoint of TM’s this is an uncomputable number.
But a bathroom scales can answer it, and we can check such scales for mutual
consistency. In that sense we already have non-algorithmic devices that give
us numeric answers, we just do not call them hyper-computers.

The key property of general purpose computers is that they are general
purpose. We can use them to deterministically model any physical system, of
which they are not themselves a part, to an arbitrary degree of accuracy. Their
logical limits arise when we try to get them to model a part of the world which
includes themselves.
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