
USE OF IMAGE ALGEBRA IN RACINE IP WP6, AND THE

ABSTRACT IMAGE-PROCESSING MACHINE

PAUL COCKSHOTT

Abstract. We present an outline of the concept of an image algebra and
the operations and types that would provide a suitable basis for hardware
acceleration. We go on to de�ne an outline abstract instructionset from which
hardware or software components can be composed to form image processing
operations.

This is a short introduction to Image Algebra. The proposal is that the Image
Algebra may provide a suitable basis for de�ning the primitive hardware operations
to be provided by Pandora. Development of image algebra at the University of
Florida began in 1984 under the sponsorship of Eglin Air Force Base and DARPA.
It was in�uenced by a history of use of special purpose image processing hardware
going back to CLIP[2] in the 70s. Since that time, numerous results have been
derived. The salient properties of image algebra, however, can be summarized
brie�y as follows:

• Image algebra is a translucent notation in which all image processing and
computer vision image transformations may be described.
• Image algebra is based upon well-de�ned, well-understood mathematical
systems, thus algorithms expressed in image algebra are amenable to formal
analysis.
• Numerous Image Processing and Computer Vision algorithms have been
expressed in image algebra [1] describes many of the algorithms and their
variants in image algebra.
• Image algebra is amenable to computer implementation if appropriate re-
strictions on pointset topology and value sets are made.

A C++ object library implementing a rich image algebra subset has been developed
and is available for distribution. Previous implementations have involved prepro-
cessors for image algebra in FORTRAN, Pascal[5] and Ada[4], and interpretive
implementations of image algebra in *lisp (for the Connection Machine CM2 [3])
and C.

More recently research has been done by researchers in Northern Ireland on
translating image algebra into FPGA con�gurations[6, 7], particularly Xilinix based
systems.

Key concepts

The image algebra is organised around the concepts of point-sets, value-sets and
images. An image is thought of as a pair (x, a(x)) where xis a set of points and a is
a function mapping from points into a value set. The value set would typically be
something like the real numbers, the booleans or the integers, but it could be some
more complex data-type. The point-set would typically be a set of coordinates in
2D space, but the co-ordinate system can extend to higher dimensional spaces for
volumetric images or for time sequences like �lm.

Date: Version 2, 1st September 2005.
1

USE OF IMAGE ALGEBRA IN RACINE IP WP6, AND THE ABSTRACT IMAGE-PROCESSING MACHINE2

Table 1. Operations on points. Notation : X,Y denote point
sets, x∈ X, y∈ Y denote points, k denotes a scalar, γdenotes an
in�x binary operator.

Operation formula return type
γ ∈ {+,−, ∗, /, max,min} xγy = (x1γy1, x2γy2, ...) point
dot product x • y = (x1y1 + x2y2 + ...) number
cross product x× y = (x2y3 − x3y2, x3y1 − x1y3, ...) point
concatenate x + +y = (x1, x2, .., xn, y1, y2, ...) point
γ reduction \γ x = (x1γx2γx3...γxn) number
γ ∈ {+,−, ∗, /, max,min}
Euclidean norm L2(x) =

√∑
x2

i real
Minkowski norm L1(x) =

∑
|xi| number

�oor bxc = (bx1c , bx2c , ...) point
ceiling dxe = (dx1e , dx2e , ...) point
round [x] =([x1] , [x2] , ...) point
projection ρ(x, i) = xi number

characteristic fn χX(z) =
{

1 ifz ∈ X
0 otherwise

number

Table 2. Point-set arithmetic, with X,Y ⊂ Z

operator formula return type
γ ∈ {+,−} XγY = {xγ y : x ∈ X and y ∈ Y} P⊂ Z

ω ∈{≤,≥, <, >, =} Xωb = {x : xω b,x ∈ X} P⊆ X
set to point X γ y = X γ {y} P⊂ Z

It is important to recognise that the set x need not totally cover the range of
possible co-ordinates. When dealing with pictures that are 512x512, one might have
an image for which the point-set was some rectangular sub-range of the image, or
more generally some arbitrary set of disconected points. For instance one might
have an image derived from some prior image such that it includes all points that
were not a particular shade of blue.

On top of these basic types the image algebra speci�es a collection of operators
that operate on pointsets, valuesets and images.

Operations on sets

The standard set theoretic operations are de�ned on sets : (∩,∪, \) intersection,
union and subtraction. In addition the functions

Card(set):integer,

Min(set of t):t

Max(set of t):t

Choose(set of t):t

are available.

Operations on points. Point-sets have the further possibility of being re-mapped.
A point set will be composed of elements that are tuples of numbers. As such the
points can be treated as vectors and are subject to the normal operations on vectors
including adding, subtracting, matrix multiplication etc. These allow the coordinate
space of images to be remapped for image warps. We summarise these in table 1.

Operations on point-sets. As mentioned above point-sets inherit the operations
(∩,∪, \)which apply to sets in general in addtion they support addition and sub-
traction as shown in table 2.

USE OF IMAGE ALGEBRA IN RACINE IP WP6, AND THE ABSTRACT IMAGE-PROCESSING MACHINE3

Table 3. Unary point set operations

operation formula return type

negations −X = {−x : x ∈ X} point set

complement X={z : z ∈ Z and z /∈ X} P⊂ Z
reduction \γX, γ ∈ {+,min,max} point

The notion of arithmetic on point sets takes a little thought consider the following
example:

Suppose we want to add the sets {(1,2),(7,9)} and {(1,1),(2,2),(7,8)} then the
result would be the set:

{(2,3),(8,10),(3,4),(9,11),(9,10),(14,17)}, i.e., the set of the sums of all possible
pairs from the original sets. One can see that if one had a small maskM de�ned as
s point set. If one had another point set N being points of interest in image i then
M+N would be the points of interest under the mask. The unary operations are
negation, complement and reduction1.

Comparison between a point and a pointset allows restriction of the range of
an image. Thus given a pointset P de�ned on the plane 1..10,1..20, the operation
P <(11, 11) would give us the pointset for the plane 1..10,1..10.

Operations on values

Values of pixels are assumed in image algebra to be the integers Z , the reals R,
or the complex numbers . In practice we can restrict Z to Z2k , the binary integers
of length k. The normal arithmetic operations are expected on these types. It is
important to also provide saturating operations. Thus the real representation should
include representations of ±∞and should ensure that a +∞ = ∞,a −∞ = −∞.
For integer representations there should exist distinct top and bottom values which
have these algebraic properties.

Suggested primitive types are:1bit boolean values, 8bit unsigned integer, 8 bit
signed �xed point with FFH representing -1.0 and 7FH representing +1.0, 32 bit
�oating point. The 32 bit �oating point type is suitable for holding most higher
precision integer types.

It should also be possible for an image to have pixels whose values are vectors of
primitive values.

Operations on images

An image FXof some value type F and over a point-set X is concieved of as a
set of pairs pairs

{(x ,a(x)) : x ∈ X,a(x) ∈ F}
where a is a mapping function. Typically, but not necessarily this mapping func-

tion can be implemented as a multidimensional array. Typically, but not necessrily,
X can be implemented as a multidimensional bitmap, storing the characteristic
function of the set.

There is a system of induced arithmetic on images such that if γ is some binary
operator on F, and a ∈ FX,b ∈ FYthen

aγ b ={(z, c(z)) : c(z) = a(z)γ b(z), z ∈ X ∩Y}
Thus we have addition, subtraction etc of images under the and of their respective
masks. This generalises to reduction operations over images thus \+a would be the

1For reduction see de�nition of point reduction, given that order of members in a set is illde�ned
only commutative ops allowed.

USE OF IMAGE ALGEBRA IN RACINE IP WP6, AND THE ABSTRACT IMAGE-PROCESSING MACHINE4

sum of all pixels in the image \maxa would return the highest valued pixel in the
image etc.

It is also possible to have comparison operators which yield pointsets from images.
Thus the expression a < b for a,b : FXor a : FX,b : F or a : F,b : FX will yield a
pointset Y ⊆ X. These pointsets can be used in restriction operations.

Restriction. Given an image a : FX and a pointset Y we can create a restricted
image a|Y composed of only those pixels within the set Y ∩X.

Extension. The converse - extension takes two images and combines their pixels
a|bgives us a picture such that if a : FX,b : FY then

a|b = {(z, c(z)) : c(z) = a(z)if z ∈ X,c(z) = b(z)if z /∈ X, z ∈ X ∪Y}

Functional compostion.

Left composition. We also have the implicit map of unary operators or functions
over images, such that if f : F→ G, a : FX, then f ◦ a : FX → GX and

f(a) = {(x, c(x)) : c(x) = f(a(x)),x ∈ X}

Right Composition. If we right compose a function over points with an image we
get spatial remappings of the image, thus given f : Y → X and a : FX then a◦f is
de�ned by

a◦f = {(z,a(f(z))): z ∈ Y,f(z) ∈ X}
Thus f could be some mapping function on coordinate points which allow for the

construction of a virtual image over space Y that is obtained by sampling image
a with coordinate space X. For the purposes of hardware implementation, it is
probably adviseable to restrict f to linear operators over Y that can be represented
by real valued matrices.

Templates

A template is an image whose pixel values are themselves images.
If t ∈(FX)Ythen t is a template de�ned over Y yielding images of type FX when

indexed by a point y ∈ Y. The pixels of t(y) are the weights of the template t at
point y. As such a template can be though of as a generalisation of the idea of �lter
kernel, except that it potentially allows for a di�erent set of weights at each point.
Note that the images indexed by y each have as

A hardware implementation should preferably allow for templates which have
only a single set of weights i.e

t(y)(x) = t(p)(q) : p,y ∈ Y,x,p ∈ X,y − x = p− q

Generalised matrix product

This is a generalised form of �ltering parameterised by operators. A standard
linear �lter is built around the operations of multiplication and addition. This can
be generalised to any operators ©, ‡ where ©distributes over ‡ and ‡ is associative
and commutative. We can write this as

b = a© . ‡ t
and b ∈ FY

and

b(y) = \ ‡ (a© t(y))

For example for linear �lters © would be multiply and ‡ would be +.

USE OF IMAGE ALGEBRA IN RACINE IP WP6, AND THE ABSTRACT IMAGE-PROCESSING MACHINE5

Hardware Interface

In this section we look at a possible way of presenting image algebra algorithms
to the drivers that will control the Pandora hardware. The key concept here is that
of an Abstract Image-processing Machine, or AIM.

Image algebra is a notation for writing down image processing algorithms as a
concise sequence of symbols. The symbols broadly divide into variables, brack-
ets and operators. Formulae written in this way can be parsed using well known
techniques to derive tree structures in computer memory. Techniques are also well
known to translate such trees into static single assignment form which represents
it as a sequence of register transfer operations in which each �register� is assigned
to only once.

When compiling for an ordinary computer the registers store simple scalars, the
technique has been extended to handle registers that store vectors of numbers, and
there is no reason in principle why the registers could not represent the sorts of
values handled by the image algebra : points, sets of points, images, templates. I
do not imply that the �registers� need actually store entire images. The �registers�
could represent streams of data that are processed sequentially. To allow for this
one could call them channels rather than registers.

Whatever they are called, the use of registers or channels means that one can
de�ne an abstract RISC style register machine to perform the operations.

One can then see a process by which image operations are translated using a
software pipeline as follows:

step Format

1 Image algebra expression
2 Tree structure
3 AIM channel to channel instructions
4 Implementation as interconnected hardware modules

Alternatively one could have other pipelines

step Format

1 Image algebra expression
2 Tree structure
3 software interpreter

step Format

1 Image algebra expression
2 Tree structure
3 AIM channel to channel instructions
4 Compile to SIMD code

One has only to recall the process by which the microprocessor was invented
by Intel to see the advantage of de�ning instructionsets to handle tasks that had
previously been seen as the domain of specialised hardware. The I4004, the �rst
microprocessor was designed in response to a request from a Japanese calculator
company for a chipset for a desktop calculator. In the early 70s such machines used
networks of specialised chips con�gured to each possible model of calculator - mul-
tiplier chips, tailored keyboard scanners, display drivers, adders, dividers etc. The
initial design for the calculator presented by the Japanese company involved over 20
specialised chips. By introducing a single chip capable of running an instructionset,
Intel were able both to dramatically reduce the chip count of the calculator and also
to allow the same chip to be used in multiple di�erent calculators. In due course this
led to the growth of the huge microprocessor market which substituted instruction
sequences for dedicated hardware. In doing so it economised on a very scarce skill
- that of chip designers - and substituted a cheaper skill - that of software design.

In the case of Pandora, the skill of the logic designers is a very limited resource.
It is not practicable for this to be invoked for each particular algorithm that users of
their hardware may wish to implement. It is however feasible for Pandora to de�ne
a libary of operators implemented in hardware that are dynamically con�gured by
the device driver when the latter is given a sequence of AIM instructions.

USE OF IMAGE ALGEBRA IN RACINE IP WP6, AND THE ABSTRACT IMAGE-PROCESSING MACHINE6

What might an abstract machine for image algebra look like?
We suggest an instructionset that is super�cially similar to that of RISC com-

puters, with a 3 register/channel format.
OP c1,c2,c3
meaning
c1←c2 OP c3
with c1, c2, c3 representing channels.
These operation instructions would be augmented with load store instructions

that connect channels to bu�ers in the host computer memory.
The channels would be drawn from a suitable sub-range of the integers with the

number of channels that can be used in a given algorithm being constrained by the
number of FPGAs available.

Possible instruction-set. Note that in the following, when an operation like
c1:=c2+c3 is speci�ed, the type of the addition is generic - it could apply to scalars,
points, images depending on the sort of data refered to by the channels. The chan-
nels have their data types speci�ed by the load instructions which specify what type
of data - scalars, images, points etc are being refered to.

instruction comment
load c,t,M c:channel, t the type being loaded, M host bu�er address
store c�M c:channel, M host bu�er address
add c1,c2,c3 c1:=c2+c3
sub c1,c2,c3 c1:=c2-c3
mul c1,c2,c3 c1:=c2×c3
div c1,c2,c3 c1:=c2÷ c3
union c1,c2,c3 c1:=c2∪c3, only on sets
inter c1,c2,c3 c1:=c2∩c3, only on sets
res c1,c2,c3 c1:=c2 |c3 restriction of an image by a set c3
ext c1,c2,c3 c1:=c2|c3 where c2,c3 both images
lt c1,c2,c3 c1:=c2 < c3 for images returns set that are less
eq c1,c2,c3 c1:=c2 = c3 returns set
min c1,c2,c3 c1:= c2∨c3
max c1,c2,c3 c1:=c2∧c3
reduce c1,γ,c2 c1:= \γc3, this is gamma reduction of images,sets,points
comp c1,c2 c1:= complement of c2, applies to sets
neg c1,c2 c1:=-c2
floor c1,c2 c1:=bc2c
ceil c1,c2 c1:=dc2e
round c1,c2 c1:=[c2]
dot α, β,c1,c2,c3 c1:=c2 α • βc3 generalised matrix product
dom c1,c2 c1:= index set of c2, applies to images
norm n,c1,c2 c1:=(

∑
c2n)1/n this gives euclidean and Minkowski norms

near c1,c2 c1:= pixels adjacent to set c2
ftk c1,c2,c3 form template from kernel, c2 pointset, c3 kernel

It will be apreciated that the above is a hurried �rst draft of an instructionset
for AIM and that a number of things would have to be determined yet: the base
precisions of arithmetic to be supported, the ways in which operands would be
represented in memory etc.

It is intended merely as an initial discussion document.

USE OF IMAGE ALGEBRA IN RACINE IP WP6, AND THE ABSTRACT IMAGE-PROCESSING MACHINE7

References

[1] Ritter, G., Wilson, J., Handbook of computer vision algorithms in Image Algebra, Center for
Computer Vision, University of Florida, 1999.

[2] Du�, M., Watson, D., Fountain, T., Shaw, G., �A cellular logic array for image processin�,
Pattern Recognition, vol 5, pp 229-247, Sept 1973.

[3] Hillis, W, The Connection Machine, Cambridge MA, MIT Press, 1985.
[4] Wilson, J., �Use of Image Algebra for Portable Image Processing Algorithm Speci�cation�,

Proc SPIE Vol 1659, 1995.
[5] Dougherty, E.R.; Sehdev, P.; �A robust image processing language in the context of image

algebra�, Computer Vision and Pattern Recognition, 1988. Proceedings CVPR '88., Computer
Society Conference on , 5-9 June 1988,Pages:748 - 753

[6] Crookes, D.; Alotaibi, K.; Bouridane, A.; Donachy, P.; Benkrid, A.; �An environment for
generating FPGA architectures for image algebra-based algorithms Image Processing�, 1998.
ICIP 98. Proceedings. 1998 International Conference on , 4-7 Oct. 1998 Pages:990 - 994 vol.3

[7] Crookes, D.; Benkrid, K.; Bouridane, A.; Alotaibi, K.; Benkrid, A.; �Design and implemen-
tation of a high level programming environment for FPGA-based image processing�, Vision,
Image and Signal Processing, IEE Proceedings- , Volume: 147 , Issue: 4 , Aug. 2000 Pages:377
- 384

Department of computing science University of Glasgow, 17 Lilybank Gardens,
Glasgow, G12 8RZ, Scotland

E-mail address: wpc@dcs.gla.ac.uk

