joint.pas

July 21, 2004

Contents

1 jointproduction

8

9

1.1 Imtroduction
br

fr

ir

setnet

makeiomatrices

deriveprices

removejointproduction

savematrices

10 saveprices

11 splitcolumn

12 splitrow

1

jointproduction

program JointProduction ;

1.1 Introduction

10

11

11

12

12

13

This document describes a simulation experiment to test an ideand put forward
by Ajit Sinha concerning Sraffian prices and joint production. His suggestion is
that if we have:

1. a system of joint production with n products

2. two possible numeraires m; and msy

3. an initial technology matrix ¢, and a slightly perturbed technology matrix
123

4. then the Sraffian profit rate equalising rule gives us a tensor of prices

pl,a Piyb
P2.a P2

where the p; ; are price vectors.

It is clear that in such a configuration we would espect that in going from
Pi,e — Pi,p we would see some prices rising and some falling. Ajit’s hypothesis
is that there will exist some prices which are rising in the transition p1,, — p1,
which will be falling in the transition ps , — p2,,. That is to say that a change
in the numeraire will result in a change in the direction of price rises under
technical change.

The first question is to ask whether a set of 2 price vectors expressed in a 3rd
numeraire, which we assume for the moment is state money and thus not part
of the n commodities, could be transformed into 4 price vectors in terms of the
internal numeraires and which would have the traits that Ajit proposes.
Suppose we have the price vector in Euro (1,2,3,4) and the vector (2,1,8,4)
and let us assume the commodities are (gold,silver, corn,iron). Then we have
the four price vectors for corn and iron in terms of gold and silver:

t1 ta
gold 3,4) (4,2)
silver (1.5,2) (8,4)

If we express the directions of price change we have

(1.1
(.1

Which would appear to meet Ajit’s initial requirement without our having to
investigate the complexities of joint production. Let us call this weak reversing.
If this is too trivial and what Ajit actually wants is a direction change like:

(T4
(L1

Let us call this strong reversing. Can this exist if there is a single underlying
price vector at each time step such that all of the price vectors in different
numeraires agree up to a scalar transform?

Observe that we can always so chose out units of commodity measure to make
the first Euro price vector degenerate, we simply chose units of gold, silver, corn
and iron that cost Euro 1 in time step 1. This gives us (1,1,1,1) as our price
vector. Let our second price vector be (g,s,c,i), we want to chose this such
that:

9>12<12<1,5>1

Thus we have

g>c (1)

9 <i, (2)

s <e¢ (3)

s> (4)

Relations (1) and (3) imply g > s, but relations (2) and (4) imply that g < s,
so we have a contradiction. It thus follows that strong reversing can not arise
from the simple switch of numeraire to represent a situation in which economic
calculation takes place in state currency.

At first sight it seems that there is another possibility. In the example so far we
have assumed that the real unit of account is the Euro, and this is the unit that
profit rates are calculated on. Now since the profit rate introduces a non linear
principle into the equations determining prices, there seems the possibility that
when profits are calculated in gold or silver, it may no longer be possible to
construct our degenerate initial price vector. The vector might be degenerate
if profits had been calculated in gold but not if profits had been calculated in
silver. However one can see that this is not the case provided that technology
has not changed for a long time prior to ¢;, since in that case relative prices
do not change over time. It follows that one can always chose a unit of weight
of silver such that it will have the same exchange value as our putative gold
coin, and that provided calculations are done in this unit of account, profit
calculations in terms of gold and in terms of silver will be identical.

It follows that strong reversing is impossible all we have to look at is whether
technical change can result in weak reversing. Our method will be to construct
random i/o matrices and then see how frequently weak reversing occurs after a
technical change.

const
n =5;
runs =100;
numcommodities =n ;
numindustries =n ;

We define n to be the number of commmodities in the system, and we will
collect statistics over the specified number of runs.

type
percent = 1..100;
industry = 1..numindustries ;
commodity = 1..numcommodities ;
iomatrix = array [industry ,commodity | of real ;

The type iomatrix will be used to describe both the input and the output ma-
trices. The rows of the matrix represent production processes and the columns
represent commoditities.

pricevector = array [commodity | of real ;

commodityvector = array [commodity | of real ;
industryvector = array [industry | of real ;

A price vector defines the prices of all commodities. It is indexed by commodi-
ties. In the case where an internal commodity is taken as the money commodity,
at least one element of the price vector will =1. An industry vector specifies
the amount of some resource used in each industry. It is indexec by industry.

type
numeraire = 1..2;

We will run using two different numeraires

var
Let U, G, Net € iomatrix;
P,Q: array [numeraire] of pricevector ;
Let A € industryvector;
Let w € commodityvector;
Let p € real;
Let m € commodity;

Our models will be defined in terms of a Use matrix U, whose element u;;
represents the amount of the jth commodity used in industry i. It is assumed
that these quantities are in some sort of natural units. Conversely the Generate
matix G, represents the outputs of the industries such that g;; is the output of
commodity j by the ith industry.

e P is the price vector before technical change, Q the price vector after
technical change.

e w is the real wage represented as a vector of physical units of each com-
modity.

p is the rate of profit which is assumed to be equal in all industries.

A specifies the labour usage of the economy.

The variable m indicates which commodity is currently used as money.

We now introduce a group of utility functions that are useful for randomising
the expanded matrices.

function br (p :percent):boolean ; (see Section 2)
function fr :real ; (see Section 3)

function ir (top :integer):.integer ; (see Section 4)
procedure setnet ; (see Section 5)
procedure makeiomatrices (Usparse ,Gsparse :percent); (see Section 6)
procedure deriveprices (var p :pricevector ;numeraire :commodity); (see Section 7)
procedure removejointproduction ; (see Section 8)
var
Let tempuse € commodityvector;
Let matrices, pricevectors € text;
procedure savematrices (n :string [30]); (see Section 9)
type
direction =(up ,down);
procedure saveprices (n :string [30]); (see Section 10)
begin
makeiomatrices (90, 90);

removejointproduction;

write(U, G);
savematrices (‘matrices.tex’);

The table below displays the matrices that we have built.

G
0.61684 0.00000 0.00000 0.00000 0.00000
0.00000 0.03318 0.00000 0.00000 0.00000
0.00000 0.00000 0.55197 0.00000 0.00000
0.00000 0.00000 0.00000 0.41343 0.00000
0.00000 0.00000 0.00000 0.00000 0.38458
U
0.01304 0.00519 0.05109 0.11997 0.19107
0.00000 0.00000 0.02063 0.00000 0.00000
0.14247 0.00000 0.14848 0.00000 0.00000
0.05249 0.00000 0.00535 0.00000 0.00000
0.10042 0.01140 0.05044 0.08674 0.00122
lambda
0.12921 0.00537 0.11651 0.01417 0.73474
real wage
0.15421 0.00829 0.13799 0.10336 0.09615

deriveprices (p1, 1);
deriveprices (p2, 2);

Now we change the technology by swapping two rows of the use matrix

tempuse«— Us;
Us— Uy;
Uy tempuse;

This will not change the net product of the economy and thus we can assume
that distribution will be unchanged. We recompute the net consumption matrix
after this change.

setnet;
deriveprices (g1, 1);
deriveprices (g2, 2);

We now write the prices to a file and display it in table below.

before technical change
1.00000 0.82186 0.80477 0.22116 1.50925
1.21675 1.00000 0.97920 0.26909 1.83638

after technical change
1.00000 0.27711 0.22892 0.65370 1.42767
3.60868 1.00000 0.82609 2.35898 5.15202

change direction
down down down up down
up down down up up

Note that even this simple example exhibits weak reversal.

saveprices (‘prices.tex’);

change back to original conditions of production

Us— Us;
Us— tempuse;

Now alter the output of industry 3 to be higher and adjust the wage as well,
these changes are made in such a way as not to alter the distribution of income,
since the increas in wage is by half of the net increase in production, which is
the same ratio as the wage to the existing net product.

G333+ G33 + 0.5;
ws<— ws + 0.25;
setnet;

savematrices (‘augmentedmatrices.tex’);
deriveprices (g1, 1);
deriveprices (q2, 2);
saveprices (‘augmentedprices.tex’);
end .

2 br

function br (p :percent):boolean ;

br makes a random boolean choice with p giving the percentage probability that
the answer will be true. It uses the library function random which returns a
random integer.

begin
br— (abs (random) mod 100) < p;
end ;

3 fr

function fr :real ;

fr returns a random floating point number in the range 0..1, again using the
library function random.

const
mask =$ffff:
begin
fr randommask.
mask ’
end ;
4 ir

function ir (top :integer):integer ;
This returns a random number in the range 1..top

begin
ir— 1 4+ (random mod top);
end ;

5 setnet

procedure setnet ;

This computes the net production of each industry taking into account the
consumption of its workers.

begin
Net— G-U-w x A T;
end ;

6 makelomatrices

procedure makeiomatrices (Usparse ,Gsparse :percent);

This procedure initialises the matrices U and G to form a consistent pair of
production matrices created in such a way that the economy has a net positive
product of all commodities. The parameter Usparse and Gsparse specify how
sparse the Use and Generate matrices will be. Sparseness of 100% corresponds
to a situation where each commodity is used/generated by each industry.

The procedure simultaneously constructs the labour input vector and initialises
the rate of profit.

The approach taken to constructing the matrices is to start out with a simple
pair of matrices containing a single commodity for g,,1 > 1,1 and then carrying
out a series of operations which grow the matrices whilst preserving the net
input/output ratio of the system.

Essentially we start of with a simple 'corn economy’ whose expansion ratio is
well defined, we then divide the corn into two categories of commodity whilst
preserving the same overall expansion ratio, and recursively apply the process.
The aim is to generate an i/o table that approximates the structure of real
i/o tables. These can be presented with successively greater degrees of disag-
gregation - thus at one level one might have a sector called timber products.

On disagregating this might divide into plywood, sawn timber, and fiber board
products. The three sub-sectors will show substantial similarity in their input
structure, one would certainly expect them to be more similar in terms of cost
structure than any of them were to for example non-ferrous metal production.
This genetic similarity of sibling industries is to be emulated by the procedure
of successively spliting industries, represented by rows in the U and G matrices,
into two daughter industries that are similar to but not identical to each other.

The two basic operations are to split the matrices along the columns to increase
the number of products, and to split them along the rows to increase the number
of industries.

For these purposes it is useful to introduce a new schematic type representing
either a column of the matrix.

type
column(length:integer)= array [0..length ,0..0] of real;

The real work of splitting rows and columns is done by the following two pro-
cedures

procedure splitcolumn (var src ,dest :column ;dfrac :real); (see Section 11)
procedure splitrow (var src ,dest :commodityvector ;sparseness :percent); (see Section 12)
var

Let /, j € integer;

Let f € real;

The body of the procedure splits a randomly selected column and then a ran-
domly selected row until we have the full square matrix constructed.

begin

Initialise the system to have a reproducible corn economy in which each seed
of corn produces two seeds at harvest, and half of a seed has to be paid to the
workers

Ui 1;

fraction to dest

split labour entry too

Gi1+ 2
w1+ 0.5;
lambda, < 1;
p— 0.5;
for i—2 to n do
begin
f fr;
Je—ir (i - 1);
splitcolumn (U [|[j .j LU (Ili ..i].f);
splitcolumn (G [|[j .j .G [I[i -.i .f);
{ split real wage in same ratio }
wi— w; x f;
WjH (1 - f) X Wj;
f fr;
Je—ir (i - 1);
splitrow (U i Uj, Usparse);
splitrow (G i G, Gsparse);
f— fr;
lambdaj— f x lambdaj
lambda— (1-1)x lambda;

end ;
setnet;

end ;

7 deriveprices

procedure deriveprices (var p :pricevector ;numeraire :commodity);

This procedure attempts to search for a set of profit equalising prices. It uses
an algorithm that assumes no joint production. At each iteration it computes
a new price vector np by setting the prices of each product to the ones which
would equalise profits. This is iterated several times to converge the result.
After 20 iterations the results are found to be stable.

const
iterations =20;
adjust =0.5;
var

Let /, j € integer;

Let costs, sales, effect € commodityvector;
Let totalsales, sad, pn, totalcapital € real;
Let moneywage € real;

Let np € commodityvector;

10

Let capital, profit, profitrate, dev € industryvector;
begin
np— 1;
profit— 0;
capital— 1;
for — 1 to iterations do
begin
P np;
PN Ppumeraire’
p— 4
totalcapital«— " capital ;

> profit
P totalcapital’

moneywage«— w.p;

dev« profitrate - p;
sad— > (abs (dev)) ;

for j— 1 to numindustries do
begin

costs— U; x p;

J

sales«— G; x p;

effect+— /det- X p;

capital = Ccosts ;

totalsales— > sales ;

profit j— > effect ;

. profit,
profitrate e capital. r

np<—{ P

end ;
end ;
end ;

8 removejointproduction

procedure removejointproduction ;

if effect <0

((1+ p) x capital; + lambda; x moneywage)/G; otherwise

This takes the randomly constructed joint product matrix and diagonalises it

into a single product matrix.

var
Let outputs € commodityvector;
begin
outputs— > G T ;
outputs if 19 =11
GH{ 0.0 otherwise ’

11

setnet;
end ;

9 savematrices

procedure savematrices (n :string [30]);

This outputs the conditions of production to a file formated in Latex Verbatim
mode so that they can be re-imported to this document. They are saved in file
called n

begin
assign (matrices, n);
rewrite (matrices);
writeln(matrices, ‘\begin{verbatim}’);
write(U);
writeln(matrices, ‘G’);
write(matrices, G);
writeln(matrices, ‘U’);
write(matrices, U);
writeln(matrices, ‘lambda’);
write(matrices, \);
writeln(matrices, ‘real wage’);
write(matrices, w);
writeln(matrices, ‘\end{verbatim}’);
close (matrices);

end ;

10 saveprices

procedure saveprices (n :string [30]);

var

dir: array [numeraire ,commodity | of direction ;
begin

dir 4 uP ifg>np

i

down otherwise
write(q, p, dir);
assign (pricevectors, n);
rewrite (pricevectors);
writeln(pricevectors, “\begin{verbatim}’);
writeln(pricevectors, ‘before technical change’);
write(pricevectors, p : 10);
writeln(pricevectors, ‘after technical change’);
write(pricevectors, q : 10);
writeln(pricevectors, ‘change direction’);

12

write(pricevectors, dir : 10);
writeln(pricevectors, ‘\end{verbatim}’);
close (pricevectors);

end ;

11 splitcolumn

procedure splitcolumn (var src ,dest :column ;dfrac :real);

Given a source column, src and a destination column this transfers the fraction
dfrac of the source to the destination, leaving the source with the fraction (1-
dfrac) in it.

If the corresponding columns of the U and G matrices are split in the same way,
we ensure that the net output of the two daughter commodities will be the same
as the net output of the original commodity - assuming all are measured in units
of mass kilos for example. We also ensure that if the commodity represented by
the src column had a positive net reproduction condition applying, then it will
apply to both the src and dest columns afterwards

begin
dest+— dfrac x src;
src— (1 - dfrac) x src;
end ;

12 splitrow
procedure splitrow (var src ,dest :commodityvector ;sparseness :percent);
This operator splits an industry into two daughter industries in such a way that

the net joint product of all commodities produced by the two industries remains
unchanged.

It also ensures that the industries can become differentiated by using the sparse-
ness operator to determine whether all of the two industries joint product or
joint consumption goes into one industry or into both industries.

13

share with both

src gets it all

dest gets it all

var
Let / € commodity;
Let f € real;
begin
for i— 1 to numcommodities
begin
if br (sparseness) then
begin
f fr;
destj— f x src;;
srcj— (1-f) x src;

end
else
if br (50) then
destj— 0
else
begin
dest j— src;;
srci— 0;
end ;
end ;

end ;

do

14

