The Jpi interface

Paul Cockshott
October 27, 2003

The purpose of this is to describe a java interface loosely modeled on the
primitives of the Pi calculus[l] to be used as a substratum for GRID based
parallel computing. It has to allow the creation of processes and communications
channels between processes. It also has to allow for the communications network
between processes to be dynamically reconfigurable. The aim of the design is
to achieve this with the minimum number of primitives and to integrate these
primitives into the existing Java class framework.

1 Class Hierarchy

The overall class hierarchy is given below:
1. abstract class JPITask implements java.lang.Runnable
2. interface JPI

(a) class UniprocessorJPI implements JPI
(b) class GridJPI implements JPI

3. abstract class JPIInputChannel implements java.io.InputStream, java.io.serializable
4. abstract class JPIOutputChannel implements java.io.OutputStream, java.io.serializable
5. interface JPIPipe

(a) class UniprocessorJPIPipe implements JPIPipe
(b) class GridJPIPipe implements JPIPipe,, java.io.serializable;

Let us look at each of these in more detail.



1.1 abstract class JPITask

This repesents the unit of work to be done as a parallel process. It implements
the java.lang.Runnable interface. This allows the construction of threads from
JPITasks. It has additional methods that allow channels to be associated with
JPITasks.

public abstract class JPITask implements Runnable{

public abstract void run();

public abstract void setInputs(JPIInputChannel [] chans);
public abstract void setOutputs(JPIOutputChannel [] chans);
public abstract JPIInputChannel[] getInputs();

public abstract JPIOutputChannel[] getOUtputs(Q);

}

Before the run method is called the input and output channels must have been
initialised. When the task runs, the input and output channels can be obtained
by the running task using the get methods.

1.2 interface JPI

This is a factory interface whose job it to create processes, pipes and channels.

interface JPI{

boolean fork(JPITask job,double time, double memory);
JPIPipe createPipe();

JPIInputChannel createInput(InputStream stream);
JPIOutputChannel createOutput(OutputStream stream);

}

When fork is called, the job is run either locally or remotely depending on avail-
ablity of resources. The time and memory parameters specify the anticipated
resource usage of the task. The time is the number of seconds that the job
should take on the current cpu. The memory parameter gives the number of
bytes of additional java virtual machine memory required to run the task.

The create input and create output channel methods convert streams in the
local environment to JPI streams that can be shipped to remote machines. If
one creates an input channel from an input stream, or an output channel from
an output stream the mechanism for allowing local files to be read or written
by remote tasks. Alternatively one can create a pipe, pass the input end to the
remote process and use the output end of the pipe to write data to the remote
task. The reverse configuration allows the spawning task to get results back
from the remote task.

The create pipe method allows interprocess communication streams to be
set up between two daughter tasks.



1.2.1 class UniprocessorJPI

This will implement all of the methods using local resources, and will run the
the tasks in local threads.

1.2.2 class GridJPI

This will be built upon some form of Grid protocols and will transfer the class
instance to be run to a remote machine to be run.

1.3 abstract class JPIInputChannel

This at the base level requires the implementation of a method to get a byte
(read). The standard Java blocking protocols are followed.

1.4 abstract class JPIOutputChannel

This must provide a write method that writes a single byte to the output chan-
nel. It can block on write if the remote process has not done sufficient reads.

2 interface JPIPipe

This provides a bi-directional inter task communications channel. This has two
methods

interface JPIPipe{
JPIInputChannel getInputEnd();
JPI0utputChannel getOutputEnd();

}

To set up a data flow graph one creates pipes and then passes the input and
output channels to tasks which are then forked.

2.0.1 class UniprocessorJPIPipe

This will be implemented using the built in Java classes PipedInputStream and
PipedOutputStream.

2.0.2 class GridJPIPipe

This will be implemented using some communications protocol. One has to take
care here that the pipe is serialisable.



References

[1] ”The Polyadic m-calculus, a tutorial”, Milner, R., 1991.



