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Methods of modelling in the light of information
theory and entropy.

Paul Cockshott

I. MODELING: A MATERIALIST APPROACH

A scientific model is a machine for predicting how part of
reality will behave. We tend to think of models in an abstract
conceptual sense, I want to argue that we should look at them
in a very concrete material sense. I will present historical
examples, and then formulate criteria for the ‘goodness’ of
models, before applying these general principles to economic
modeling. The whole approach is very computational and
borrows heavily from information theory.

The basic modeling process : is shown in Figure I.1. We
have the world and we have a model. The model is, at one level
a ’black box’ which gives us answers about the world. Given
some initial observations we can feed them into the black box
and it comes out with predictions. The predictions are not
necessarily predictions in time, they may be predictions about
other things in the real world that we have not yet observed.
If we make the other observation we can then compare what
the model predicted with what has actually occurred. At a
global scale our model might be a general climate model
predicting the long term path of climate under CO2 emission
forcing. The initial observations could be the trends in CO2
emissions, and the predictions could be ones about future
average temperatures and rainfall.

When building such a model one could take past periods
say 1900 to 2000 as the initial observations and have it
make predictions about climate for the period 2001 to 2009.
Generally we work on the rule that the closer the predictions
to the other observations, the better is the model.

Are models ‘ideas’ or are they machines?: The term
model is used in two rather different senses. On the one hand
we speak of a model as something physical. A model boat
may server as an adult’s toy, but for a shipyard it also has
a serious predictive value. In a wave tank the model tells
us something about the performance of the finished boat.
Measurements from models were, in the past, used to guide
the construction of actual steel plates. So it is clear that models

Figure I.1. The basic modeling process

in this everyday meaning of the word, have a real pragmatic
use. On the other hand a model is used to refer to something
conceptual. One talks of the Newtonian model of the solar
system as opposed to the Ptolemaic one. In this case we think
of the model as something abstract, an idea not a thing. And
this gives rise to all sorts of questions about how it is that a
conceptual or mathematical model can be so good at predicting
the real world. Wigner complained about the ’unreasonable
effectiveness’ of mathematics, Hamming asked how simple
maths could be so effective. If we think of things in this way,
as a correspondence between two quite different domains –
that of thought and that of reality – the whole process seems so
remarkable as to tempt one to ascribe some mystical properties
to mathematics.

There is a story about two friends, who were
classmates in high school, talking about their jobs.
One of them became a statistician and was working
on population trends. He showed a reprint to his for-
mer classmate. The reprint started, as usual, with the
Gaussian distribution and the statistician explained
to his former classmate the meaning of the symbols
for the actual population, for the average population,
and so on. His classmate was a bit incredulous
and was not quite sure whether the statistician was
pulling his leg. "How can you know that?" was his
query. "And what is this symbol here?" "Oh," said
the statistician, "this is pi." "What is that?" "The ratio
of the circumference of the circle to its diameter."
"Well, now you are pushing your joke too far," said
the classmate, "surely the population has nothing to
do with the circumference of the circle." Wigner
(1960)Modelling: a materialist approach

Figure I.2. A model may be understood as a reduced physical copy.



2

Figure I.3. Newton thinking and NASA boffin computing.

Furthermore, the simplicity of mathematics has long
been held to be the key to applications in physics.
Einstein is the most famous exponent of this belief.
But even in mathematics itself the simplicity is
remarkable, at least to me; the simplest algebraic
equations, linear and quadratic, correspond to the
simplest geometric entities, straight lines, circles,
and conics. This makes analytic geometry possible
in a practical way. How can it be that simple
mathematics, being after all a product of the human
mind, can be so remarkably useful in so many widely
different situations? Hamming (1980)

We can visualise what Hamming is talking about in Figure
I.3. There we have Newton using the ideas of geometry to
elaborate his "Mathematical Principles of Natural Philosophy".
These are pure thoughts, but, remarkably, the mathematics
mirrors what is happening in the solar system. There seems
an uncanny correspondence between some simple principles
of geometry in one man’s mind and the movements of planets
millions of miles away.

But were they just thoughts?
Or were they always something material, produced by

physical work using physical tools?
Recall how Blake depicted Newton in Figure as a draftsman.

Of course there are all sorts of Masonic overtones to this,
echoes of the Great Architect etc, but it grasps a reality.

To explain his ideas to others, Newton had to resort to
pictures, diagrams and arguments on the printed pages of his
great book. The book itself was material, and copies survive
to this day. While the thinking which went into writing the
book was fleeting and perished along with the man, the maths
seems eternal, independent of the man and of his paper book.
It is as able to predict heavenly motions now as it was in the
17th century.

Figure I.4. Blake’s Newton.

But now look at bottom of Figure I.3. It depicts the early
days of space exploration. A boffin sits at his old valve
computer and gets it to work out the course that will take
a probe to Mars.

At one level this shows the same process as the top illustra-
tion, but the very physicality of that big grey metal box in front
of the boffin hints at something different. The similarity is that
Newtons laws, and their associated mathematics are being used
in each case. But the fact that the calculations are now taking
place in a machine makes it harder to see the process as being
one of a correspondence between mathematical thought and
reality.

To do his calculations the NASA scientist would have had
to have fed the computer with a whole lot of data obtained
by astronomers. He will have had to develop programs to
represent the dynamics in question. And he then set it off
working. We say he will have had to develop programs, but,
that is not strictly necessary. The computer in the picture is
actually an analogue one, which was programmed by rewiring
it using the patch panel behind the operator.

So the correspondence here is actually one between the
dynamics one physical system – the analogue computer, and
the dynamics of another – the rocket that the designer wishes
to control. This idea that a mathematical model is actually
a physical thing, seems very modern, but is in fact ancient.
Before Newton came Kepler (Fig. I.5), before him Ptolemy.
Before Ptolemy came Hipparchus and Apollonius (Fig. I.6).
Ptolemy’s epi-cycle model is well known, but it is equivalent
to Apollonius’s Cycle and Deferent Model ( Fig. I.7).

a) Hipparchus’s actual model? : In 1900 a group of
sponge divers sheltering from a storm anchored off the island
of Antikythera. Diving from there they spotted an ancient
shipwreck with bronze and marble statuary visible. Further
diving in 1902 revealed what appeared to be gearwheels
embedded in rock. On recovery these were found to be parts
of a complicated mechanism, initially assumed to be a clock.
Starting in the 1950s and going on to the 1970s the work of
Price established that it was not a clock but some form of
calendrical computer. Using X-rays, modern reconstructions
have been built showing that it physically implemented Apol-
lonius’s model of the lunar orbit. The original machine dates
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Figure I.5. Kepler’s model of lunar motion

Figure I.6. Apollonius’s model of lunar motion

Figure I.7. Equivalence of Ptolemy and Apollonius models. Bold lines
indicate eccentric model dashed lines the epi−cycle model.

Figure I.8. Tania van Vark’s beautiful reconstruction of the Antikythera
computer.

from the 2nd century BC but modern reconstructions have
been built. I show a particularly beautiful one by Tania van
Vark. You turn the handle and get predictions of the position
of the sun and moon in the sky and the dates of eclipses. It
emphasizes how a scientific model is a microcosm emulating
a macrocosm.

Since the invention of the Universal Computer in the 1940s,
it was no longer necessary to build special purpose mechanical
models of physical system.

A universal computer is a physical device that can be
configured to simulate any physical process. It is configured by
the input of an appropriate mathematical function representing
the model. Once that is done it becomes a physical device that
models another physical process.

The Church-Turing-Deutsch (CTD) Principle, after the three
people (Alonzo Church, Alan Turing, and David Deutsch) who
contributed most to the formulation of the principle, states that

Every physical process can be simulated by a uni-
versal computing device.

II. MODELING AND ENTROPY

We can now summarize some key principles of modeling.
• A model is a physical subsystem, now often implemented

on a universal computer.
• It is involved in the generation of testable predictions –

A model which makes no testable predictions is useless
• We want it to display elegance or simplicity – Occam’s

Razor ‘Entities should not be multiplied without cause’.
This has long been an ideal for modelers and theorists,
but the development of Chaitin Kolmogorov information
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Figure II.1. James Watt worked on a model steam engine at Glasgow in
1765 from which his invention of the separate condenser came. This laid
the foundations both for practical applications of steam power and also for
the systematic study of the relation between heat and work from which the
concept of entropy arose.

theoryChaitin (1999); Li and Vitanyi (1997) explains why
it is so important.

Mathematically we can view any use of a model as (p,d)←
M(d) Where p are the predictions, M is the function encoding
the model, and d are the input data. After running the model
we have both the predictions and the original data. For the
model to be elegant we want to maximise its information yield
Y = I(p)/I(M)

Where by I(x) we mean the information content of x. For
the model to be useful we want to maximise the mutual
information I(p;o) in the predictions p, and observed system
o. That is to say we want to maximise the information that is
common to the predictions of the model and the observations.

Max I(p;o) = H(p)–H(p|o)
Whilst
Min I(M)

minimising the information in the model I(M). Where H(p)
is the uncertainty or entropy in p and H(p|o) is the uncertainty
in p given o That is to say we want to explain as much of
the data as we can but we should avoid models that contain a
lot of internal information – in the worst case such a model
simply tabulates the observations and has no general predictive
ability when fed with different data.

Why entropy?
In the formula to find mutual information we used the H

function for entropy. Why?
Surely entropy has to do with thermodynamics which stud-

ies things like the efficiency steam engines?
Yes that is true. That is how thermodynamics originated,

but a key discovery of the 20th century was how information
and entropy are linked.

The Basic Problem of Information :

• What is information?
• How does it relate to entropy?

Figure II.2. Maxwell’s Daemon Gas initially in equilibrium. Daemon opens
door only for fast molecules to go from A to B, or slow ones from B to A. !
Slow molecules in A, fast in B. B hotter than A, and can be used for power.
Information has produced power!

Clausius established that : no process possible that has the sole
effect of transferring heat from a colder to a hotter body. This
implied that, for instance, there was no chance of transferring
the heat wasted in the condenser of a steam engine back to
the boiler where it would boil more water. Thermodynamics
ruled out perpetual motion machines. It was the first form in
which the concept of thermodynamic irreversibility arose.

But James Clerk Maxwell, one of the early researchers in
thermodynamics, came up with an interesting paradox.

One of the best established facts of thermodynamics
is that it is impossible in a system enclosed in an
envelope which permits neither change of volume
nor passage of heat, and in which temperature and
pressure are everywhere the same, to produce any
inequality of temperature or of pressure without
the expenditure of work. This is the second law
of thermodynamics, and it is undoubtedly true as
long as we can deal with bodies only in mass,
and have no power of perceiving or handling the
separate molecules of which they are made up. But
if we can conceive of a being whose faculties are
so sharpened that he can follow every molecule in
its course, such a being would be able to do that
which is presently impossible to us. For we have
seen that the molecules in a vessel full of air at a
uniform temperature are moving with velocities by
no means uniform, though the mean velocity of any
great number of them, arbitrarily selected, is almost
exactly uniform. Now let us suppose that such a
vessel is divided into two portions, A and B, by
a division in which there is a small hole, and that
a being, who can see individual molecules, opens
and closes this hole, so as to allow only the swifter
molecules to pass from A to B, and only the slower
ones to pass from B to A. He will thus, without the
expenditure of work, raise the temperature of B and
lower that of A, in contradiction to the second law
of thermodynamics. (Maxwell (1875), pp. 328–329)
Boltzmann: Maxwell’s proposed counter-example to the

second law was explicitly based on atomism. With Boltzmann
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(1995), entropy is placed on an explicitly atomistic foundation,
in terms of a sum over molecular distributions in phase space.

S =−kN ∑ pi log pi

where i indexes over volume in six-dimensional phase
space, pi is the function that counts the probability of
molecules being present in that volume, and k is Boltzmann’s
constant, and N the number of molecules. We will take a
simplified version of Boltzmann’s concept to explain the idea.
Consider a gas in a cylinder. If the gas is evenly spread through
the cylinder the entropy will be higher than if the gas is all
concentrated at one side of the cylinder. Suppose we divide
the length of a 10cm cylinder into 100 sub-lengths each of
1mm, and let us suppose that there are N molecules in the
whole cylinder.

If the molecules are evenly divided along the length, each
1mm length the probability of a molecule being in any
one section is 1/100, and the entropy will be proportional
to −K10N × 100/100× log(1/100) which assuming we use
log10instead of natural logs will give us a value of 2NK10 ( K
having been adjusted from Boltzmann’s constant to allow for
using base 10).

Now suppose that all of the gas molecules are concentrated,
again evenly, in the first half of the cylinder where each 1mm
length contains 20,000 molecules, with none in the rest. The
entropy of the system is now proportional to −K10N×50/50×
log(1/50) or 1.69NK10 which is clearly less than the case were
the gas was evenly spread. If we allow the concentrated gas
to spread out, as happens in a pressure engine, then there is
an increase in entropy.

Highly spread out distributions have a higher distribution
and concentrated distributions have a low entropy.

Shannon : The communications engineer Shannon (1948)
introduced the concept of entropy as being relevant to sending
messages by teletype. The mean information content of an
ensemble of messages is obtained by weighting the log of the
probability of each message by the probability of that message.

H =−
n

∑
i=1

pi log2 pi

He showed that no encoding of messages in 1s and 0s could
be shorter than this, this is essentially the same as Boltzmann’s
formula, expressed on a discrete basis.

Hence information = entropy.
Information measured in bits provides a common means of

measuring both a model Mand the predictions p
Suppose we have a vector of observations O which we have

reason to believe are given to an accuracy of 3 digits. Then
each observation contains Log2(1000)bits≈ 10bits

Suppose we have a prediction vector P which we assume
is to the same accuracy. We can estimate H(P|O) by his-
tograming the distribution of the ratio P/O and then applying
Shannon’s entropy formula to the distribution. The information
content of the model itself can also be estimated.

If we want to compare models, we can decompose each of
the models into two parts
• A basic structure or formula

• A set of auxiliary parameters or constants that has to be
provided

Each of these can be given an information measure. The
formula is measurable in terms of the number of bits needed to
write it down as a string of digital characters. The parameters
are measurable in terms of the number of parameters and the
accuracy in bits to which each has to be given.

A. Models and Laws

Sciences designate as laws those models that:
1) Have a simple, elegant formulation with few parameters
2) Make excellent predictions in an apparently unlimited

number of cases
Applying this to economics one may ask how much of what
is taught in undergraduate economics consists of
• Empirically testable and empirically tested propositions
• Formulae that are elegant and simple
• Simple formulae that are so universal and excellent in

their predictive power as to deserve the name Laws.
There is obviously an immense wealth of empirical studies in
the economics literature. But I am more concerned here with
the basic theory that is taught to students starting economics.
I am concerned with what these students would be learning
when a physics student would be learning classical mechanics,
or when an electrical engineer would be learning Maxwell’s
equations.

How well founded are the models that the economics
students are taught?

What is the record of testability of neoclassical subjective
value theory?

I am writing as an outsider. I only studied neo-classical
economics to undergraduate level. Whereas in my Physics,
Psychology or Biology courses we were given accounts of
classic experiments that had verified for instance the invariabil-
ity of the speed of light, the mechanism of reflex conditioning,
or the germ theory of disease, our economics lecturers cited
no such empirical studies when discussing basic theory.

When I was a student my economics professor told us
that whilst the labour theory of value had been an important
historical stage in the development of economics, it was now
known to be fatally flawed. At that time I was told that
the labour theory of value was now known to be inaccurate
and superseded by the subjective utility theory. 20th century
economists such as Sraffa and Samuelson had shown that it
was unnecessary to accord labour any special place in our
understanding of prices. Instead, the structure of prices could
be perfectly well understood as the result of the monetary
costs faced by firms and the behaviour of profit maximising
entrepreneurs. If there was in reality no such thing as labour
value, it followed that Marx’s theory of exploitation was an
invalid incursion of moral prejudices into the ’positive science’
of economics.

The professor who taught us this, Ian Steedman, was
actually quite left wing, an active member of the Communist
Party. This is just an anecdote, but fact that even a prominent
communist intellectual believed that the central component
of Marx’s theory was scientifically worthless is significant.
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It shows how strong the intellectual dominance of orthodox
economics had become.

But it is hard to see how the subjective theory is even
testable. What quantitatively testable predictions about the
price structure of the whole economy can it make?

Can one derive from it a predicted price vector to compare
with the actual price vector?

If not, one has to put it in a basket labeled ‘not even wrong’.
Testability – classical value theory : The classical theory

of value on the other hand does make testable predictions.
Once can make concrete predictions about market prices, using
either Sraffa’s formula

p = (1+ r)Ap+w

Or the formula from Marx’s Capital

v = Av+λ

where A is the technology matrix, p the price vector, v the
value vector and λ the labour input vector, w the wage vector.

And you can then see how good the predictions each one
makes are.

Until the 1980s it has to be said that the proponents of
classical theories were as axiomatic in their approach as the
proponents of neo-classical theories. Since then however there
has been a growing realisation that not only were classical
theories testable, but that they should be rigorously tested if
any progress was to be made in resolving theoretical disputes.
It was found, somewhat to the surprise of everyone, that the
two leading classical theories gave almost the same accuracy
in their predictions (Shaikh (1998); Cockshott and Cottrell
(1997); Ochoa (1989); Tsoulfidis and Maniatis (2002) ), in
which case parsimony may favour the simpler model. I hope
that later speakers will touch on this showing in practice how
to the labour theory of value can be tested using an information
theoretic measure.

Statistical mechanics and value.: 27 years ago two
mathematicians Moshe Machover and Emanuel Farjoun, wrote
a book called the Laws of Chaos(Farjoun and Machover,
1983). Their book gave a radically new way of looking at
how capitalism worked as a chaotic and disorganised system.
Farjoun and Machover had the the insight to see that physics
had already developed theories to describe similar disorganised
and chaotic systems.

In a market economy, hundreds of thousands of firms and
individuals interact, buying and selling goods and services.
This is similar to a gas in which very large numbers of
molecules interact, bouncing off one another. Physics speaks
of such systems as having a ’high degree of freedom’, by
which it means that the movements of all individual molecules
are ’free’ or random. But despite the individual molecules
being free to move, we can still say things about them in
the aggregate. We can say what their average speed will be (
their temperature ) and what their likely distributions in space
will be.

The branch of physics which studies this is statistical me-
chanics or thermodynamics. Instead of making deterministic
statements, it deals with probabilities and averages, but it still

comes up with fundamental laws, the laws of thermodynam-
ics, which have been found to govern the behaviour of our
universe.

Now here is the surprise! When they applied the method
of statistical mechanics to the capitalist economy, they found
that the predictions it made coincided almost exactly with the
labour theory of value as set out in volume 1 of Marx’s Capital.
Statistical mechanics predicted that the selling prices of goods
would vary in proportion to their labour content just as Marx
had assumed. Because the market is chaotic, individual prices
would not be exactly equal to labour values, but they would
cluster very closely around labour values. Whilst in Capital I
the labour theory of value is just taken as an empirically valid
rule of thumb. Marx knew it was right, but did not say why.
Here at last was a sound physical theory explaining it.

It is the job of science to uncover causal mechanisms. Once
it has done this it can make predictions which can be tested.
If two competing theories make different predictions about
reality, we can by observation determine which theory is right.
This is the normal scientific method.

Farjoun and Machover’s theory made certain predictions
which went directly against the predictions made by critics of
Marx such as Samuelson. In particular their theory predicts
that industries with a high labour to capital ratio will be
more profitable. Conventional economics predicts that there
will be no such systematic difference between the profit rates
in different industries. When put to the test it turned out
that Farjoun and Machover were right. Industries with a high
labour to capital ratio are more profitable(Zachariah (2006);
Cockshott and Cottrell (1998)). But this is exactly what we
should expect if the source of profit was the exploitation of
labour rather than capital. Their theory made predictions which
not only turned out to be empirically spot on, but at the same
time verified Marx’s theory of the exploitation of the worker.

III. IDEA OF A CONSERVATION LAW.
I said that the most powerful models for the predicting of

reality are called laws. Among the most paradigmatic here are
conservation laws. In physics conservation of energy, charge,
probability.

Conservation laws reveal hidden symmetries in the structure
of reality. This was discovered by Emily Noether in the flurry
of work that followed the publication by Einstein of relativity
theory.

Noether’s theorem states that any symmetry of the action of
a system has a corresponding conservation law.

The symmetry and the conservation are not necessarily
immediately evident as the following examples will show. Put
very loosely, Emmy Noether’s principle says that in a physical
system, a conserved quantity at one level of abstraction
corresponds to a symmetry property of the system at another
level of abstraction.

– Translational symmetry implies conservation of momen-
tum. For a simple proof of this see the web page Noethers
theorem in a Nutshell..

– Temporal symmetry implies conservation of energy
In order to explain these ideas I will take a couple of

examples from physics before moving to show how the ideas

http://math.ucr.edu/home/baez/noether.html
http://math.ucr.edu/home/baez/noether.html
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Figure III.1. Plots for a ball thrown up. Top shows points in phase space
traversed by a projectile thrown upward in a gravitational field. Bottom, points
in the space of (altitude, velocity squared) traversed by the particle.

of symmetry and conservation can be applied in the study of
economic phenomena. Let us look first at the conservation of
energy.

Figure III.1 shows two different ways of plotting the motion
of a ball thrown upwards. The top diagram shows the vertical
velocity plotted against height. The plot is parabolic and
looks rather uninformative until we transform it to the bottom
diagram which shows conservation of energy. Here we have
height as one axis and the square of vertical velocity as the
other. The footprint of a conservation law is shown the the
straight line relationship between height ( potential energy
) and velocity squared ( kinetic energy). A straight line
corresponds to the equation C = Ax+By with C the conserved
quantity. Note that although we take energy for granted as a
’thing’, it is in fact only revealed to us as something existing
by these conservation laws.

We have the conservation law, now find the symmetry.
If we transform to yet another representation, in this case

by taking the square root of the axes1 we find the path
is a circle (Figure III.2 ). In this representation the plot
shows rotational symmetry. A projectile’s movement in this
representation constitutes a rotation that preserves distance
from the origin.

Here we can see the symmetry associated with the conser-
vation of energy. The new representation means that we can
treat v the path as the result of rotational symmetry in a vector
space.

Another example is quantum mechanics. Consider a simple
example like photon polarisation. Two polarisers at right
angles completely block the passage of photons. But if we
pass light through a horizontal polariser and then measure the
polarisation of the photons using a polariser at angle θ we find

1One first has to scale the 2nd graph in Figure III.1 in uniform units of
energy to give a 45◦slope.

Velocity

square root of height

Figure III.2. If we plot v against 2√h we get a circle. Here the conserved
quantity is distance from origin, and the system displays rotational symmetry
in this coordinate system.

Figure III.3. Polarisation, orthogonal polarisers block transmission..

that the number of photons going through the second polariser
varies as we change θ . We explain this by saying that in the
frame of reference of a polariser we can treat the photons as
being superpositions of two basis states α | horiz〉+β | vert〉
with the variables αβ being called amplitudes. The two
basis states are labeled here with the orthogonal polarisation
directions. We find that the probability of observing a photon
in a given polarisation direction is the square of its amplitude.
The amplitudes follow the relation α = sinθ ,β = cosθ . In
this case of course the rotational symmetry of the maths
is clear and can be intuitively understood in terms of the
rotation of the polarisers. But the basic maths of amplitudes
is much more general than this particular example and is used
throughout quantum mechanics. Why do quantum physicists
use amplitudes whose squares gives us probabilities?

It is surely because this vector space, which allows the
application of unitary rotation operators, projects onto the
space of probabilities which are a scalar conserved property:
probabilities always sum to 1. This is the same as the change
of representation we had to illustrate conservation of energy.

Similarity between value and energy metrics : Commod-
ity money space is not a vector space, since the metric it
follows is d = |α∆x +β∆y|, these are captured by the isovals
or budget lines shown in Figure III.4. We can draw such a
diagram for any two commodities that are being traded.

This makes it analogous with a system with a hidden
conserved quantity like energy. In this case the conserved
quantity is what we call value. One can develop(Cockshott,
2005, 2009) the concept of an underlying space, commodity
amplitude space, which can model commodity exchanges



8

Figure III.4. Isovals in commodity money space. The isovals show the
combinations of a commodity ( Kola in this case ) and coins that can be
reached starting off from a particular number of coin.

and the formation of debt. Unlike commodity space itself,
this space, is a true vector space whose evolution can be
modeled by the application of unitary rotation operators.
The relationship between commodity amplitude space and
observed holdings of commodities by agents is analogous to
that between amplitudes and observables in quantum theory.

I would argue that the application of Noether’s theorem
gives us a more rigorous way of formulating what Marx
was arguing in the chapter on the forms of value in volume
I of capital. These should be seen as an attempt to define
commodity exchange and exchange value as a conservative
system.

IV. APPLYING CONSERVATION LAWS AND ENTROPY TO
WEALTH DISTRIBUTION

Thermodynamics predicts that systems tend to settle into a
state of maximum entropy. The conservation laws specify that
whilst this randomization occurs energy must be conserved.
Boltzmann and Gibbs showed that this implies that the prob-
ability distribution of energies Ei that meets these two criteria
is

pEi = e
Ei
kT

YakovenkoDragulescu and Yakovenko (2002) has argued
that since money is conserved in the buying and selling of
commodities it is analogous to energy. If the system settles into
a maximum entropy state then monetary wealth will come to
follow a Gibbs Boltzmann distribution. He is able to show that
the observed income distribution for 96% of the US population
is well explained by a negative exponential distribution of the
Gibbs form: Figure IV.2.

There remains a super-thermal tail of income ( the top 4%)
whose income is not conformant with maximal entropy but
follows a power law distribution.

The straight line on the log-linear scale in
the inset of Fig. IV.2 demonstrates the exponen-
tial Boltzmann-Gibbs law, and the straight line on
the log-log scale in the main panel illustrates the
Pareto power law. The fact that income distribution
consists of two distinct parts reveals the two-class
structure of the American society . Coexistence of
the exponential and power-law distributions is also
known in plasma physics and astrophysics, where
they are called the “thermal” and “super-thermal”
parts . The boundary between the lower and upper
classes can be defined as the intersection point of

Figure IV.1. The Gibbs distribution, top plot on a linear scale, bottom on a
log log scale.

Figure IV.2. Yakovenko shows that the distribution of wealth follows
basically a Gibbs distribution with a super thermal tail. Reproduced from
Yakovenko and Rosser Jr (2009).
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the exponential and power-law fits in Fig. IV.2. For
1997, the annual income separating the two classes
was about 120 k$. About 3% of the population
belonged to the upper class, and 97% belonged to
the lower class.(Yakovenko and Rosser Jr, 2009)

The thermal distribution arises from the application of the
conservation law plus randomness. The non thermal distri-
bution from the violation of conservation. Tied to income
from capital and the stock market. This is consistent with
Marx’s analysis that profit in general can not arise within
a conservative system, but from something outside of the
conservative system – production of surplus value.

The subject of income and wealth distributions
and social inequality was very popular at the turn of
another century and is associated with the names of
Pareto, Lorenz, Gini, Gibrat, and Champernowne,
among others. Following the work by Pareto, at-
tention of researchers was primarily focused on the
power laws. However, when physicists took a fresh
look at the empirical data, they found a different,
exponential law for the lower part of the distri-
bution. Demonstration of the ubiquitous nature of
the exponential distribution for money, wealth, and
income is one of the new contributions produced
by econophysics. The motivation, of course, came
from the Boltzmann-Gibbs distribution in physics.
Further studies revealed a more detailed picture of
the two-class distribution in a society. Although
social classes have been known in political economy
since Karl Marx, realization that they are described
by simple mathematical distributions is quite new.
Very interesting work was done by the computer sci-
entist Ian Wright (Wright, 2005, 2008), who demon-
strated emergence of two classes in an agent-based
simulation of initially equal agents.(Yakovenko and
Rosser Jr, 2009)

Wright has shown that random exchange models generate
combined Gibbs + power law distributions as soon as you
allow the hiring of labour. This is again consistent with Marx’s
old analysis.

Summary

• A model must make testable predictions to be scientifi-
cally meaningful.

• Information theory gives us a uniform means to measure
both models and the predictions of models in order to
evaluate their adequacy.

• One should not be afraid to make use of it.
• The results of tests using modern methods are consistent

with broadly Marxian models.
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