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SUMMARY

The PGPGrid project aims to parallelize the process of extracting range data from an experimental 3D
scanner using the Grid as a vehicle for accessing necessary resources. The application is potentially highly
parallel but has some unusual features such as rapid spawning of processes in real time and a dynamic

inter-process network topology. These characteristics are such as to require enhancement of the usual task
migration capabilities of the Globus toolkit. The present paper initially discusses attempts to estimate the
real parallelizability of the scanner application. It then describes a new Java application programming
interface, based on Milner’s π-calculus, which could be used to extend Globus in a manner capable of
supporting systems with this kind of dynamic parallel structure. The location of processing resources for
the π-calculus is done using a Web-services-based resource locator. The article also describes the pipeline
of processing from initial stereo photogrametry to the final production of animation models. A key step in
this is the conformation of animators models to the data obtained by the real-time scanner. Algorithmic
innovations in this process are described. Copyright c© 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

PGPGrid, a joint venture with Peppers Ghost Productions and the Edinburgh Parallel Computing

Centre (EPCC), aims to parallelize extraction of range data from Glasgow University’s 3D-Matic

TV scanner [1], which uses 24 video cameras to image a subject from many directions at once.
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The data are then used to build a dynamic 3D model with a spatial resolution of 4 mm and temporal

resolution of 0.04 s. Software allows an animator’s model to be conformed to data captured from an

actor, transferring the movement of a real human subject to equivalent virtual movement of the model.

The conformation software was developed for ‘still’ models but current work extends it to moving

cartoon-like characters.

The stereo-pair images collected by the cameras are processed using photogrammetric techniques

developed by the Turing Institute, Glasgow, to create a spatio-temporal 3D model of this space.

The concept was based on the culmination of over a decade of research into 3D imaging by the

Turing Institute and subsequently by the 3D-MATIC Faraday Partnership (operating within the

Computing Science Department at Glasgow University). The Turing Institute has developed 3D

imaging software [2,3], called C3D, which processes stereo-pair images to generate 3D models. In fact,

C3D automates the processing of several stereo-pair views of a subject into a set of 3D views, which

are then integrated into a single model using the marching cubes algorithm [4].

Equipment previously developed by the Turing Institute had included an upper-torso scanner

developed for Ealing Studios, which used a collection of 15 digital cameras to build models of the

upper bodies of subjects. The basic component of this earlier system was termed a pod and comprised

a group of three digital cameras, two of which were monochrome and one of which was colour.

The monochrome cameras were used to extract range data and the colour camera was used to record

skin, clothes and hair texture. The algorithm attempts to find the disparity between the positions of a

given real world object as viewed from two cameras. This earlier work used still cameras.

The cameras in the current system are still organized into pods, each comprising two 8-bit

monochrome cameras and a single 16-bit colour camera. The monochrome cameras are synchronized

by a 25 Hz master trigger signal. A separate trigger, with a phase lagger, synchronizes the colour

cameras. Using continuous light, the actor is illuminated with a speckle pattern, which provides features

for the ranging algorithm to home in on. Without speckle there is insufficient contrast for effective

ranging. Strobe lamps synchronized with the colour cameras overflash suppressing the speckle during

the exposure of the colour cameras.

Each pod is controlled by a single computer that captures the three video sequences to internal RAM

buffers. Next, each synchronous pair of monochrome images is matched to produce a range map.

Each monochrome image is around 300 KB. The colour image is used afterwards, when images are

adjusted to blend the brightness of adjacent pixels from distinct views. Each pod generates 1.2 MB of

data per frame, a total data-generation rate of over 240 MB s−1.

The matcher algorithm itself operates via a two-stage process as follows.

(a) A disparity map is created for each pod, consisting of three floating point planes, a total of about

3.6 MB per pod.

(b) From each disparity map a range map is computed. For each pixel this contains a 32-bit float

giving the distance in meters from the camera. The map is about 1.2 MB in size.

The range maps from eight pods give point cloud data to a model builder to create a triangulated

virtual reality modelling language (VRML) model. Finally successive VRML models have to be

combined into a single space/time model (Figure 1). For each frame period we initiate a process group

comprising eight matcher tasks and one model-building task. The algorithms are all implemented

in Java. Ideally, a process group of this type should be spawned at 25 Hz; however, the operations

are very CPU-intensive and the processing time exceeds the capture time on any feasible system.
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Figure 1. Data-flows and processes for a 3D scanner.

The capture PCs have two 2 GHz Athlons, a single processor of this class, with adequate memory

resources, can process one pod range map in 50 s, the VRML model build from eight such maps taking

100 s.

The processes are inherently easy to parallelize, the main challenges being the sheer volume of data

being generated and moved. One of our goals is to use Grid technology to acquire the resources needed.

The remainder of this paper will discuss our initial attempts to achieve this goal.

2. PRELIMINARY EXPERIMENTS ON PARALLELIZATION

The parallelization experiments conducted so far have used the process architecture in Figure 2 with

statically located matcher processes and a simple server acquisition system. Four pods and their

associated control computers are used, imaging a subject above the shoulders only. Instead of capturing

data directly from the cameras, a pre-recorded 300-frame sequence is streamed from the local hard

disk. Each capture client runs a number of job management threads and, as soon as a new pair of

monochrome images is read, control of processing is passed to one of these. The newly active thread

immediately attempts to acquire an available matcher server process.

Matcher processes are always running on each available server host and each client holds a static list

of the IP numbers and ports. A matcher will only accept a connection from a client when not already

busy. Once a connection is accepted, input data (∼600 KB) is streamed from the client. The colour

image is not transmitted. When the matching process has completed, the disparity map (∼3.6 MB) is
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Figure 2. Basic parallelization data flows for the process server.

Figure 3. Topology of the network.

returned to the client, and the matcher waits for a new connection. This arrangement ensures that all

the server hosts are equally utilized and each runs no more that one server task at a time. All work

allocation is left to the client to minimize the load on the servers. The capture machines are attached to

a 100 Mbps Ethernet LAN linked to SuperJanet via a 1 Gbps pipe (see Figure 3).

The server hosts available for running matcher processes fall into the following categories: the eight

capture machines (even those running capture clients have spare capacity); various hosts attached

directly to the local switched Ethernet; and a remote IBM 16 CPU host, Blue Dwarf, sited at NESC in

Edinburgh.
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Table I. Result of parallelization tests.

Total Capture Remote Time Normalized Parallel
Exp CPUs CPUs CPUs (min) CPU resource efficiency Comments

0 4 4 0 215 1 100% One Angel CPU per pod
(base)

1 12 12 0 75 3 96% 12 Angel CPUs
2 16 0 16 48 4.9 91% 16 NESC Blue Dwarf CPUs
3 28 12 16 29 7.9 97% 16 Blue Dwarf plus 12 Angel CPUs
4 43 12 31 21 ∼10.7 95% 16 Blue Dwarf plus 12 Angel

plus 15 other servers

Prior to running parallelization experiments, the Angel and Blue Dwarf processors were

benchmarked. The respective times taken to perform a single disparity map computation from a pair of

monochrome images were about 43 and 35 s (first entry in Table I, Experiment 0).

At this point two questions arise. The first concerns the limits of such a parallelization mechanism

and here, it is clear that the determining factor will be the speed at which data can be transmitted

between servers and clients and between servers and other servers. Some initial experiments have

been carried out over local Ethernet and the Glasgow–Edinburgh SuperJanet connection and these are

described in Section 3.

The second question concerns the mechanism whereby parallelism can be invoked dynamically

across a resource rich network such as the Grid. The frame sequencing generates new matching and

model building work continuously. The most effective way to handle such a stream of work in an

environment where processing resources are constantly entering and being removed from the available

pool is to provide a mechanism for dynamically spawning matching and building tasks remotely on

appropriate process servers. Furthermore, some spawned tasks may need to create and maintain data

connections to others on other hosts (e.g. matcher servers dispatch the range maps for a frame to

the server that has been selected to perform the model build for that frame). These issues can be

summarized as respectively requiring an ability to spawn tasks dynamically on any suitable hosts and

an ability to transmit data pipes (as connections between processes) over the network with endpoints

on different machines. The existing batch-oriented task submission capabilities of the Globus toolkit

require some augmentation in order to allow these requirements to be satisfied. A suitable extension,

based on Milner’s π-calculus: is discussed in Section 4.

The network is a critical factor and ultimately limits the amount of parallelism possible. Each Angel

is connected to a 100 Mbps full duplex switch and needs to receive 3.6 MB returned for each remote

task initiated. Assuming the machine can service its network interface at maximum speed and that

there is no other network traffic, the best possible time in which an Angel can dispatch a matcher task

is about 0.3 s. If each matcher task takes n seconds, the total number of servers that an Angel can keep

busy is about 3.5n. This would suggest that for the 2 GHz class processors running our Java algorithms,

parallelization of about N = 150 should be achievable.

At present there are insufficient server hosts to test this limit (a total of 43 are currently assignable).

Nonetheless, it is interesting to see if the prediction holds at least out to values of N which can be

tested. The results of the parallelization experiments with various groups of processors are listed in

Table I.
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The Parallel efficiency entry for a given experiment is the actual speedup divided by the best speedup

calculated on the basis solely of the CPU resources allocated, taking Experiment 0 (with four Angel

processors) as baseline. The normalized CPU resource entry compares the CPU resource available in

an experiment with that used in Experiment 0, taking into to account differences in performance of the

different CPU types used when benchmarked for our application.

As can be seen, with the CPU resources available, the frame-processing task is parallelizable

and a speedup of an order of magnitude is demonstrated for a similar increase in the number of

processors. The conditions of the experiment are pessimistic. Were matcher servers to return range

maps instead of disparity maps, data would be reduced to 1.2 MB per task, tripling the parallelization

limit. This can be improved further by also building the models remotely. With gigabit interfaces,

parallelization of the order of 103 seems possible. Such levels of processing power and backbone

bandwidth are not yet realistic, but the argument suggests that real time processing of 3D images will

be possible.

3. THE JPIE INTERFACE

The dynamic task creation and remote pipe migration required by PGPGrid motivates the development

of a Java interface loosely modelled on the primitives of the π-calculus [5,6]. The interface, JPie, is

intended for use as a substratum for this and other Grid-based parallel computing applications. It allows

the dynamic creation of both remote processes and communications channels between them. It also

allows dynamic reconfiguration of the network of channels. JPie tries to achieve this with the minimum

number of primitives, integrating these into the existing Java class framework. It is at roughly the same

abstraction level as JPVM [7], IceT [8] and JCSP [9].

The overall JPie class hierarchy is as follows.

(1) Abstract class JPieTask represents the unit of work to be done as a parallel process. It implements

the java.lang.Runnable interface, allowing the construction of threads from JPieTasks. It has

additional methods that allow channels to be associated with JPieTasks. Before the JPieTask

run method is called, the task’s transmissible input and output channels, known respectively as

funnels and taps, must be initialized. A running task can obtain its taps and funnels via the get

methods supplied.

(2) Interface JPie is a factory interface whose job is to create processes, taps, funnels and pipes

(a pipe is a linked tap and funnel). It has a core method spawn, which causes a JPieTask to

be run locally or remotely depending on resources. Time and memory parameters that specify:

anticipated resource usage are supplied. Spawn will fail if adequate resources cannot be found.

JPie also includes methods to create taps and funnels that can convert streams in the local

environment to JPie streams that can be sent to remote machines. The createPipe method also

permits interprocess communication streams to be set up between two daughter tasks.

The set of classes required by a remote task are made available via a custom classloader which

retrieves jar-files containing class definitions from the originating process. The set of jar-files

available to the classloader is specified via a call to the setJars(. . . ) method of the originating

JPie instance.

There is also a need to be able to identify sources of data that are at known locations on the Web.

JPie will provide for this by adding methods that allow for taps and funnels to be published and

associated with URIs.
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(3) Abstract class JPieTap implements java.io.InputStream, and requires the implementation of a

method to get a byte (read). The standard Java blocking protocols are followed.

(4) Abstract class JPieFunnel implements java.io.OutputStream and must provide a write method

that writes a single byte to the output channel. It can block on write if the remote process has not

performed sufficient reads.

(5) Interface JPiePipe provides a bi-directional inter-task communications channel. This has two

methods: getTap() and getFunnel(). To set up a data flow graph, one creates pipes and passes

the input and output channels to tasks which are then forked. It is implemented by class

UniprocessorJPiePipe using built-in Java classes PipedInputStream and PipedOutputStream,

and used by class GridJPiePipe using an appropriate remote communications protocol. A key

issue here is serialization of pipes, taps and funnels.

(6) The overall aim of JPie is for processes to be able to run across a network of machines

without knowing where these machines are or having to reference the machines explicitly in

any algorithm. An algorithm expressed in Java using JPie should be invariant under alterations

in the physical collection of machines that run it.

In principle, one of the great strengths of Java is that it allows a single binary image to run on a

variety of different physical computers, each of which may be running a different operating system and

using a distinct instruction set. In order to ensure that a task will produce the same result regardless of

its host, every machine that is to run JPie tasks must have the JRE installed and have access to the JPie

library. Data can be transferred to or from a task over its taps and funnels.

Consider the problem of creating a task T on local machine A that will execute remotely, filter

a source file stored on A and write its result to a destination file on A. When T is spawned the

initiating task on A first locates a machine B able to run it. On B a daemon is executing that

accepts task execution requests. Once the daemon agrees to run the job it executes a new Java virtual

machine (VM) and provides, on the command line, details that are used to connect A and B with a

pipe P .

The machine A then serializes T , through P . The new VM on B deserializes T using a custom

classloader, which loads required class definitions from A, and runs it. T contains Taps and Funnels,

which must themselves be serialized. The serialization of JPieFunnel and JPieTap classes is achieved

by ‘linking’ the deserialized object to the original stream. The method used to perform this ‘linking’ is

irrelevant from the perspective of the JPie interface.

Note, the JPiePipe can be serialized conventionally, as all of the fields it contains are serializable.

Suppose an instance of JPiePipe is created on an original VM and then passed to two separate tasks

on remote VMs. If these tasks use each of the ends of a JPiePipe to stream data, then the data will

travel via the original VM. However, if a remote task creates an instance of JPiePipe and passes it to

the original VM, which in turn passes it to another remote task, the data will be streamed directly from

the first remote task one to the second, bypassing the original VM. In other words, no matter how many

times JPieFunnel or JPieTap are passed (either separately or as a part of JPiePipe), upon deserialization

they will always be ‘linked’ directly to their original VM.

3.1. Resource locator

JPie can make use of various resources from a pool, but requires a mechanism to identify, check

for availability and access these resources. This is where the idea of a resource locator comes in.
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The model we have proposed has three components: the Initiator, the Locator and the Server Entity

(ServEnt), jointly referred to as the ILS model. The EPCC is undertaking the major share of the

development of this software with requirements and other inputs provided by 3D-Matic Lab.

Figure 4 shows the deployment diagram for the ILS model. The three components are discussed in

more detail below, but essentially a typical interaction would be as follows. A ServEnt advertises its

hardware characteristics and availability for JPie tasks by informing the Locator, where the Locator

maintains a list of such information. An Initiator wishing to launch a JPie task requests suitable

resources from the Locator. The Locator returns a list of resources, from which the Initiator then

confirms the first resource availability directly with the ServEnt, and then if available submits the

JPie task. On task completion the ServEnt passes the job metrics back to the Initiator. Currently the

EPCC is focusing on the Locator-ServEnt and Locator-Initiator interactions and functionality.

3.1.1. Locator

The Locator maintains an updateable list of resources with their associated static and dynamic

information. Static information includes hardware items such as memory, number of processors and

so on, whilst the dynamic information consists of the availability of the resource to accept JPie tasks.

The Locator stores this information in a database so that it can be maintained, accessed and searched

quickly and efficiently. The Initiator and ServEnt can request and update this information via two Web

services [10] made available by the Locator. These are as follows.

• Registry service. this service has three methods associated with it and is used by the ServEnt

component:

◦ addServent—adds a ServEnt and its static information to the database;

◦ removeServent—removes the ServEnt from the database;

◦ updateStatus—updates the status (i.e. processors available) for a ServEnt.

• ResourceRequest service. This has one method and is used by the Initiator:

◦ resourceRequest—given a set of job parameters, this returns a list of available resources

which match or exceed the parameters.

The Locator is hosted within a Tomcat [11] server, and utilizes the Axis [12] framework for

constructing SOAP [13] messages and Web services. The latter provides a convenient model for

accessing the Locator service, where performance is not paramount; however, general inter-machine

communication in JPie is conducted directly and efficiently over TCP.

3.1.2. ServEnt

The ServEnt acts as the access level for the ILS model to utilize the underlying resource. When the

ServEnt is installed on a machine, the user must supply the architectural information (based on

XRSL [14]) that is in turn passed on to the Locator. It is also intended that a simple, small benchmark

code be run to determine how the performance compares to other resources. This benchmark figure

will be used in the algorithm for selecting appropriate resources at the Locator. The ServEnt also can

accept JPie tasks from an Initiator, and will pass metrics of the task run to the Initiator when it has

completed.
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Figure 4. Deployment diagram for the ILS model.

3.1.3. Initiator

The Initiator instigates JPie tasks. Given the address of a Locator and a job description, it requests

resources from the Locator and receives the addresses of the resources available and appropriate to the

job. Note that the number of resources returned can be set at the Locator to match exactly the number

requested, or to exceed it. This is because at the next step the Initiator negotiates with the resources in

turn via their ServEnts on whether they can accept the job. If declined by one resource, then the next

ServEnt is negotiated with. This extended list prevents the need for repeated contacts with the Locator.

Once the negotiations have completed, the Initiator submits the task to the ServEnt.
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3.1.4. Methodology

There are several technologies already in existence that offer similar functionality to the interactions

described above, and a survey of these was undertaken as part of the PGPGrid project. However,

none of the technologies matched the requirements exactly, and those that came closest were relatively

heavyweight solutions, which would have required significant investment in terms of time and effort in

adapting them to our requirements. Due to the inherent difficulties of such an approach, and given the

time constraints, it was decided to utilize the Web services paradigm. This allowed an iterative approach

to developing the functionality, and the resulting implementation should also be straightforwardly

extensible to the emerging WSRF [15] standards.

4. MODEL CONFORMATION

One of the project goals is to demonstrate the use of dynamic 3D data to drive computer-generated

animation. In addition to providing a more productive workflow we hope that animation generated

in this way will prove to be much more believable than animation generated by traditional means.

In particular, we emphasize the subtle and complex facial movements that we can capture, which are

often lacking in artificially generated animations.

The model-building process produces a set of discreet triangulated meshes, one per frame. We now

describe the workflow developed to move from these discreet models to a single animated model

suitable for inclusion in a professional studio production. The normal process of animation would

require an animator to systematically deform key frames of a sequence by hand. In-betweening would

then be used to generate the intermediate positions. In contrast to this, our approach is to use a

semi-automatic process whereby a person brings a few key points of a frame into alignment with

the captured model. Other points are then automatically brought into alignment. In this way a facial

animation requires between one and two minutes of human intervention per key frame, about a quarter

of what would be required in conventional work. In our case we have higher realism, as not only are

the landmark points brought into correspondence with the actor’s face, but so are hundreds of non-

landmark points across the surface of the skin.

4.1. Model mark-up

The most important step is moving from a set of discreet models to a single unified model that an

animator can interact with consistently across frames. This is achieved by mapping a generic model to

the captured data using a process called conformation [16]. Before we conform the generic model we

must first identify corresponding feature points between it and the captured data.

This relies on tracking the position of features we call landmarks. These landmarks are points in the

captured data corresponding to features that must be mapped accurately in order to preserve the quality

of the animation.

After experimenting with several different sets of landmark points we have opted to use a subset

of the points defined in the MPEG-4 standard for facial animation [17]. However, it was necessary to

introduce additional landmarks to stabilize the structure of the mesh between frames (see Figure 5).
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Figure 5. Landmarks in position on a generic mesh.

The task of recording the position of these landmarks is complicated by the volume of data. Every

frame consists of one VRML model and four texture images, each of which is 24-bit colour at a

resolution of 640 × 480 pixels. Taking into account the data structures necessary to display and

manipulate this data interactively, every frame can use up to 6 MB of memory (dependent on mesh

complexity). A simple scaling calculation shows that an eight second sequence at 25 frames per second

(FPS) requires at least 1 GB of memory.

A mark-up interface has been developed that allows the user to operate on longer sequences in

one session. This interface enables the user to select any VRML model as the ‘base’ position for the

landmarks. This approach has several advantages:

• mesh structure can help the user identify which landmark they are interacting with;

• a ‘base’ position that is close to the underlying capture data reduces the amount of work required;

• the landmarks used can be changed simply by selecting a different initial mesh.

Once the mesh containing the landmarks has loaded the user can select and drag landmarks across

the surface of the model. When all landmarks are in place the user moves to the next frame. Duplicated

effort is minimized by projecting landmarks from the previous frame onto the model in the new frame,

thus only minor corrections are needed between frames.

To reduce the demands of this process on the computer being used, partial sequences can be marked-

up. The last frame from one partial sequence is loaded as the start point for the next sequence, enabling

the user to continue with minimum interruption. In this way it takes three minutes to position landmarks

for a single frame. Due to memory limitations, working with one second at a time results in the best

trade-off between user effort and software performance.
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4.2. Conformation

Once the landmark points have been recorded, then the generic model can be conformed to the captured

data. The conformation algorithm, which deforms a generic model to scanned data, comprises a two-

step process: global mapping and local deformation.

• Global mapping. Global registration and deformation are achieved by means of a 3D mapping

based on corresponding points on the generic model and the scanned data. The 3D mapping

transforms the landmark points on the generic model to the exact locations of their counterparts

on the scanned data. All other points on the generic model are interpolated by the 3D

mapping; this mapping is established using corresponding feature points through radial basis

functions [18]. The global mapping results in the mesh of the generic model being subject to a

rigid body transformation and then a global deformation to become approximately aligned with

the scanned data.

• Local deformation. Following global mapping, the generic model is further deformed locally,

based on the closest points between the surfaces of the generic model and the scanned data.

The polygons of the generic model are displaced towards their closest positions on the surface

of the scanned data.

An elastic model is introduced in the second step of the conformation. The global deformed

mesh is regarded as a set of point masses connected by springs. During the second stage of the

conformation process, the mesh anchored to landmarks is relaxed to minimize its internal elastic

energy. The displacements of the vertices deformed to their closest scanned surface are constrained

to minimize the elastic energy of the mass-spring system. The governing equation for the relaxation of

a single vertex xv is

mv ẍv + dv ẋv +
l

∑

j=1

fvj = fext
v (1)

where mv is the mass of the vth vertex, dv its damp factor, fvj is the internal elastic force of the spring

connecting the j th vertex to the vth vertex, l is the number of vertices connected to the vth vertex and

fext
v is the sum of the external forces on the vth vertex.

The relaxation uses the following procedure.

(1) Each vertex xv is deformed to its closest position on the measured shape. Conformation ends

here if no elastic constraint is applied; otherwise, continue to the next step.

(2) The sum of the internal forces
∑

fvj on each vertex xv is calculated. There is no external force

in this model.

(3) The acceleration, velocity and position of each vertex xv are updated with the exception of the

vertices of the triangles of the mesh in which the landmarks lie.

(4) Steps (1) to (3) are repeated until the mesh is settled or the number of iterations exceeds a fixed

number.

We have found that better results at this stage can be obtained by conforming the generic model to

the first frame of the captured sequence and by then conforming the resulting mesh to each subsequent

frame. This approach means that the deformation required is relatively small and is hence less prone to

introduce errors or noise.
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Figure 6. Unconformed versus conformed mesh structures. Note the reduction in the number of
polygons, the move to anatomically relevant polygons and the increase in effective detail around the

ear obtained by convolving through time.

4.3. 3D Studio Max animation

After conformation we have a set of discreet models with the shape and motion from the scanned data

but having the mesh structure of the generic model. In this form the sequence is not directly usable

by an animator; however, the transformation to a single model with a set of key frames defining the

motion is straightforward.

Even after conformation there is still some noise present in the data that causes it to stand out when

incorporated into ‘clean’ computer-generated environments. To combat this we apply a high-frequency
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(a) (b)

Figure 7. Trajectory of a vertex (a) before and (b) after filtering.

 

Figure 8. Image from test sequence rendered by Pepper’s Ghost.

filter to the motion of individual vertices. This filtering is achieved by convolving the trajectory of each

vertex with a symmetric one-dimensional Gaussian kernel of the form

1
√

2πσ 2
exp −

(

x2

2σ 2

)

In areas of high detail, the quality of the mesh is improved as a result of considering spatial

information from neighbouring frames (see Figures 6 and 7) and movements resulting from noise

are eliminated or reduced. To ensure that no important details are sacrificed, an interface has been

incorporated into 3D Studio Max allowing the degree of filtering to be specified as the animation is

being imported, thus allowing the animator full control over the extent of the filtering.

Early indications are that this workflow will produce very good results, maintaining a good balance

between realism of motion and quality of the model (see Figure 8).
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5. CONCLUSIONS

The parallelization experiments described above show that the 3D scanner application is extremely

well suited for distribution in a Grid-type environment. With sufficient resources, parallelization of

sufficient degree to support real-time processing of images can reasonably be envisaged. However, the

dynamic nature of the process creation and dispatching requirements and the necessity of supporting a

reconfigurable inter-process communications network requires an extension to the normal Globus task

control capabilities. With this in mind, the authors have described a Java interface modelled on the

π-calculus that satisfies these requirements. This has been successfully implemented in a preliminary

form and work is proceeding to integrate it fully with the Grid protocols.

Using the technology described here PGP have been able to produce a short demonstration video that

uses the entire production chain from 3D capture, through body conformation to final rendering using

the parallel facilities offered by the EPCC. Experience with the production of this demonstrator leads

us to believe that the techniques pioneered in this project could considerably reduce the implementation

costs of large animation projects.
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