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Chapter 1

SIMD and Multi-core Parallelisation in
an Imperative Language.

Paul Cockshott, Tamerlan Tajadinov

1.1 Hardware Context
One of the most significant trends that can be observed in the modern processor design is towards an in-
creased parallelism. Single Instruction Multiple Data-stream (SIMD) computing has a long history[23, 12],
but in the 1990s, a technique that had previously only been applicable in large machines began to be applied
to microprocessors[25, 21]. Primarily aimed at graphics applications, SIMD instructions were introduced
for the x86 in Pentium MMX processors allowing saturated arithmetic to be performed on up to eight 8-bit
or two 32-bit integers at a time. The concept was further developed in SSE2 processors[5] by allowing
floating point operations to be performed on up to four single precision or two double precision floats at
a time, while also doubling the number of possible integer operands. The IBM/Sony Cell [18]processor
used in the PlayStation 3 also operates on vectors of data of similar size. Moreover, the next generation of
Intel GPGPUs codenamed Larrabee also follows the trend by allowing up to 64 8-bit integers or 16 single
precision floats to be operated on with a single instruction.

While traditionally an increase in the performance of a CPU used to be associated with an increased
clock speed, this historic trend is no longer observed as much. An increase in the clock speed demands a
sharp increase in the power consumption and leads to a rise in the heat dissipation, thus the clock speed is
limited by reasons of thermodynamics to presently around 3.5GHz as in case of Wolfdale DP generation
of Xeon processors. This limitation is now increasingly commonly compensated for by planting multiple
cores on a processor chip - a solution that has originated from high performance systems the performance
of which frequently benefits from multiple CPUs. As the number of cores in a system increases, the CPU
clock speed tends to be reduced by the processor designers, thus the 4-core Core 2 Quad processor operates
on frequencies of up to 3.2GHz depending on the model of the chip compared to its single core predecessor
Pentium 4 running on clock speeds of up to 3.8GHz several years prior. In mobile computing demands on
reduced power consumption have retained CPU frequencies at much lower rates of around 1-2.5GHz and
dual and even quad core processors are widely used.

The above developments in the topic of processor design have introduced further demands in compiler
design. The majority of imperative programming languages, especially those derived from C, typically op-
erate on a single element at a time, thus, for example, should we wish to add two vectors of integers together
each pair of elements will be added one at a time, which is not in line with the hardware capabilities allow-
ing for arithmetic operations to be performed on multiple operands at a time. Furthermore, unless multiple
threads are explicitly spawned, only one of the cores is likely to be utilised, leading to the reducing proces-
sor clock speed being the main performance indicator for applications written in these legacy programming
languages. The remainder of this article discusses Vector Pascal, an imperative language designed to utilise
the increasing capacity of modern processors through hardware parallelism.
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1.2 The Example Language
Vector Pascal[4] was developed by the computer vision group at the University of Glasgow as a language
for high performance image processing. It is an extension of Pascal[17, 13] with array language concepts.
Array programming languages arose from the work of Iverson. During the 1950s, when the latter was
working as a doctoral student for the Nobelist Leontief on the computation of the US input output tables
he developed Iverson’s Notation, a concise and unambiguous mathematical notation for expressing matrix
computation. The notation was taken up by IBM and released as the computer language APL[14]. What
distinguished APL from other contemporary languages was both its rather abstruse character set, and its
ability to concisely express calculations over whole arrays in a single assignment statement. It was an un-
typed interpretive language. Pascal on the other hand is famously a strongly typed language. There have
been many interpretive successors to APL, the most popular ones being Matlab[19] and J[15]. Introduction
of array language techniques into typed imperative languages started with versions of FORTRAN[22, 9, 2].
A number of other compiled array languages have subsequently been developed[24, 1, 11]. What has dis-
tinguished Vector Pascal from these is its particular emphasis on efficient targeting the parallel features
embodied in commodity microprocessors: initially SIMD instructions, and more recently multi-core facil-
ities. In what follows we describe only those extended features of the language that relate to parallelism.
Extensions relating to the type system, mathematical character sets etc, are ignored.

1.2.1 Extend array semantics
Standard Pascal allows assignment of whole arrays. Vector Pascal[4] extends this to allow consistent use of
mixed rank expressions on the right hand side of an assignment. For example, given:

r1:array[0..7] of real;

r2:array[0..7,0..7] of real

then we can write:

1. r1:= 1/2;

2. r2:= r1*3;

3. r1:= r1+r2[1];

1.2.2 Equivalent loops
Line 1 assigns 0.5 to each element of r1.

Line 2 assigns 1.5 to every element of r2.
In line 3, r1 is incremented with the corresponding elements of row 1 of r2.
These are defined to be equivalent to the following standard Pascal loops:

1’. for ι0:=0 to 7 do

r1[ι0]:=1/2;

2’. for ι0:=0 to 7 do

for ι1:=0 to 7 do

r2[ι0, ι1]:=r1[ι1]*3;

3’. for ι0:=0 to 7 do

r1[ι0]:=r1[ι0]+r2[1,ι0];

The compiler has to generate an implicit loop. In the above ι0, ι1,t are temporary variables created by the
compiler. The implicit indices ι0, ι1 etc are accessible to a coder using the syntax iota[0], iota[1] etc.

1.2.3 Data reformatting
Given two conforming matrices a, b

the statement

a:= trans b;

will transpose the matrix b into a.
For more general reorganisations you can permute the implicit indices thus
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a:=perm[1,0] b ;

{ equivalent to a:= trans b }

z:=perm[1,2,0] y;

In the second case z and y must be 3 d arrays and the result is such that z[i,j,k]=y[j,k,i]. It is clearly
desirable to do this in a way which prevents the creation of temporary arrays. We will discuss below the
general strategy to minimise the creation of temporaries.

Given a:array[0..10,0..15] of t; then
a[1] array [0..15] of t

a[1..2] array [0..1,0..15] of t

a[][1] array[0..10,0..0] of t

a[1..2,4..6] array[0..1,0..3] of t

1.2.4 Implicit mapping
Maps are implicitly defined on both operators and functions.

If f is a function or unary operator mapping from type T1 to type T2 and x : array of T1 then a:=f(x)

assigns an array of T2 such that a[i]=f(x[i]). Similarly if we have g(p,q:T1): T2,then a:=g(x,y) for
x,y:array of T1 gives a[i]=g(x[i],y[i])

1.2.5 Pixel Arithmetic
Pixels are a predefined data type, represented as 8 bit signed fixed point binary fractions. The numerical
range of pixels is from -1 to +1. Arithmetic on pixels is inherently saturating. The existence of types
supporting saturated arithmetic is an advantage in image processing.

1.3 Parsing and Automatic Mapping of Operators and Functions
Translation takes place using a modification of the classic single pass compiler approach used by Wirth[17],
and described in [8]. In this approach a recursive recognising function is declared for each non-terminal in
the grammar of the source language. On success the recognising function outputs, as a side effect, a stream
of byte codes for a machine independent intermediate code. We have modified the approach in two ways in
both order to parse array expressions and also to allow the efficient translation of the array expressions to
parallel code.

compiler code generator
tree-form machine

pascal source → intermediate → specific
code assembler

Since the work of Budd[3] it has been known that efficient compilation of an array language requires
that one eliminate the formation of temporary arrays in the course of array expressions. It turns out that a
simple extension of recursive descent parsing techniques allows this.

Consider a simplified version of the Vector Pascal grammar for assignments :

<ass> ::= <variable> ':=' <exp>

<exp> ::= <term><addop><term>

<term> ::= <factor><multop><factor>

<factor>::= '(' <exp> ')'

| <variable>

| <reduction> <factor>

| 'trans' <factor>

Consider the following example produced by the grammar:

z:= y+ \+(A * B );

where y,z are vectors and A, B matrices. \ is the reduction functional which reduces an expression by an
operator. Thus \+ forms the sum along the rows of the matrix formed by the Hadamard product of A and B.
A naive compilation would generate 3 temporaries for this, a matrix for A*B, a vector for the sum of A*B
then a final vector as a result of adding y.
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A standard recursive descent parser would have functions ass, exp, term, factor : typedescriptor

which would read the compiler input stream, return the type of the expression or sub expression they recog-
nised, and as a side-effect output a stream of intermediate byte-codes. In order to handle array expressions
we modify these so that they are now of the form:

function exp(Iotalocations:vector):IlcgTree;

Each parsing function now takes as a parameter a vector of addresses of memory locations to be used as
loop index variables, and instead of returning a type, it returns a intermediate code tree. The assignment
function inspects its first symbol - a variable and determines the rank of the variable. It then creates a vector
of index locations with respect to the current frame pointer and passes this vector in to the call it makes on
exp. The length of the vector of index locations is determined by the rank of the variable being assigned to.
The following pseudo code explains the technique:

function ass:IlcgTree;

musthave(Id_symbol);

id:=currentsymbol;r:=rankof(id);

v:= createIotaVector(r);

e:= exp(v);

dest:= locationof(id);

for i := 1 to r do

dest:= subscript(dest,v[i]);

return createnestedforloops(dest,v,e);

To understand what is produced refer back to section 1.2.2. The exp function in turn passes the vector of
index locations to its terms:

function exp(Iotalocations:vector):IlcgTree;

t1:= term(Iotalocations);

if have ( addop ) then

op:=currentsymbol;

t2:=term(Iotalocations)

return dyad(t1,op,t2)

else return t1;

At the bottom level of the parse, the function to recognise a variable uses the index vector to reduce any
array variable to a scalar.

function variable(Iotalocations:vector):IlcgTree;

musthave(Id_symbol);

id:=currentsymbol;

r:=getrank(id);

u:=upbound(Iotalocations);

v:= locationof(id);

for i := 1 to r do

v:= subscript(v,iotalocation[i+u-r]);

return v;

The subscript function constructs and returns an intermediate code tree to perform the subscription of
the variable by the contents of the memory location described by Iotalocations. The effect is that the
exp function will always return intermediate code that will evaluate to a scalar rather than an array. This
scalar result is then embedded in a for loop as specified in section 1.2.2. All intermediate array values are
eliminated allowing the code generator to use conventional register optimisation techniques for array valued
expressions. There are a couple of special cases worth noting:

1. Reduction factors. On encountering a reduction functional the factor function creates a new vector
of indices. If the initial vector of Iotalocations was of length n this will be of length n+1 with
the last element being the address of a new index variable to be used in a reduction loop. This longer
vector of indices is then passed into a recursive call of factor. The code generated for the reduction
is always for a scalar operation.
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Figure 1.1: The Streaming SIMD model of processing.

2. Transpositions and permutations. These are performed on the index vector at compile time before
passing it in to a recursive call of the factor parsing function. There is no additional run time cost
associated with the transpose operation.

The vector of index locations is similar in principle to the technique used in Single Assignment C [11] for
array de-referencing, but whereas in SAC an index vector is explicitly present in the indexing semantics
of the language, in our case it is an implicit vector existing only at compile time. Vector Pascal allows the
index vector iota to be used in sub-scripted form within a factor thus

p:= q[iota[0]+1]*0.5+q[iota[0]-1]*0.5;

would be legal where

p:array[1..n] of real;q: array[0..n+1] of real;

but it do not allow iota to be passed as a parameter to a function, or allow it to be indexed by a run time
expression. Although, in simple cases, iota corresponds to a sequence of ascending adjacent addresses, and
could thus be mapped to a conventional array, in more complex expressions involving matrix transpositions
or reduction operations this is no longer true.

1.4 Opportunities to Parallelise Array Assignments
Figure 1.1 shows the Streaming SIMD (SSE) model of processing supported by Intel and AMD machines.
Data is loaded, up to 16 operands at a time into XMM registers. These are then operated on using up to
16 parallel ALUs in register to register mode. The results are then written to memory up to 16 operands
at a time. Streaming is achieved by prefetching subsequent operands into cache so that memory fetches
occur in parallel with processing. It is clear that this architecture is optimised for vector processing, both
because vectors are operated on and because the prefetching mechanism assumes sequential organisation
of operands in memory.

Using the SSE model, it is possible to achieve startling speedups on one dimensional array operations.
An additional level of complexity is introduced by multi-cores. Each one of these cores works best

when running along a vector, or along the rows of a matrix. The separate cores can however independently
work on different rows of a two dimensional array problem. A natural form of parallelism, suggested by the
hardware architecture is thus to use SIMD for vector processing along rows, and to spread computations on
different rows between cores.

1.5 Transformation for SIMD Parallelism
The intermediate code generated by the parser described in section 1.3 produces scalar serialised interme-
diate code. This can be run on any processor, but if the processor has vector registers the scalar code will
be sub-optimal. After the parser has generated code for an assignment it queries the code generator to see if
vector registers are available for the data type produced by the expression. If yes, then the scalar intermedi-
ate code is a candidate to be transformed to vectorised intermediate code. We will illustrate the process of
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Algorithm 1.1 C code to add two images, along with timing on a 3Ghz Opteron. Compiled with gcc.
#define LEN 6400

#define CNT 100000

main()

{

unsigned char v1[LEN],v2[LEN],v3[LEN];

int i,j,t;

/* repeat many times for timing */

for(i=0;i<CNT;i++)

for (j=0;j<LEN;j++) [

t=v2[j]+v1[j];

if( t>255)t=255;

v3[j]=t;

}

}

[wpc@maui tests]$ time C/a.out

real 0m2.854s

user 0m2.813s

sys 0m0.004s

Algorithm 1.2 Vector Pascal code equivalent to the C code in Algorithm 1.1. Timing on the same machine
as in Algorithm 1.1.

program vecadd;

type byte=0..255;

var v1,v2,v3:array[0..6399]of byte;

i:integer;

begin

for i:= 1 to 100000 do

v3:=v1 +: v2;

{ +: is the saturated add operation }

end.

[wpc@maui tests]$ time vecadd

real 0m0.094s

user 0m0.091s

sys 0m0.005s

translating code for array expressions with an ultra-simple example which adds two images together. When
operating with 8 bit pixels one has the problem that arithmetic operations can wrap round. Thus adding
two bright pixels can lead to a result that is dark. So one has to put in guards against this. The problem of
adding two arrays of pixels and making sure that we never get any pixels wrapping round can be solved in
C a shown in Algorithm 1.1.

The equivalent Vector Pascal code is shown in Algorithm 1.2. The very much improved performance
comes from effective utilisation of the available SIMD instructions on the Opteron. The original statement
is translated into ILCG as shown:

Pascal

v3:=v1 +: v2;

ILCG

mem(ref uint8 vector ( 6400 ), +(PmainBase, -25600) ):=

+:(^(mem(ref uint8 vector ( 6400 ), +(PmainBase, -12800))),

^(mem(ref uint8 vector ( 6400 ), +(PmainBase, -19200)))))

Note that all operation are annotated with type information, and all variables are resolved to explicit address
calculations in ILCG. Hence it is close to the machine, but it still allows expression of parallel operations.
The symbol ^ is the ILCG dereference operation, following the Pascal convention. Efficient translation
depends on there being a close match available between the semantics of available machine instructions
and the ILCG operations specified by the first level of translation. We specify the machine instruction-set
in ILCG. As an example, here are some key instruction specifications taken from the machine specification
file gnuPentium.ilc which specifies the semantics of the Gnu assembler language for the Pentium:
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Saturated Add Bytes

instruction pattern PADDUSB(mreg m, mrmaddrmode ma)

means[(ref uint8 vector(8))m :=

(uint8 vector(8))+:((uint8 vector(8))^(m),

(uint8 vector(8))^(ma))]

assembles ['paddusb 'ma ',' m];

Vector Load and Store

instruction pattern MOVQL(maddrmode rm, mreg m)

means[m := (doubleword)^(rm)]

assembles['movq ' rm ',' m'\n prefetchnta 128+'rm];

instruction pattern MOVQS(maddrmode rm, mreg m)

means[(ref doubleword)rm:= ^(m)]

assembles['movq 'm ','rm];

We automatically build a family of optimising code generators that translate from ILCG trees to linear
assembly code by pattern matching.

ILCG Java
Compiler Compiler

Pentium.ilc → Pentium.java → Pentium.class
Opteron.ilc → Opteron.java → Opteron.class

To port to new machines one has to write a machine description of that CPU in ILCG. We currently
have production versions for the Intel and AMD machines[16] since the 386 plus Beta versions for the
PlayStation 2[6] and PlayStation 3.

Basic array operations are broken down into strides equal to the machine vector length. Then these are
then matched to machine instructions following the general approach of Graham [10] to generate code.

ILCG input to Opteron.class

mem(ref uint8 vector ( 6400 ), +(PmainBase, -25600) ):=

+:(^(mem(ref uint8 vector ( 6400 ), +(PmainBase, -12800))),

^(mem(ref uint8 vector ( 6400 ), +(PmainBase, -19200)))))

Assembler output by Opteron.class

leaq 0,%rdx ; init loop counter

l1:cmpq $ 6399, %rdx

jg l3

movq PmainBase-12800(%rdx),%MM4

prefetchnta 128+PmainBase-12800(%rdx) ; get data 16 iterations

; ahead into cache

paddusb PmainBase-19200(%rdx),%MM4

movq %MM4,PmainBase-25600(%rdx)

addq $ 8,%rdx

jmp l1

l3:

To maintain comparability with the C example we show the code generated at optimisation level 0. The
timing shown in Algorithm 1.2 was obtained at optimisation level 0. At higher optimisation levels vec-
torisation is followed by loop unrolling and other well known techniques. These result considerably more
opaque assembler.

1.5.1 Preconditions for SIMD parallelisation
For SIMD parallelisation to be viable a number of conditions must be checked.

1. The expression on the right hand side must not contain any function calls, since functions return
scalar results.

2. The operands in the expression must be of the same data length. For instance, one can not efficiently
perform SIMD addition between two arrays if one contains 32 floating point numbers and the other
contains 64 bit floating point.
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3. The least significant indices of all arrays in the expression must either be the same, or must differ
by an additive term. Thus the ILCG code equivalent to a[i,j]+b[i,j] is SIMD parallelisable as
is a[i,j+10]+b[i,j] but a[i,j]+b[j,i] would not be parallelisable since in the case of b we
are stepping down columns as j is incremented. Since column elements are not stored adjacently
in memory, one can not perform a SIMD load of them. Nor would a[i,j]+b[i,j*3] be paral-
lelisable, again because the successive elements of b being used are not adjacent. On the other hand
a[i,j]+c[i] for some column vector c can be parallelised since it is usually possible to replicate a
scalar c[i] across all elements of a SIMD register.

4. If the array lengths being operated on are not an integer multiple of the SIMD register lengths, SIMD
and scalar code must be combined. Suppose the array length is 10 and the register length is 4. Then
SIMD code is used to operate on the first 8 elements of the array, and scalar code for the remaining two
elements. For dynamic arrays, this test has to be delayed until run time. In this case the ’remainder
code’ is performed by an optional scalar loop appended to the SIMD loop.

1.6 Transformation for Multi-core Parallelism
SIMD vectorisation works for one dimensional data, or on the last dimension for arrays stored in row major
order, because the hardware has to work on adjacent words. SIMD gives considerable acceleration on image
data, and worthwhile accelerations on floating point and integer data. Future machines like the Larrabee
will have considerably wider SIMD registers, increasing the benefits of SIMD code. But newer chips also
have multiple cores. For these, the recent versions of the Vector Pascal compiler will parallelise across
multiple cores if the arrays being worked on are of rank 2. The Pascal source code of the program remains
the same independently of whether it is being targeted at a simple sequential machine, a SIMD machine or
a multi-core SIMD machine. Targeting is done by flags passed to the compiler:

vpc sub2dex -cpu486

would compile sub2dex.pas using purely sequential 32 bit instructions.

vpc sub2dex -cpuOpteron

would compile the same file targeted to a 64 bit Opteron with 1 core using the SIMD instructions in the
Opteron instructionset.

vpc sub2dex -cpuOpteron -cores2

would compile the file to a 64 bit Opteron with 2 cores and SIMD instructions. The compiler is implemented
in Java so the selection of code generators and compilation strategies is achieved by dynamically loading
appropriate compiler and code generator classes.

Let us now look at the transformations required to achieve this using a trivial rank 2 array example in
Algorithm 1.3. The example is not intended to be realistic or useful, only illustrative. We assume that the
code has been compiled for a dual core Opteron.

Two threads are dispatched to process the work using a fork - rejoin paradigm. The run time library is
built on top of pthreads[20]. For a two core machine, two server threads are initiated at program start up.
These wait on a semaphore until post_job passes them the address of a procedure and a stack frame context
within which the procedure is to be executed.

The statement x:=y-z is translated into a procedure that can run as a separate task, the ILCG has been
simplified for comprehensibility in Algorithm 1.4.

The basic structure of the task procedure is two nested for loops, one for each dimension of the arrays.
The outer loop or row index steps by 2 to ensure that each task will process every 2nd row, starting at the

row given by the task number. Thus task 0 will process rows 0,2,4,6,... Task 1 will proocess rows 1,3,5,7,...
If there are 4 cores available each task will process every 4th row, etc.

The inner loop, for the column indices, advances by 4 since the Opteron has SIMD registers capable of
handling 4 floating point numbers at a time.
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Algorithm 1.3 Example of combined mult-core and SIMD parallelism.
procedure sub2d;

type range=0..127;

var x,y,z:array[range,range] of real;

begin

x:=y-z;

end;

This translates into ILCG as follows when compiled for a dual core Opteron

procedure(sub2d,

procedure (label12 ... see Algorithm 1.4 )

post_job[label12,^(%rbp),1]; /* send to core 1 */

/* Note that %rbp is the Opteron stack frame pointer */

post_job[label12,^(%rbp),0]; /* send to core 0 */

wait_on_done[0];

wait_on_done[1];

)

Algorithm 1.4 The function performing nested loops.
procedure (label12 /* internal label*/ ,

for(mem(+(^(%rbp),-24)),^(mem(+(^(%rbp),16))),127 , 2,

/*iota [0] task number limit step*/

var(mem(+(^(%rbp),-32))),/* iota[1] */

for(mem(+(^(%rbp),-32)), 0 ,127, 4 ,

/*iota [1] start limit step*/

mem(ref ieee32 vector ( 4 ), /* x[iota[0],iota[1]] */

+(+(*(^(mem(+(^(%rbp),-24))),512),

+(*(^(mem(+(^(%rbp),-32))), 4),-131072)),

^(mem(+(^(%rbp),-8))))):=

-(^(mem(ref ieee32 vector ( 4 ),/* y[iota[0],iota[1]] */

+(+(*(^(mem(+(^(%rbp),-24))),512),

+(*(^(mem(+(^(%rbp),-32))), 4),-196608)),

^(mem(+(^(%rbp),-8)))))),

^(mem(ref ieee32 vector ( 4 ),/* z[iota[0],iota[1]] */

+(+(*(^(mem(+(^(%rbp), -24))),512),

+(*(^(mem(+(^(%rbp), -32))), 4),-262144)),

^(mem(+(^(%rbp),-8))))))))),

)
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1.7 The PURE Function Extension
We define a pure function to be such that does not have any side effects, i.e. it does not update any global,
or shared, states outside of its own scope. If the other functions are called from the body of the function,
these also have to be pure even if not marked as such. This definition of pure functions is consistent with
the definition used in FORTRAN 95. Given the absence of explicit multi-threading constructs in the given
language, the above property of pure functions implies thread safety. A function can be labeled as pure by
prepending the keyword pure in front of every declaration or definition of the function. This means that
if, for example, a function is declared as pure in the interface section of the programme, it must be also
declared as pure anywhere else in the code, e.g. in the subsequent definition of the function body. Any
inconsistency in the declared purity of a function is spotted by the compiler and treated as a syntactic error.

pure function next(i : integer): integer;

begin

next := i+1;

end;

Above function next operates only on the parameter passed to it, thus it is appropriate to declare it as pure.
The keyword pure does not bare any semantic value, other than it serves as a hint to the compiler which
may then generate multi-threaded code. Multi-threaded code will be generated if -coresn flag is passed to
the compiler specifying more than one core, and hence the number of threads, available to the programme
and if the function is then invoked as part of an assignment statement.

1.8 Task Parallelism and Block Structure
The technique of procedurising code shown in Algorithms 1.3 and 1.4 is well established when parallelising
loops in Open-MP [7]. There are two significant differences. First, and least significantly, in Vector Pascal
the loop is implicit rather than the explicit loops used in Open-MP. But secondly Open-MP is targeted at
C and FORTRAN which are flat languages. Pascal is a block structured language which makes the access
to variables by spawned tasks somewhat more complex. Consider Algorithm 1.8 which illustrates the use
of nested blocks in Pascal. This has a main program nestpar and embedded within that a procedure emap
which takes a matrix a as a parameter and replaces each ai, j with escale.ai, j where scale is a global variable.
The exponential function is approximated by a Taylor series

ex = 1+
1
1!

x1 +
1
1!

x1 +
1
2!

x2 +
1
3!

x3 + ...

using the function Taylor. The Taylor series is evaluated as
Taylor← ∑ (coefs × x ι0) ;
where ι0 = 0,1,2,3... using the line

Taylor:= \+ (coefs * x pow iota[0]);

The coefs vector has been initialised in the main program to contain the inverse factorial series as required.
There are a number of references from inner to outer scopes: Taylor uses the vector coefs, and emap

uses the variable scale. There are three well known techniques for implementing this in normal procedural
code: λ lifting, static chaining or display vectors. Since Intel provide direct hardware support for display
vectors in the procedure ENTER and LEAVE instructions we have chosen to use displays. Figure 1.2
illustrates how the stack would be organised during execution of Taylor when the program is compiled for
a single core machine. Observe how Taylor can access variables in the enclosing stack frames using the
display vector. But if the code is to run on a dual core machine there will be not one but three stacks as
shown in Figure 1.3: one for the main program and one each for the child tasks. The original function emap

will have been written to ILCG equivalent to:

procedure emap(var a:t);

var coefs:coef;

pure function Taylor( x:real):real;

begin

Taylor:= \+ (coefs * x pow iota[0]);

end;

procedure dummy(start:int);

var iota:array[0..1] of integer;
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Algorithm 1.5 Taylor series example.
program nestpar;

type t = array[1..3,1..2] of real;

coef=array[0..5] of real;

{ tabulate inverse factorials }

const expc:coef=(1,1,1/2,1/6,1/24,1/(5*24));

var scale:real;B:t;

procedure emap(var a:t);

{ for each a[i,j] replace with a[i,j]+exp(scale*a[i,j]) }

var coefs:coef;

pure function Taylor( x:real):real;

begin

Taylor:= \+ (coefs * x pow iota[0]);

end;

begin

coefs:= expc;

a := Taylor(a*scale);

end;

begin

scale:=0.1;

B:= iota[0]*iota[1];

write(B);

emap(B);

write(B);

end.

Output Produced

1.00000 2.00000

2.00000 4.00000

3.00000 6.00000

1.10517 1.22140

1.22140 1.49182

1.34986 1.82205

EBP register

(frame pointer)

scale stack frame
for main program
at lexical level 0

disp[0]

coefs

stack frame
for procedure

emap at lexical level 1

x

dynamic link

ret addr

disp[0]

 disp[1]
disp[2]

stack frame for
function Taylor
at lexical level 2

B

a

dynamic link

ret addr

disp[0]

 disp[1]

parameter a
refers to array
B

Figure 1.2: Stack for nestpar in single core mode.
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scale stack frame
for main program
at lexical level 0

disp[0]

coefs

stack frame
for procedure

emap at lexical level 1

B

a

dynamic link

ret addr

disp[0]

 disp[1]

parameter a
refers to array
B

stack frame for
function Taylor
at lexical level 2

x

dynamic link

ret addr

disp[0]

 disp[1]
disp[2]

EBP register

(frame pointer)

task #

dynamic link

ret addr

disp[0]

 disp[1]
disp[2]

iota[0]

iota[1]

stack frame for 
synthetic procedure
at lexical level 2

stack frame for
function Taylor
at lexical level 2

x

dynamic link

ret addr

disp[0]

 disp[1]
disp[2]

EBP register

(frame pointer)

task #

dynamic link

ret addr

disp[0]

 disp[1]
disp[2]

iota[0]

iota[1]

stack frame for 
synthetic procedure
at lexical level 2

original stack

stack for core 0 stack for core 1

Figure 1.3: The 3 stacks used by nestpar in dual core mode.

begin

iota[0]:=start;

while iota[0]<=3 do

begin

for iota[1]:=1 to 2 do

a[iota[0],iota[1]]:=Taylor(a[iota[0],iota[1]]*scale);

iota[0]:=iota[0]+2;

end;

end;

begin

coefs:= expc;

post_job(dummy,1);post_job(dummy,0);

wait_on_done(0);wait_on_done(1);

end;

The function dummy has to run on a task stack and yet have access to the variable a in emap and scale

in the main program, both of which are executing on the main stack. It then has to call Taylor in such
a way as to ensure that Taylor can access the global scale. Provided that the displays can be set up as
shown in Figure 1.3, this will work, but it is impossible to set up the displays this way when using standard
intel call conventions along with the pthreads library. Whenever a function is executed within a thread
it is allocated a new stack that does not contain display pointers, hence variables from containing scopes
cannot be accessed.

In order to support sharing of the global stack amongst multiple tasks, we have implemented an assem-
bly routine taskexecute, which corresponds to the following C function signature:

void taskexecute(struct threadblock *);

As can be seen, the function expects a single parameter which is a pointer to a structure of type struct
threadblock defined as

struct threadblock{

char * savedframepointer;

char * savedcodepointer;

int threadnumber;

}
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Above, savedframerpointer is the pointer to the original stack in which the displays are already setup,
savedcodepointer is the pointer to the function that is being parallelised, and threadnumber is a num-
ber in the range0..n− 1 for a programme running onn cores.. The following assembly code implements
taskexecute on the Pentium architecture.

Assembly code sequence required to implement the task execute

.globl taskexecute

taskexecute:

# on entry we have a pointer in %esp to the task block

# this task block has the C definition

# struct threadblock{

# char * savedframepointer;

# char * savedcodepointer;

# int threadnumber;}

# the first thing we do is save the framepointer on entry

push %ebp

# next get the address of the stored frame pointer in the task block

mov 8(%esp) , %eax

#we load the frame pointer into the hardware frame pointer (ebp)
mov 0(%eax), %ebp

# get the task number

push 8(%eax)

# make the call on the task

call * 4(%eax)

# unwind stack pointer

add $4,%esp

# restore framepointer we were called with

pop %ebp

ret

The essence of this form of implementation is that the pthread is setup to execute taskexecute which
is passed threadblock from the calling environment that contains the stack pointer used by the calling
environment. taskexecute substitutes the stack allocated by the pthread library with the above stack
before executing the code sequence contained in the savedcodepointer. The effect of substituting the
stack pointer is undone once the called code sequence halts to ensure a clean exit of the wrapper.

1.9 Example Programs

1.9.1 Image convolution
The first example we will look at is the use of a seperable convolution kernel to blur an image. Convolution
of an image by a matrix of real numbers can be used to smooth or sharpen an image, depending on the
matrix used. If A is an output image, K a convolution matrix, then if B is the convolved image

By,x = ∑
i

∑
j

Ay+i,x+ jKi, j

A separable convolution kernel is a vector of real numbers that can be applied independently to the rows
and columns of an image to provide filtering. It is a specialisation of the more general convolution matrix,
but is algorithmically more efficient to implement. We can do a seperable convolution provided that the
kernel is formed by the outer product of two vectors a,b. A symmetric separable convolution can be done
if a = b.

If k is a symmetric separable convolution vector, then the corresponding matrix K is such that Ki, j =
kik j.

Given a starting image A as a two dimensional array of pixels, and a three element kernel c1,c2,c3, the
algorithm first forms a temporary array T whose whose elements are the weighted sum of adjacent rows
Ty,x = c1Ay−1,x+c2Ay,x+c3Ay+1,x. Then in a second phase it sets the original image to be the weighted sum
of the columns of the temporary array: Ay,x = c1Ty,x−1 + c2Ty,x + c3T y,x+1.

Clearly the outer edges of the image are a special case, since the convolution is defined over the neigh-
bours of the pixel, and the pixels along the boundaries a missing one neighbour. A number of solutions are
available for this, but for simplicity we will perform only vertical convolutions on the left and right edges
and horizontal convolutions on the top and bottom lines of the image. A Vector Pascal routine to do this is
given below. The source has been pretty printed in the latex format that is automatically generated by the
compiler is listing enabled. An equivalent sequential C routine is given in Algorithm 1.6.
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In comparing the C and Vector Pascal, note two features which give performance advantages to the
Vector Pascal form of the algorithm.

1. The support for fixed point 8 bit arithmetic with the pixel type. This allows a higher level of par-
allelism to be achieved since a P4 or AMD64 can in principle operate on 16 ×8 bit numbers with
a single instruction. Lacking these types, the C algorithm has to use 32 bit floats. The pixel type
automatically uses saturated arithmetic.

2. The data parallel form of expression of the Vector Pascal allows more efficient optimisation of the
code.

1.9.1.1 Vector Pascal convolution algorithm

type

plane(rows,cols:integer )= array [0..rows ,0..cols ] of pixel ;
var

Let T , l ∈�plane;
Let i ∈ integer;
begin

Allocates a temporary buffer to hold a plane, and 3 temporary buffers to hold the convolution co-ordinates
as lines of pixels.

new ( T ,im .maxrow ,im .maxcol );
new ( l ,3,im .maxcol );
l↑[0]← c1 ;
l↑[1]← c2 ;
l↑[2]← c3 ;

Perform convolution on each of the planes of the image. This has to be done with an explicit loop as array
maps only works with functions not with procedures.

for i← 0 to im.maxplane do convpar (imi, l↑, T↑); { see section 1.9.1.2}

This sequence frees the temporary buffers used in the convolution process.

dispose ( l );
dispose ( T );

end ;

1.9.1.2 convpar

procedure convpar ( var p ,l ,T :plane );

This convolves a plane by applying the vertical and horizontal convolutions in turn.

var

Let r , c ∈ integer;
begin
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Puffin

Boano

Figure 1.4: Comparison of perfomance gains over the sequential C implementation of the convolution
routine on different processors and numbers of cores. The x-axis shows the number of cores for which the
program was compiled, the y-axis shows the the relative speedup. Puffin has 4x Quad-Core AMD Opteron
8350 Processor chips running the AMD64 instruction set with a CPU clock of 1Ghz. Boano has 4x Single-
Core Intel Xeon CPUs at 2.80GHz running the 32 bit Intel P4 instructions. In each case the performance is
normalised so that the speed of the C code counts as 1.

This sequence performs a vertical convolution of the rows of the plane p and places the result in the tem-
porary plane T . It uses the lines of pixels l[i] as convolution weights. Use of lines of pixels rather than
the floating point numbers for the kernel weights allows the computation to proceed 8 pixels at a time in
parallel. The lines T 0← p0; and T r← pr; deal with the top and bottom rows of the picture which are left
unchanged.

{$r-}{disable range checks}

r← p.rows;
T 1..r−1← p0..r−2 × l0 + p1..r−1 × l1 + p2..r × l2;
T 0← p0;
T r← pr;

Now perform a horizontal convolution of the plane T and place the result in p.

c← p.cols;
p0..r,1..c−1← T 0..r,0..c−2 × l0 + T 0..r,2..c × l2 + T 0..r,1..c−1 × l1;
p0..r,0← T 0..r,0;
p0..r,c← T 0..r,c;
{$r+}{enable range checks}

end ;

1.9.2 Performance comparisons
We give examples of running the two algorithms on both 32bit and 64bit multi-core machines. Results are
summarised in Figure 1.4 and Table 1.1. In all cases the algorithms were compiled at the optimisation level
0 for both compilers.

As would be expected the parallel version of the algorithm significantly out-performs the sequential
version. However it is clear that SIMD parallelism provides a more reliable form of acceleration than
MIMD. The initial speedup figures using a single core rely entirely on the use of SIMD instructions. SIMD
alone gives an acceleration of over 8× on an Opteron and 21×on a Xeon. The gain from MIMD is more
modest and tails off after markedly after 2 processors on Boano, and after 3 processors on Puffin. This
result is consistent with the SIMD code, which operates on wide words, saturating the available memory
bandwidth.
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Algorithm 1.6 C version of the convolution routine.
#include <stdlib.h>

conv(char *im, int planes, int rows,int cols,float c1,float c2,float c3)

/* C version of a convolution routine */

{

int i,j,p,temp;

int planestep=rows*cols;

char * plane, * buffplane;

char * buff = malloc( rows*planes*cols);

for (p=0;p<planes;p++){

plane = &im[p*planestep];

buffplane= &buff[p*planestep];

/* convolve horizontally */

for(i=0;i<rows;i++){

for(j=1;j<(cols-1);j++) {

temp= plane[i*cols+j-1]*c1+plane[i*cols+j]*c2+plane[i*cols+j+1]*c3;

if (temp<0){temp=0;}

else if (temp>255) { temp=255;} ;

buffplane[i*cols+j]=temp;

}

buffplane[i*cols]=plane[i*cols];

buffplane[i*cols+cols-1]=plane[i*cols+cols-1];

}

/* convolve vertically */

for(j=0;j<cols;j++) {

for(i=1;i<rows-1;i++){

temp= buffplane[(i-1)*cols+j]*c1+buffplane[i*cols+j]*c2+buffplane[(1+i)*cols+j]*c3;

if(temp<0){temp=0;}

else if (temp>255) { temp=255;} ;

plane[i*cols+j]=temp;

}

plane[j]=buffplane[j];

plane[(rows-1)*cols+j]=buffplane[ (rows-1)*cols+j];

}

}

free(buff);

}
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Table 1.1: Data used to produce Figure 1.4. It gives the times in seconds to perform 30 convolutions on
a 1024×1024 pixel image with 24 bits per pixel, organised as 3 distinct colour planes, whilst using a 3
element separable kernel.

gcc vpc
cores 1 1 2 3 4 8 16
Machine
Puffin 5.48 0.81 0.39 0.28 0.23 0.18 0.16
Boano 23.02 1.07 0.63 0.72 0.60

Table 1.2: Timings in seconds for Mandelbrot algorithms computing the Mandelbrot set at 2048×2048
resolution on the quad Intel Xeon processor Boano. Pascal algorithms as numbered in the chapter. The
Fortran95 version is almost the same as Algorithm 1.8 apart from superficial language differences. It is
compiled with an research Fortran95 compiler written by Paul Keir at the University of Glasgow. The C
version is mandelbrot-1.c written by Michael Ashley, University of New South Wales.

Algorithm 1.7 1.8 1.9 Fortran95 C
Cores

1 378 10.3 187 10.7 10.2
2 5.6 5.8
3 4.5 91 4.6
4 3.7 82 3.9

1.9.3 Mandelbrot set
It is perhaps not surprising that the image convolution example gives very favourable results for parallel
code. This was, after all, what Intel designed the MMX instruction set to do. The next case we look at is
computing the Mandelbrot set. Strictly, this is defined as the set of complex numbers M such that for all
c ∈M the sequence z0 = c,zn+1 = z2

n + c does not diverge, i.e, |zn|< k for some k > 1.
To generate a pretty picture like Figure 1.5, one typically plots the complex plane and for each pixel

position one computes the number of iterations it takes for the formula to diverge. The divergence time
is then used to define the colour or brightness of a pixel. The problem is potentially highly parallel, since
the divergence time of each point is independent of all other points. On closer examination though we find
that the sort of parallelism is not one readily amenable to SIMD evaluation. To understand this look at
Algorithms 1.7 and 1.8.

Algorithm 1.7 is a simple sequential algorithm which is directly based on the definition of the Mandel-
brot set. The core of the algorithm is the function escapebrightness which for the complex number given
by c will compute the number of iterations required for divergence to occur. The picture is then built up by
the procedure buildpic which uses nested loops to call for the complex number corresponding to each pixel
position. This algorithm ran in 378 seconds to compute the set to a resolution of 2048 pixels square.

We then try and speed this up in Algorithm 1.8 by applying two transformations.

1. We replaced the use of complex numbers by reals. This can be expected to accelerate things as com-
plex arithmetic is implemented with calls to a library. This is an inelegant but effective accelerator.
Table 1.2 shows an acceleration from 378 seconds to 10.3

2. We replaced the sequential loops in buildpic with an implicit map. This will allow parallelism pro-
vided that we have qualified escapebrightness as a pure function. This allows the algorithm to be
accelerated by a further factor of about 3 when when compiled for 4 cores.

Table 1.2 shows very similar timings for C, Vector Pascal and Fortran95 for the single core case. Since
the file formats generated for the final image differ between implementations, the differences in timings are
not significant. The multi-core acceleration achieved by the Fortran95 and Vector Pascal versions are also
essentially the same.

One might hope that it should be possible to gain another factor of 4 in performance by taking advantage
of the fact that a P4 class processor can handle 4 floating point numbers at a time. However a SIMD version
of the algorithm runs into problems since it must be cast in a form that allows the same operations to be
performed simultaneously on a number of data points. But the divergence time will differ between different
positions on the complex plane, which makes it difficult to compute several points in lockstep. When one
point has already diverged, others have not. Thus we can not have the loop breakout used in the earlier
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Figure 1.5: The Mandelbrot set image produced by Algorithm 1.8. The original file produced by the
algorithm is 4 megabytes in size. Note that since the type Pixel is a signed 8 bit number, 0 translates to mid
grey. We have limited ourselves to this rather dull rendering to make the rendering procedure more readily
understandable.
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Algorithm 1.7 Escape time computed by a sequential ISO-Pascal routine using complex numbers.
function escapebrightness ( c : complex ):real ;

label 99;
var

Let z ∈ complex;
Let i ∈ integer;

begin

z← 0.0;
for i← escapelimit downto 1 do

begin
z← z × z + c;
if escaped (z) then
begin

escapebrightness← i × pixelshift;
goto 99;

end ;
end ;
escapebrightness← 0;
99:;

end ;

procedure buildpic ( var p :picture );
var

Let x , y ∈ integer;
begin

for x← 0 to imlim do
for y← 0 to imlim do

py,x← escapebrightness (cmplx (xorigin + xstep × x , yorigin + ystep × y));
end ;
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Algorithm 1.8 MIMD Vector Pascal version of Algorithm 1.7 using real arithmetic.

pure function escapebrightness (cx , cy : real) : real ;
label 99 ;

var

Let xx , y , x , x2 , y2 ∈ real;
Let iteration ∈ integer;

begin

x← 0.0;
y← 0.0;
iteration← 1;
while iteration < escapelimit do
begin

xx← (x)2 - (y)2 + cx ;
y← 2.0 × x × y + cy ;
x← xx ;
if (((x)2 + (y)2) > escapebound) then

goto 99;
iteration← iteration + 1;

end ;
99: if iteration < escapelimit then escapebrightness← iteration × pixelshift
else escapebrightness← 0.0;

end ;

procedure buildpic ( var p :picture );
var

Let x , y ∈ integer;
begin

p← escapebrightness (xorigin + xstep × ι1, yorigin + ystep × ι0);
end ;
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Algorithm 1.9 Version of the Mandelbrot algorithm that exploits both SIMD and MIMD parallelism. In
this, the variables x, y, cx, cy, times are all arrays rather than scalars.
procedure buildpic ( var p :picture );
var

Let iteration ∈ integer;

begin

x← 0.0;
y← 0.0;
cx← xorigin + xstep × iota1;
cy← yorigin + ystep × iota0;
times← 0;
for iteration← 1 to escapelimit do
begin

xx← x × x - y × y + cx ;
y← 2.0 × x × y + cy ;
x← xx ;
times ← if times =0 then

if (x × x + y × y > escapebound) then iteration else 0

else times;

end ;

p← times × pixelshift;
end ;

algorithms. Algorithm 1.9 shows how the problem can be expressed in SIMD fashion, operating in lockstep
on all points in the complex plane. A conditional expression is now used to gather the escape times. These
can be executed in SIMD fashion with no branches.

The performance of the SIMD version is frankly disappointing as shown in Table 1.2. It runs in about
1/20th the speed of the MIMD version. This can be explained by the fact that most of the points being
examined on the complex plane will diverge rapidly, a great deal of wasted computation is done because
the SIMD version can not exploit this. A second factor will be the much poorer cache usage because each
statement uses 2D arrays that are too big to fit in the cache.

1.10 Conclusion
Modern desktop computers have the potential to perform highly parallel computations. But realising this
potential remains tricky. Array languages like Vector Pascal, SAC or Fortran95 are one promising approach.
Highest performance is attained when one can utilise both the SIMD and the MIMD potential of modern
chips. This not only requires a compiler that is able to target both forms of parallelism but also requires
an appropriate problem domain. Even problems which, on first sight, are highly parallel, may not lend
themselves to both sorts of parallelism. But when both SIMD and MIMD can be harnessed, the performance
gains are startling.
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