
ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND
EBERBACH

PAUL COCKSHOTT AND GREG MICHAELSON

ABSTRACT. Wegner and Eberbach[Weg04b] have argued that there are fundamental lim-
itations to Turing Machines as a foundation of computability and that these can be over-
come by so-called superTuring models such as interaction machines, the πcalculus and the
$-calculus. In this paper we contest Weger and Eberbach claims.

1. INTRODUCTION

The concept of a Turing machine[Tur36a] founded Computer Science as we know it
today. Turing’s insightful characterisation of Hilbert’s Entscheidungsproblem formalised
computation in the abstract, and enabled its very practical realisation in the digital comput-
ers that underpin contemporary society. In a Kuhnian sense[Kuh62], the Turing machine
(TM) has been the dominant paradigm for Computer Science for 70 years: Ekdahl[Ek99]
likens an attack on it to a “challenge to the second law of thermodynamics”.

The roots of Turing’s work lie in debates about the notion of computability in the pre-
computer age. Just before the Second World War, in an outstanding period of serendipity,
Turing, Church[Chu36] and Kleene[Kle35] all developed independent notions of com-
putability (i.e. TMs, the λ-calculus and recursive function theory) which were quickly
demonstrated to be formally equivalent. These seminal results form the basis for the
Church-Turing Thesis that all notions of computability will be equivalent. Until now, the
Church-Turing Thesis has remained unshaken. In particular, the von Neumann architec-
ture of everyday digital computers has long been known to satisfy the Thesis, enabling the
application of a profound body of theory to real-world computing.

The classic conception of computability envisages an all embracing space of problems.
Within this space it is usual to distinguish those problems with solutions which are ef-
fectively computable from those which are not effectively computable. A central concern
of these pre-computer Mathematical Logicians was to formalise precisely this concept of
effective computation. For Church, this is a matter of definition, explicitly identifying ef-
fective calculability with recursive or lambda-definable functions over the positive integers.
Church states that:

If this interpretation or some similar one is not allowed it is difficult to
see how the notion of an algorithm can be given any exact meaning at
all.(p356)

Turing subsequently outlined a proof of the equivalence of his notion of “computability”
with Church’s “effective calculability”.

All three formulations are based on systems of rules for manipulating symbols with
procedures for their application. However, a fundamental distinction of Turing’s approach
is that he identifies a human-independent mechanism to embody his procedure, by explicit
analogy with a human being:

1

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 2

We may compare a man in the process of computing a real number to a
machine which is only capable of a finite number of conditions... ([Tur36a]
Section 1).

In a 1939 paper discussing the unity of these different approaches, Turing is explicit
about the mechanical nature of effective calculation:

A function is said to be “effectively calculable” if its values can be found
by some purely mechanical process ... We may take this statement lit-
erally, understanding by a purely mechanical process one which may be
carried out by a machine. It is possible to give a mathematical description,
in a certain normal form, of the structures of these machines. ([Tur39]
p166).

In a late paper he makes the same point with reference to digital computers:
The idea behind digital computers may be explained by saying that these
machines are intended to carry out any operations which could be done
by a human computer. ([Tur50]Section 4).

In contrast, for Church and Kleene the presence of a human mathematician that applies
the rules seems to be implicit. Nonetheless, it is clear that the ability to give an explicit
procedure for applying rules to symbols and to physically realise these procedures, whether
in a machine or in a mathematician with pencil and paper, was central to all three concep-
tions of effectiveness. The crucial corollary is that a computation which is not physically
realisable is not effective. We will develop these themes in more detail below.

2. HOW MIGHT THE TM PARADIGM BE DISPLACED?

2.1. Expressive power, meaning and effective computation. Much of our argument is
concerned with properties of formal systems for characterising computations. In particular,
we shall often refer to the expressive power of a system. It is important to clarify the
differences between what can be expressed in a system, whether or not such expressions are
meaningful, and if they are meaningful whether or not they may be calculated effectively.

For example, Russell’s paradox formalises in predicate calculus the set of all sets which
are not members of themselves. The formula is self-contradictory so one might say that it is
meaningless. However, the formula translates into an apparent algorithm for an equivalent
file system directory paradox which seeks to construct the directory of directories which
do not have links to themselves:
create empty directory of directories D
REPEAT
D’ := D
FOR each directory d reachable from the filing system root
IF d does not have a link to itself AND d is not in D THEN
add d to D
ELSE
IF d is in D THEN
remove d from D

UNTIL D=D’ i.e. D hasn’t changed

This “algorithm” will, after the first pass, repeatedly add D to itself and then remove it
from itself. It does not depend on an infinite memory or an infinite number of processes. It
is clearly implementable in an arbitrary shell script and so appears to be meaningful in so

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 3

far as it does describe a computation, but the computation never terminates and so is not
effective.

Hayes and Jones[Hay89] have argued that there is a clear distinction between expressive
power and implementability. In specification notations like Z and VDM, it is possible to
specify computations that are not effective, in particular those involving the unbounded
traversal of infinite domains. Hence in general, they argue, specifications are not necesarily
executable.

We note here such that specification notations are based essentially on set theoretic
predicate calculus, typically embodying recursive function theory and are of equivalent
expressive power to TMs or λ-calculus. Furthermore, infinitary specifications that charac-
terise semi-decidable decision procedures may be realisable as TMs, which may not halt
and so may or may not consume infinite resources.

As we shall see, many of the claims made by Wegner and Eberbach depend on the ability
of particular systems to express unbounded traversal of infinite domains. However, the
ability to express such requirements does not mean that they are meaningful or effectively
calculable.

2.2. TM overview. We do not intend here to give thorough accounts of computability
theory or of TMs: for more detail see Davis’s classic text [Dav58]. Rather, we will now
summarise salient points to which we return below.

A TM may be thought of as a machine with a hardwired set of instructions and a record
of its current state. It has a read/write head which can inspect and modify a linear tape,
inscribed with symbols, and of indeterminate length in both directions. Each instruction is
a rewrite rule which specifies that for a given state Stold and input symbol Syold, some new
state Stnew is to be entered, the old symbol is to be changed to a new symbol Synew and the
tape is to be moved one symbol in either a left or right direction Dir:

(Stold,Syold) → (Stnew,Synew,Dir)

Conventionally, such instructions are encoded as quintuplet of the form:
(Stold,Syold ,Stnew,Synew,Dir)

A TM is started in an initial state over some designated first symbol on the tape. It then re-
peatedly finds an instruction corresponding to the corresponding state and symbol, changes
the state and symbol, and moves the tape in the desigated direction. If a terminating state
is reached then the TM halts. If no matching instruction can be found then the TM fails.

Note that the tape for a TM that halts is finite in length, as terminating execution takes
a finite number of steps which can only access at most that number of sequential tape
positions. However, because the termination of arbitrary TMs over arbitrary initial tapes is
undecidable, as discussed below, the required length of tape for a given computation is, in
general, not knowable in advance. Hence a TM tape is unbounded, rather than infinite as
it is often termed.

2.3. Equivalence, reduction and the universal TM. One of the engaging features of
Turing’s elaboration of TMs is the deployment of simple encodings, reductions and con-
structions in establishing their properties, especially to demonstrate the equivalence of
apparently more complex TM formulations with the original conception. In particular, it is
straightforward to demonstrate that:

• a TM machine with multiple tapes can be reduced to an equivalent TM with a
single tape;

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 4

• a non-deterministic TM (i.e. a TM where several quintuplets may apply for a given
state and input symbol) can be reduced to an equivalent deterministic TM.

Turing showed that it is possible to formalise TMs themselves as TMs; that is, TM
notation may be used as its own meta-language. Thus, a Universal Turing Machine (UTM)
is a TM which given a tape describing a second TM and its initial tape, will perform the
same effective computation as that second TM on that tape. Suppose we write T Mi(Tj) to
mean TM i started on tape j. Suppose + is tape concatenation. Then:

UTM(T Mi +Tj) = T Mi(Tj)

Turing suggested that such self-encoding was a strong indication that TMs captured a most
general sense of computation. Subsequently, this has become accepted as one hallmark for
any theory that is claimed to characterise effective computation.

2.4. Decision procedures, undecidability and canonical exemplars. A fundamental mo-
tivation for developing TMs was for use in characterising problems as solvable or unsolv-
able. If an instance of a problem can be expressed as a TM and tape, then the TM is said
to encode the corresponding decision procedure. If that TM will terminate with a solution
after a finite number of execution steps then the problem is said to be decidable. If it is not
possible to construct such a TM then the problem is said to be undecidable. If a TM can be
constructed but it cannot be determined whether or not it will terminate then the problem
is said to be semi-decidable.

In the Church/Kleene formulation, decidable problems are those characterised by gen-
eral recursive functions which always halt, where semi-decidable problems are those char-
acterised by partial recursive functions which may not halt. Note that partial recursive
functions have equivalent TMs but these TMs may not embody effective computations.

Given that the execution of any TM may be characterised through a UTM and an en-
coding of that TM, it seems reasonable to speculate that it might be possible to elaborate
a decision procedure to determine whether or not an arbitrary TM would terminate when
started over an arbitrary tape. In an elegant self-referential construction, Turing showed
that positing a general TM to decide termination is inherentaly contradictory. Hence, in
proving that the Halting Problem is undecidable, Turing established a fundamental limita-
tion to TMs, and to effective computation.

The Halting Problem has become a canonical exemplar of undecidability: if any other
problem is reducable to an instance of the Halting Problem then it must be undecidable.
Thus, it may be shown that there is no decision procedure to determine if two arbitrary
TMs are equivalent in the sense of performing the same effective computation.

The technique of reducing problems to a canonical exemplar is also central to com-
plexity theory, another heir of Turing’s work. The complexity of an algorithm may be
characterised in terms of the time and space behaviour of the TM class to which it belongs.
In particular, an algorithm is said to be P if it belongs to the class of TMs which will com-
pute a solution in polynomial time. Alternatively, an algorithm is said to be NP if it belongs
to the class of TMs which will compute a solution in polynomial time given an oracle.

Oracles are essentially entities which can somehow correctly guess some fundamental
property of a problem. It is important to note that oracles are not effectively calculable.
In[Tur39], Turing defines an oracle as “an unspecified means of solving number-theoretic
problems”(p172). He goes on to say that: “We shall not go any further into the nature of
this oracle apart from saying that it cannot be a machine.”. Turing defines an o-machine
as TM augmented with an oracle and briefly outlines a proof that o-machines cannot solve
their own Halting Problem.

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 5

It is an open question whether the classes of P and NP algorithms are equivalent. How-
ever, Cook[Cook71] established that it is possible to identify NP Complete (NPC) algo-
rithms for which the construction of an equivalent P algorithm would imply that all NP
algorithms have equivalent P algorithms. In particular, he proved that determining the sat-
isfiability of sets of boolean equations (SAT) is a canonical NPC algorithm, and that any
algorithm which can be reduced to an instance of SAT is also NP. From our perspective, if
P and NP were equivalent then some oracles could be reduced to TMs i.e some problems
which were thought to involve non-effectively computable steps would become amenable
to effective computation.

2.5. Displacing the Church-Turing Thesis. We are now in a position to discuss what
might be required to overthrow the Church-Turing Thesis, that is to show conclusively that
some new characterisation of computability is more powerful than all those already known,
in particular TMs. We must be clear from the outset that we regard challenges to Church-
Turing (C-T) as not only perfectly legitimate but highly desirable. In general, substantive
challenges to established theories force their accolytes to re-examine basic tenets that until
then have been complacently unquestioned, in turn reinvigorating those theories where
they are not overthrown. In particular, the elaboration of new systems that transcend all
known models of computation would have truly revolutionary implications for computing
theory and practise, in principle enabling us to approach fundamental problems currently
thought to be unassailable.

However, this places a high onus on these mounting such challenges to provide con-
vincing evidence for their claims. Computer Science, if not an oxymoron, is presumably a
species of normal science [Kuh62] which slowly accretes new self-validating knowledges
in its own terms, without worrying too much about apparently minor discrepancies. Thus
a successfull challenge must present new results that are so bothersome that even the most
pig-headed proponents of the old order, amongst whom we count ourselves in this case,
are forced of necessity to reconsider their stance. So what might such results look like?

In general, a demonstration that a new system is more powerful than a C-T system
involves showing that while all terms of some C-T system can be reduced to terms of the
new system, there are terms of the new system which cannot be reduced to terms of that
C-T system i.e the new system has greater expressive power than that C-T system and
hence of any C-T system 1. More concretely, we think that requirements for a new system
to conclusively transcend C-T are, in increasing order of strength:

(1) demonstration that some problem known to be semi-decidable in a C-T system is
decidable in the new system;

(2) demonstration that some problem known to be undecidable in a C-T system is
semi-decidable in the new system;

(3) demonstration that some problem known to be undecidable in a C-T system is
decidable in the new system;

(4) characterisations of classes of problems corresponding to 1-3;
(5) canonical exemplars for classes of problems corresponding to 1-3.

Above all, we require that the new system actually encompasses effective computation;
that is, that it can be physically realised in some concrete machine, be it an analytic engine
or a human with a slate and chalk. While we are not unduly troubled by systems that require
unbounded resources such as an unlimited TM tape, we reject systems whose material

1It would be truly astonishing if a new system were demonstrated whose terms could not be reduced to those
of a C-T system i.e. the new system and C-T systems had disjoint expressive power.

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 6

realisations conflict with the laws of physics, or which require actualised infinities as steps
in the calculation process.

Note that in the following discussion of Wegner and Eberbach’s claims, we do not sys-
tematically refer to these requirements. However, we will return to them in our summary
in the final Conclusion section.

3. WEGNER AND EBERBACH’S SUPERTURING COMPUTERS

Wegner and Eberbach[Weg04b] assert that there are fundamental limitations to the
paradigmatic conception of computation which are overcome by more recent “superTur-
ing” approaches. We will now summarise their core arguments before exploring them in
greater detail.

Wegner and Eberbach draw heavily on the idea of an algorithm as an essentially closed
activity. That is, while the TM realising an algorithm may manipulate an unbounded mem-
ory, the initial memory configuration is pre-given and may only be changed by the action
of the machine iteself. Furthermore, an effective computation may only consume a finite
amount of the unbounded memory and of time, the implication being that an algorithm
must terminate to be effective.

They say that the TM model is too weak to describe the Internet, evolution or robotics.
For the Internet, web clients initiate interactions with servers without any knowledge of the
server history. The Internet as a dynamic system of inputs and outputs, parallel processes
and communication nodes is outside the realm of a static, sequential TM. Furthermore,
TMs cannot capture evolution because the solutions and algorithms are changed in each
generation and the solution search is an infinite process. This does not depend on a finite
or infinite search space. Because evolutiuonary algorithms are probabalistic the search
may take an infrinite number of steps over a finite domain. Finally, robots interact with
non-computable environments which are more complex than the robots themselves.

Wegner and Eberbach claim that there is a class of superTuring computations (sTC)
which are a superset of TM computations. That is sTC includes compuations which are
not realisable by a TM. A superTuring computer is “any system or device which can carry
out superTuring computation”.

Most significantly, Wegner and Eberbach say that it is not possible to describe all com-
putations by algorithms. Thus they do not accept the classic equation of algorithms and
effective computations.

They go on to argue that there are three known systems which are capable of sTC: inter-
action machines (IM), the π-calculus and the $-calculus. They give discursive presentations
of these systems and explore why they transcend the TM.

4. PHYSICAL REALISM AND COMPUTATION

Turing marks what Bachelard and Althusser[Bal78] termed an Epistemological break in
the history of the sciences. At once the problematic of Hilbertian rationalism is abandoned
[Las02] and at the same time the Platonic view of mathematics is displaced by a materialist
view.

A key point about the Universal Computers proposed by Turing is that they are material
apparatuses which operate by finite means. Turing assumes that the computable numbers
are those that are computable by finite machines, and initially justifies this only by saying
that the memory of a human computer is necessarily limited. By itself this is not entirely
germane, since the human mathematician has paper as an aide memoir and the tape of the
TM is explicitly introduced as an analogy with the squared paper of the mathematician.

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 7

Computing is normally done by writing certain symbols on paper. We
may suppose this paper is divided into squares like a child’s arithmetic
book. In elementary arithmetic the two-dimensional character of the pa-
per is sometimes used. But such a use is always avoidable, and I think
that it will be agreed that the two-dimensional character of paper is no es-
sential of computation. I assume then that the computation is carried out
on onedimensional paper, i.e. on a tape divided into squares.([Tur36a]
section 9)

However he is careful to construct his machine descriptions in such a way as to ensure that
the machine operates entirely by finite means and uses no techniques that are physically
implausible. His basic proposition remained that :”computable numbers may be described
briefly as the real numbers whose expressions as a decimal are calculable by finite means.”

He thus rules out any consideration that computation by inifinite means is a serious
proposition. In this Turing follows Aristotle ([Ari83] Book III, chap 6) in allowing poten-
tial but not actual infinities. If inifinite computation were to be allowed, then the limitations
introduced by the Turing machine would not apply. Most proposals for superTuring com-
putation rest on the appeal of the infinite.

Copeland[Cop02] proposes the idea of accelerating Turing machines whose operation
rate increases exponentially so that if the first operation were perfomed in a microsecond,
the next would be done in 1

2 µs, the third in 1
4 µs, etc. The result would be that within a finite

interval it would be able to perform an inifinite number of steps. This obviously evades
Turing’s stipulation that computable numbers must be calculable by finite means, but at
the same time evades all possibility of physical realisation. A computing machine must
transfer information between its component parts in order to perform an operation. If the
time for each operation is repeatedly halved. then one soon reaches the point at which
signals traveling at the speed of light have insufficient time to propagate from one part
to another within an operation step. Beyond this speed the machine could not function.
Hamkins[Ham00] discusses what could be computed on Turing machines if they were
allowed to operate for an infinite time, but Turing ruled this out with obvious good reason.

Another theme of those advocating Super-Turing computation is the use of analogue
computation over real numbers. For a review see [Cop99]. Copeland sees these as be-
ing possible if one has available a continuously variable physical quantity which he calls
’charge’. Since he himself recognises that electric charge is discrete, it is not clear how
this notional charge is ever to be physically realised. Indeed the idea of being able to phys-
ically represent real numbers is highly questionable in view of the quantum of action h.
This poses fundamental and finite limits on the accuracy with which a physical system can
approximate real numbers. We will illustrate this with a appropriately clunky mechanical
example, in keeping with the mechanical nature of the Turing Machine. Representations
of reals using electric charge would encounter similar obstacles since h constrains the ac-
curacy of all complementary measurements.

Suppose we want to use analoge encoding, representing real numbers directly as spatial
separation, materialising the mathematical abstraction of the real number line using an
apparattus such as that shown in Figure 1. The intention would be to encode a real number
x so that it could be used by some Super Turing analogue computational process. If x is
to be used as a computational parameter, we must first set up the the distance x and then
measure it during the process of the computation. The position of the slider acts as an
analogue memory holding a real number. This raises two questions:

(1) How precisely can we, in principle at least, measure the distance x?

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 8

distance x

1 meter

Slider

FIGURE 1. An analogue representation of a real number using a physi-
cal version of the real number line.

(2) How stable is such an analogue memory. For long can it store the information.
Because of Heisenberg’s equation

∆p∆x =
h

4π
there is a tradeoff between the accuracy to which x can be represented as distance and the
period for which x can be stored. If the mass of the slider is m the uncertainty in its velocity
is given by ∆v = h

4πm∆x . This implies that the persistence time of the analogue store Tp is
constrained such that

Tp ≈
∆x
∆v

=
4πm∆x2

h
It is clear that for a practical device, Tp must be chosen exceed the time taken to measure
the distance x. This in turn, must be greater than 2x

c , since any distance measurement will
involve at least one reflection off the slider. If Tp <

2x
c then the computer would be unable

to read the real. We thus have the constraint
2x
c

<
4πm∆x2

h
which implies

∆x2
>

2xh
4πmc

For a 1 kilo slider adjustable over a range of 1 meter which allows the representation of
reals in the range 0..1 as x±∆x, we find that ∆x > 5.93×10−22meters.

This corresponds to a real number stored with about 70 bits of precision.
To add an additional bit of precision to our real number we would have to quadruple

the mass of the slider. We find therefore, that the analogue encoding of the reals requires
a mass which grows with Oe2b where b is the number of bits of precision to which the
reals are stored. Contrast this to a digital computer like a Turing Machine where the mass
required to record a real number grows linearly with the number of bits - each requiring an
additional cell on the tape. Turing himself pointed this out in 1947:

That the machine is digital however has a more subtle significance. It
means firstly that numbers can be represented by strings of digits that
can be as long as one wishes. One can therefore work to any desired
degree of accuracy. This accuracy is not obtained by more careful ma-
chining of parts, control of temperature variations, and such means, but
by a slight increase in the amount of equipment in the machine. To double
the number of significant figures, would involve increasing the amount of
the equipment by a factor definitely less than two, and would also have
some effect in increasing the time taken over each job. This is in sharp

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 9

contrast with analogue machines, and continuous variable machines such
as the differential analyser, where each additional decimal digit required
necessitates a complete redesign of the machine, and an increase in the
cost by as much as a factor of 10. [Tur47]

Thus :
(1) Any physically buildable analogue memory will only approximate the reals.
(2) Analogue storage of reals, will for high precision work, always be outperformed

in terms of device economy by digital storage.
(3) Physically buildable analogue computers can not rely upon the availablility of

exact stored real numbers to outperform Digital Computers.
Proposals to incorporate the full mathematical abstraction of real numbers into comput-

ing devices so as to allow them to outperform Turing machines are physically implausible.
Such proposed machines are mathematical abstractions rather than practical proposals.
One also has to ask just how one is to program a machine requiring infinite precision reals
in the first place. How, by finite means, is one to specify the infinitely precise analogue
numbers that are needed?

For Turing, Universal Computers were not mere mathematical abstractions but con-
crete possibilities, which he pursued in his designs for the Bombe at Bletchley and ACE
at the National Physical Laboratory[Tur47, Hod83]. Computing Science has undergone
great progress in the period since Turing’s original paper. This progress has synthesised
abstract computational theory with research into possible physical implementations of dig-
ital computers. An enormous research has developed successively more effective gener-
ations of such machines. The development of smaller and faster computers has been a
constant struggle towards the limits of what is physically possible. One can not say in
advance how small or how fast we will eventually be able to build computers, but we
do know that any effective computer we build will be bound by the laws of physics.
Landauer[Lan61, Lan91, Lan00] has examined the fundamental thermodynamic limita-
tions of computation, and Deutsch[Deu85] and Feynman[Fey59, Fey82] opened up the
new field of quantum computing research. An important result obtained by Deutsch was
that although quantum machines could potentially have higher parallelism than classical
ones, they would not extend effective computation beyond the recursive functions.

5. INTERACTION MACHINES

Wegner and Eberbach refer to Interaction Machines as a class of computer that is more
powerful than the Turing Machine. The latter, they claim, is restricted by having to have
all its inputs appear on the tape prior to the start of computation. Interaction machines on
the contrary can perform input output operations to the environment in which they are situ-
ated. The difference between Interaction Machines and Turing Machines, they claim, cor-
responds to the technology shift from mainframes to workstations. Interaction Machines,
whose cannonical model is the Persistent Turing Machine(PTM) of Goldin [Gol01], are not
limited to a pre-given finite input tape, but can handle potentially infinite input streams.

This argument was originally advanced by Wegner in a previous publication[Weg97a],
some of whose main arguments have been criticised by Ekdahl[Ek99]. Rather than re-
hearse his arguments we shall focus on some additional weaknesses of Wegner and Eber-
bach’s claims.

5.1. Turing’s own views. As is well known, Turing’s contribution to computer science
did not stop with the Turing Machine. Besides his work on cryptography, he played a

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 10

seminal role in the establishment of Artificial Intelligence research. His Turing Test for
machine intelligence is probably as well known as his original proposal for the Universal
Computer. He proposed in a very readable paper[Tur50], that a computer could be consid-
ered intelligent if it could fool a human observer into thinking they were interacting with
another human being. It is clear that his putative intelligent machine would be an Inter-
action Machine in Wegner’s sense. Rather than being cut off from the environment and
working on a fixed tape, it recieves typed input and sends printed output to a person.

Turing did not, however, find it necessary to introduce a fundamental new class of com-
puting machine for this gedanken experiment. He is quite specific that the machine to be
used is a digital computer and goes on to explain just what he means by such a machine:

The idea behind digital computers may be explained by saying that these
machines are intended to carry out any operations which could be done
by a human computer. The human computer is supposed to be follow-
ing fixed rules; he has no authority to deviate from them in any detail.
We may suppose that these rules are supplied in a book, which is altered
whenever he is put on to a new job. He has also an unlimited supply
of paper on which he does his calculations. He may also do his multi-
plications and additions on a ’desk machine’, but this is not important.
(Turing 1950, page 436)

This is of course a paraphrase of his description of the computing machine in his 1936
paper where he explicitly models his machine on a person doing manual calculations. The
states of the machine correspond to the finite number of states of mind of the human math-
ematician and the tape corresponds to the squared paper he uses. It is clear that Turing
is talking about the same general category of machine in 1950 as he had in 1936. With
the practical experience of work on the Manchester Mk1 and the ACE behind him, he
speaks in more general terms of the computer as being composed of (i) store, (ii) executive
unit, and (iii) control, and says that the store locations are addressable rather than being
purely sequential. He says he is concerned with discrete state machines, and that a special
property of such digital computers was their universality:

This special property of digital computers, that they can mimic any dis-
crete state machine, is described by saying that they are universal ma-
chines. The existence of machines with this property has the important
consequence that, considerations of speed apart, it is unnecessary to de-
sign various new machines to do various computing processes. They
can all be done with one digital computer, suitably programmed for each
case. It will be seen that as a consequence of this all digital computers
are in a sense equivalent.(Turing 1950, page 442)

This is clearly a recapitulation of the argument in section 6 of his 1936 paper where he
introduced the idea of the Universal Computer. Turing argued that such machines were
capable of learning and that with a suitable small generalised learning program and enough
teaching, then the computer would attain artificial intelligence.

5.2. Equivalence of Interaction Machines and Turing Machines. It seems that Turing
considered the class of machines which he had introduced in 1936 had all of the properties
that Wegner and Goldin were later to claim for to their Interaction Machines and Persis-
tent Turing Machines. He may of course have been mistaken, but we think that Turing’s
confidence was well founded. It can be demonstrated that Turing Machines are powerful
enough for the task.

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 11

Consider first a digital computer interacting in the manner forseen by Turing in his
1950 paper, with teletype input/output. The teletypes of Turing’s day had the capability of
capturing keystrokes to paper tape, or of accepting paper tape input instead of keystrokes.
Suppose then we have a computer initialised with a simple learning program following
which it is acquires more sophisticated behaviour as a result of being ’taught’. As the
computer is taught we record every keystroke onto paper tape.

Suppose we initialise a second identical computer with the same program’ and at the
end of the first computer’s working life (for all computers operate only for a finite time),
we give to the second machine as an input, the tape on which we have recorded the all the
data fed to the first machine. With the input channel of the second machine connected to the
tape reader it then evolves through the same set of states and produce the same outputs as
the original machine did. The difference between interactive input from a teletype and tape
input as used by Turing in 1936 is essentially trivial. By a simple recording mechanism
one can emulate the behaviour of an interactive machine on another tape-input computer.
This has been a widely used and practical test procedure.

In his 1950 paper Turing clearly assumes that his computer has a persistent or long
term memory. Wegner and Goldin Persistent TMs allow a machine to retain data on a
tape so that it can be used in subsequent computations. They claim that the idea of a
persistent store was absent in TMs. However this misrepresents the role played by the
idea of persistence in the history of computing. Persistence only became an issue because
the combination of volatile semi-conductor store and first generation operating systems
imposed on programmers a sharp pragmatic distinction between persistent disk store and
volatile random access memory[Coc82, Coc84]. This distinction had not been present in a
first generation of magnetic core based von-Neumann machines, and was not included in
the basic computational models of Turing and von-Neuman.

A small modification to the program of a conventional TM will transform it into a PTM.
Like Goldin we will assume a 3 tape TM, M1 with one tape T1 purely for input, one tape
T2 purely for output and one tape T3 used for working calculations. We assume that tapes
T1,T2 are unidirectional, T3 is bidirectional. Such a machine can be emulated on Turing’s
original proposal by a suitable interleaving scheme on it’s single tape.

M1 has a distinguished start state S0 and a halt state Sh. On being set to work it either
goes into some non-terminating computation or eventually outputs a distinguished termi-
nation symbol τ to T2, branches to state Sh and stops. We assume that all branches to Sh are
from a state that outputs τ. Once τ has been output, the sequence of characters on T2 up to
to τ are the number computed by the machine.

We now construct a new machine M2 from M1 as follows: replace all branches to Sh

with branches to S0. From here it will start reading in further characters from T1 and may
again evolve to a state where it outputs a further τ on T2.

Machine M2now behaves as one of Goldin’s PTMs. It has available to it the persisting
results of previous computation on T3and these results will condition subsequent compu-
tations. It is still a classic TM, but a non-terminating one. It follows that PTM’s, and thus
Interaction Machines of which they are the cannonical example, are a sub-class of TM
programs and do not represent a new model of computation.

5.3. Thermodynamic considerations. Chaitin introduced algorithmic information the-
ory [Cha99] according to which the entropy of a binary number x is bounded by the num-
ber of bits of the shortest TM program that will output x. From this standpoint there is
a pragmatic difference between an isolated TM and one that can accept input from the
environment.

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 12

A modern computer is initially built with a startup ROM and a blank disk drive. The
ROM typically contains a BIOS, but can be replaced by any other program that will fit on
the chip. Let us suppose, realistically, that the ROM chip contains 219bits. Suppose that
instead of a BIOS, we put in a ROM that performs some predefined algorithm, possibly
using disk I/O, and in the process of computation outputs a stream of characters from the
serial port. Chaitin’s result indicates that if the program performs no input operations from
the keyboard, mouse, CD etc, the entropy of the information on disk plus the informa-
tion output on the serial line could not exceed 219 +1, where the additional 1 bit encodes
whether the initial blank state of the disk was a 1 or a 0. If the disk was much bigger than
the boot chip, it could, for example, never really be randomised by the boot chip.

A practical BIOS chip will attempts to read input from keyboards, communications
lines, or CD, starting a process that allows the disk to gain entropy from external sources.
We know from experience that disks become cluttered and entropic over time. The exter-
nal world acts as an entropy source causing the disk entropy to rise in conformance with
thermodynamic laws.

To the extent that the distinction being made by W&E between TM’s and Interaction
Machines parallels this information theoretic point it has some practical validity.

6. π-CALCULUS

Wegner and Eberbach give the π-alculus as one of their three superTuring computational
models. The π-calculus is not a model of computation in the same sense as the TM: there
is a difference in level. The TM is a specification of a material apparattus that is buildable.
Calculi are rules for the manipulation of strings of symbols and these rules will not do any
calculations unless there is some material apparatus to interpret them. Leave a book on the
λ-calculus on a shelf along with a sheet of paper containing a formula in the λ-calculus and
nothing will happen. Bring along a mathematician, give them the book and the formula
and, given enough paper and pencil the ensemble can compute. Alternatively, feed the
λ-calculus formula into a computer with a lisp interpreter and it will evaluate.

One has to ask if there exists any possible physical apparatus that can implement the
π-calculus and, if there is such an apparattus, is a conventional computer such an appa-
rattus. Since it is possible to write a conventional computer program that will apply the
formal term re-write rules of the π-calculus to strings of characters representing terms
in the calculus then it would appear that the π-calculus can have no greater computa-
tional power than the von Neumann computer on which the computer runs. The language
Pict[Tur00] is an example of this. Since it is also possible to implement the λ-calculus in
the π-calculus[Mi93] one can conclude that the π-calculus is just one more of the growing
family of computational models that are Turing Machine equivalent.

A possible source of confusion is the language used to describe the π-calculus: chan-
nels, processes, evolution which imply that one is talking about physically separate but
communicating entities evolving in space/time. The π-calculus is intended to be used as a
language to describe communicating physically mobile computing machines such as cell
phones and their underlying communications networks. As a result there is always a ten-
sion between what is strictly laid down as the rules of a calculus and the rather less specific
physical system that is suggested by the language used.

One has to be very careful before accepting that the existence the π-calculus as a formal
system implies a physically realisable distributed computing apparattus.

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 13

Consider two of the primitives: synchronisation and mobile channels. We will argue that
each of these faces limits to their physical implementation that prohibits the construction
of a super-Turing computational engine based on the the calculus.

6.1. Difficulties in implementing π-calculus synchronisation. Is π-calculus synchroni-
sation in its general sense physically realistic?

Does it not imply the instantaneous transmission of information - faster than light com-
munication if the processes are physically separated?

Further, if the processors are in relative motion, relativity theory shows that there can be
no unambigous synchronisation shared by the different moving processes. It thus follows
that the processors can not be physically mobile if they are to be synchronised with at least
3 way synchronisation (see [Ein20] pp 25-26).

Suppose we have the following pi calculus terms

(1) α ≡ (āv.Q)+(by.R[y])

(2) β ≡ (b̄z.S)+(ax.T [x])

In the above α and β are processes. The process αtries to either output the value v
on channel a or to read from channel b into the variable y. The + operator means non
deterministic composition, so A + B means that either A occurs or B occurs but not both.
The notation āv means output v to a, whilst av would mean input from a into v. If α
succeeds in doing an output on channel a it then evolves into the abstract process Q, if
alternatively, it succeeds in doing an input from b into y, then it evolves into the process
R[y] which uses the value yin some further computation.

We can place the two processes in parallel by using the | operator for parallel process
composition thus: α|β, which expands to:

(3) (āv.Q)+(by.R[y])|(b̄z.S)+(ax.T [x])

This should now evolve to

(4) (Q|T [v])or(S|R[z])

where either Q runs in parallel with T [v] after the communication on channel a or where
S runs in parallel with R[z] after the value z was transfered along channel b from process
βto process α. The key ideas here are: processes, channels, synchronisation, parallel and
non-deterministic composition.

Suppose further that we attempt to implement the synchronisation by a standard 3 wire
handshake wherein each channel is represented by:

rqs request to send
ack acknowledge
d data

the protocol is :
Put:

(1) place data on d and assert rqs then wait for ack
(2) on getting ack, negate rqs and remove data from d
(3) wait for ack to be negated

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 14

b
beta

ack

a b
alpha

av.Q+by.R[y]

ax.T[x]+bz.S

ack
d d rqs

rqs

a

FIGURE 2. Two paradoxical processes.

Get:
(1) wait for rqs, then latch data
(2) assert ack
(3) wait for rqs to be negated
(4) negate ack

The two processes are shown in Figure 2, with lines representing the wires used to imple-
ment the channel. But instead of wires one could think of these as being radio signals each
at a different frequency. Let us consider how the time evolution of the processes might
proceed. We will indicate times as t0, t1, ...

to process α places data v on line da and asserts rqsa

t1 process β places data z on line db and asserts rqsb

t2 process β gets the rqsa

t3 process α gets the rqsb

What happens now?
At time t2process β has attempted to send on channel b and has got a request to send

from channel a, which of these should it act on?
If it responds to the rqs on a with and acknowledge it will be commiting itself to evolve

to T [x]but it also has an outstanding rqs on b. Suppose it commits to T [x] by sending
acka, then it can ignore any further communications on channel b. This is fine for process
β considered in isolation, but poses problems for the other process. Since we are talking
about a general implementation strategy, one has to assume that process α will follow the
same rule. Thus after getting the request to send on channel b, it too will acknowledge,
which means that it will commit to continuation R[y]. The consequence is that we have
evolved to T [x]|R[y], but this is not a permited according to the π-calculus.

Suppose instead that β does not send an acka but instead gives priority to its outstanding
request to send on channel a, what will happen then?

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 15

In this case we have to assume that process α will likewise postpone transmission of
ackb, since α is the mirror image of β. It follows that neither process will ever get an ack,
so they will deadlock.

It might be thought that this was just a reflection of an inadequacy of the two stage
handshake protocol, but it is not. Since the two processes are identical mirror images of
one another any deterministic rule by which process β commits to communication on one
of the channels, must cause α to commit to the other channel and hence synchronisation
must fail. The argument from the processes α,β is a variant of the Liar Paradox, but it is not
a paradox within the π-calculus itself. It only emerges as a paradox once you introduce the
constraints of relativity theory prohibiting the instantaneous propagation of information.
Nor does abandoning determinism help. If the commitment process is non-deterministic,
then on some occasions synchronisation will succeed, but on other occasions the evolution
both processes will follow the same rule, in which case synchronisation will fail.

The arbitration problem is not insoluble. Suppose there was a global arbitration ma-
chine. Each process attempting a guarded non-deterministic fork could inform the arbiter
of the channel names and direction of communication being tried. Then with knowledge of
all outstanding requests for reads and writes, it would probably be possible for the arbiter
to apply the reduction rules of the calculus to resolve the synchronisation. However the
use of the arbiter machine as a tie breaker removes the parallelism that we want from a
distributed version of the calculus, returning us to a sequential centralised evaluation of a
key part of the calculus. A worse loss of parallelism is entailed by broadcast protocols such
as Asynchronous Byzantine Agreement[Bra83].

In conclusion it is not possible to build a reliable mechanism that will implement in a
parallel distributed fashion any arbitrary composition of π-calculus processes.

More tractable systems intellectually derived from the π-calculus can be devised. The
Aπ calculus[Wal01] has no synchronisation, and it’s processes terminate as soon as they
output a message. This should be implementable if restrictive. The Java library for Grid
computing Jπ[Yar04] does away with non-deterministic guards on output but retains the
ability to transmit channels over channels. This provides a practical tool for the pral-
lelisation of algorithms in a manner analogous to MPI[MPI94], PVM[Fer98, Ge94] or
IceT[Gra97]. Parallelisation speeds up sequential code, it does not allow you to solve
problems that are TM uncomputable.

6.2. Difficulties in implementing channels. How are channels to be implemented in
terms of physical law?

If one has a physical network of processors which do not move physically then you can
connect them by wires or fibre optic cables, but these only

(1) allow fixed point to point communication
(2) are limited in terms of the number of physical wires that can be fed into any given

processing unit. This has indeed always been one of the main limitations on com-
puter chips - how many wires can you connect to a given chip -this has been a
technical challenge

Taking into account (1), it is clear that a system using fixed point to point communi-
cation can only emulate a system with dynamically created communications channels by
using multiplexing and forwarding of messages. From the point of view of computational
models it implies that one would have to emulate the π-calculus on the sort of parallel fixed
link network that can be described by CSP. Let us refer to a π-calculus system emulated on
a fixed link network as Πcsp

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 16

If we do not assume wires or optical fibres but instead assume a broadcast network using
radio waves like GSM, then one can have physically mobile processes, but at the expense
of removing simultaneous overlapping communication. A system like GSM relies on time
multiplexing the radio packets so that in fact only a small finite number of the processes
can send messages at any one instant - one process per frequency slot. Of course, GSM
relies on base stations to forward packets along fixed point links, but a system like Aloha
used basically similar techniques without the base stations.

It is evident that the π-calculus can be used to reason about the behaviour of, and proto-
cols for, phones and other computing devices using radio networks: such problems were a
motivation for its design. It would be reasonable to accept that the behaviour any phyisical,
wireless-linked, computer network can be described in the π-calculus.

It does not follow from this that there can exist a physically constructable wireless net-
work whose evolution will directly emulate that of an arbitrary term in the π-calculus. Be-
cause of the exponential decay of signal strength with distance and the finite bandwidth of
the radio channel, there are limits to the number of mobile agents that can simultaneously
engage in direct communication. One can allow indirect communication by partitioning
both the bandwidth and the machines, setting aside one group of machines to act as relays
and dividing frequency slots between those used by the relay machines and mobile ma-
chines. But relying on indirect communication would amount to emulating the π-calculus
behaviour in Πcspstyle. Since the number of directly communicating mobile processes that
can operate without relays is modest, and since such a finite network of mobile processes
could itself be emulated Πcspstyle on a finite fixed link network, the computational power
of physically realisable systems programed in π-calculus will not exceed that of formal-
ism like CSP which would render it equivalent to other well known computational models
including Turing machines.

6.3. Wegner and Eberbach’s argument. Wegner’s argument for the super-Turing ca-
pacity of the π-calculus rests on there being an implied infinity of channels and an implied
infinity of processes. Taking into acount the restrictions on physical communications chan-
nels the implied infinity could only be realised if one had an actual infinity of fixed link
computers. At this point we are in the same situation as the Turing machine tape - a finite
but unbounded resource. For any actual calculation a finite resource is used, but the size
of this is not specified in advance.W&E then interprets ’as many times as is needed’ in the
definition of replication in the calculus as meaning an actual infinity of replication. From
this he deduces that the calculus could implement infinite arrays of cellular automata for
which he cites Garzon [Gar95] to the effect that they are more powerful than TMs.

We undercut this argument at two points:

(1) We have shown that the synchronisation primitive of the calculus is not physically
realistic. The modelling of cellular automata in the calculus rests on this primitive.

(2) The assumption of an infinite number of processes implies an infinity of mobile
channels, which are also unimplementable.

We therefore conclude that whilst the π-calculus can be practically implemented on a single
computer, infinite distributed implementations of the sort that W&E rely upon for their
argument can not be implemented.

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 17

7. $-CALCULUS

7.1. Introduction. Eberbach’s $-calculus (“cost” calculus)[Ebe00, Ebe01] is based on a
process algebra extended with cost operators. The $-calculus draws heavily on the π-
calculus and on interaction machines: thus the critiques of these above also apply to the
$-calculus. However, Wegner and Eberbach claim that: “The unique feature of the $-
calculus is that it provides a support for problem solving by incrementally searching for
solutions and using cost to direct its search.”(p7). Furthermore: “The $-calculus allows
in a natural way to express evolution.”(p7). Given the important role of evolution as one
of the domains that Wegner and Eberbach claim transcends the Church-Turing paradigm,
let us first examine Eberbach’s argument that evolutionary computing is not algorithmic
before considering the $-calculus itself in more detail.

7.2. Evolution and Effective Computation. In [Ebe02], Eberbach characterises an evo-
lutionary algorithm (EA) as involving the repeated selection from a population under
some selection operation for reproduction that introduces variations through mutation and
crossover. When some selection threshhold is reached, the final population is deemed to
be optimal. We agree with this characterisation but note that thus far it corresponds to
Kleene’s unbounded minimisation i.e. general recursion. Indeed, subsequently Eberbach
states that every EA can be encoded as a TM whose tape is the initial population.

Eberbach goes on to elaborate a hierarchy of EAs and corresponding TMs. The Uni-
versal Evolutionary Algorithm (UEA) consists of all possible pairs of EA TMs and initial
population tapes. An Evolutionary Turing Machine (ETM) is a potentialy infinite sequence
of pairs of EA TMs and population tapes, where each pair was evolved in one generation
from the previous pair subject to a common fitness (selection) operator.

Eberbach claims that evolution is an infinite process because the fitness operator is part
of the TM and evolves along with it. This seems unremarkable: it is well understood
that a Universal TM may execute a TM that modifies its own encoding. Hence, the TM’s
termination condition may change and may never be achieved.

Eberbach then makes the apparently stronger claim that EAs are a superset of all al-
gorithms but this is either unremarkable or misleading. EAs are generalised unbounded
minimisation and so are expressible as general recursion or TMs. Given that any effective
computation can be captured as a TM or through general recursion, it seems plausible that
any effective computation can be evolved. However, it is not at all clear how one would
define a selection operator to decide if a required effective computation had indeed been
achieved. As noted above, the equivalence of TM is undecidable so even if one could
specify the required effective computation as another TM there is no effective method for
proving that an arbitrary evolved TM is equivalent to the specification.

Furthermore, for EAs to be a superset of all algorithms there must be something in the
set of EAs which is not itself an algorithm. However, Eberbach says that all EAs can
themselves be encoded as TMs so all EAs must be algorithms. Thus, it seems more likely
that the set of algorithms is at least as big as the set of all EAs.

Finally, Eberbach introduces the Universal Evolutionary Turing Machine (UETM) which
takes an ETM as its initial tape. He states plausible theorems that the UETM halting prob-
lem is unsolvable by the UTM, and that the UTEM cannot solve its own halting problem.
Eberbach speculates that ETM can be understood as a special case of the Persistent Turing
Machine. Thus the ETM must answer the critique of Persistent Turing Machines made
above.

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 18

Eberbach goes to to enunciate two more theorems. First of all he claims that the UTM
halting problem is solvable by the ETM using the “infinity principle” where “Fitness is
defined to reach optimum for halting instances.”. As noted previously, we do not think it
possible to construct an effective computation for such a fitness function. He then claims
that the UTM halting problem is solvable by ETM using evolution through a TM aug-
mented with an oracle. This argument again seems plausible though curious given that
Eberbach and Wegner say that the $-calculus does not gain its power from an oracle (p7).
However, as discussed above, if an ETM is a TM with an oracle then ETMs are not effec-
tively computable and in general are not materially realisable.

7.3. $-calculus and Expressiveness. In [Ebe00], Eberbach explores the expressiveness
of the $-calculus. First of all, he shows that the λ-calculus and the π-calculus may both be
simulated in the $-calculus. He claims that: “the λ-calculus is a subclass of the $-calculus,
because of the one-to-one correspondence between reductions in λ-terms and in their cor-
responding $-calculus terms.”(p5) and that: “π-calculus could be claimed to be a subclass
of the $-calculus, because each operator of π-calculus is simulated by a corresponding op-
erator(s) from $-calculus.”(p5) We dispute the claimed subclass relationship but note that
this is not expressed in (1) below and do not consider this further.

Next, citing Milner’s proof that λ-calculus may be simulated by π calculus[Mil92], and
drawing implictly on the C-T equivalence of λ-calculus and TMs, he enuciates a hierarchy:

T M ⊆ πC ⊆ $C (1)
We note the use of ⊆ rather than ⊂ in πC ⊆ $C. Certainly, Eberbach does not substantiate
a strong hierarchy (⊂) at this stage by demonstrating a $-calculus term that cannot be
expressed as a π-calculus term.

Next, Eberbach says that Sequential Interaction Machines (SIMs) have less expressive
power than Multi-stream Interaction Machines (MIMs), and cites Wegner’s claim[Weg97b]
that π-calculus has only the same expressive power as SIMs, giving the additional hierar-
chy:

πC ⊆ SIM ⊂ MIM (2)
Finally, he sketches how MIMs may be simulated by $-calculus (MIM ⊆ $C), which com-
bined with (1) and (2) gives:

T M ⊆ πC ⊆ SIM ⊂ MIM ⊆ $C (3)
Note that (3) greatly strengthens the $-calculus’s position in the hierarchy relative to C-T
systems: (1) says that πC ⊆ $C but (3) now implies that πC ⊂ $C through transitivity of
⊆ and ⊂. Thus, the $-calculus term which is not expressible in π-calculus may come from
an instance of MIM, but this is not displayed.

7.4. $-calculus and costs. As noted above, the $-calculus[Ebe01] is characterised by the
integration of process algebra with cost functions derived from von Neumann/Morgenstern
utility theory. As well as sequential and parallel composition, and inter-$-expression com-
munication, cost choice and mutating send constructs are also provided. Rather than having
a unitary expression form, the $-calculus distinguishes between composite (interruptible)
expressions, and simple (contract) expressions which are considered to be exectued in one
atomic indivisble step. While cost choices are made in composite expresssions and costs
communicated in simple expressions, they may be defined and evaluated in both layers.

Composition and choice are over countably infinite sets of $-expressions, which Eber-
bach claims as one locus of the $-calculus’s increased expressive power. However, λ-
calculus is also capable of expressing dynamically changing, arbitrary width and depth

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 19

nesting of functions; the Y fixed-point finder being a classic example. $-calculus also sup-
posed to support true parallelism; the implications for effective computation have been
discussed above.

Costs are asserted as a central locus of the $-calculus’s strength. While it does not
prescribe a base set of cost functions, crisp (i.e. algorithmic), probabalisitic and fuzzy
functions have all been developed. Users may also define their own cost functions. How-
ever, it is not clear how costs actually extend the $-calculus’s expressive power. Without
costs, in particular mutating send, the $-calculus is reminiscent of a higher-order process
algebra, which as Eberbach notes[Ebe00] is no more powerful than a first order system. To
add power to the $-calculus, user defined costs must be crafted in some formalism other
than the $-calculus itself, or built from base cost functions, where the other formalism or
the base functions are themselves more powerful than anything expressible by a either a C-
T system or cost-less $-calculus. Either way, cost choice over any one bounded set of cost
values and mutation over a bounded set of $-expressions are both C-T. Choice over an infi-
nite set of cost values seems deeply problematic, where even an approximation ultimately
involves the expansion of all possible execution traces of the invoking program.

Finally, the operational semantics for $-calculus are defined “in a traditional way for
process algebras”(section 3) using inference rules and a labelled transition system (LTS),
where the LTS always looks for a least cost action. If the $-calculus is more powerful than
C-T systems but is definable using inference rules and a LTS, that implies that the latter
also have more expressive power than C-T systems.

8. CONCLUSION

Wegner and Eberbach make bold claims in their paper. But extraordinary claims require
extraordinary evidence. The work of Turing has served as a foundation for computability
theory for almost 70 years. To displace it would have required them to bring forward very
strong evidence. We have discussed the criteria by which such claims could be assesed,
and we have discussed the systems that they have exhibited as potentially surpassing the
Turing Machine model of computation. We consider that in all three cases, Interaction
Machines, the π Calculus and the $ Calculus, we have shown their claims to be invalid.

The Church-Turing thesis remains, for now, secure.

ACKNOWLEDGEMENTS

Greg Michaelson wishes to thank the School of Information Technology at the Univer-
sity of Technology, Sydney for their hospitality during the writing of this paper.

REFERENCES

[Ari83] Aristotle, Aristotle’s Physics, books III and IV, trans Edward Hussey, Clarendon, Oxford, 1983.
[Bal78] E Balibar, From Bachelard to Althusser: The Concept of” Epistemological Break, - Economy and

Society,Vol. 7, No. 3, pages 207-237, 1978
[Bra83] G. Bracha and S. Toueg Asynchronous consensus and Byzantine protocol in faulty environment TR-

83-559, CS Dept., Cornell University, Ithaca, NY 14853, 1983.
[Cha99] G. Chaitin, Information and Randomness: A survey of Algorithmic Information Theory, in G. Chaitin,

The Unknowable, Springer, Signapore, 1999.
[Chu36] A. Church, An Unsolvable Problem of Elementary Number Theory, American Journal of Mathematics,

Vol. 58, No. 2, pages 345-363, 1936.
[Coc82] P. Cockshott, Orthogonal Persistence, PhD Thesis, University of Edinburgh, 1982.
[Coc84] P. Cockshott, M. Atkinson, K. Chisholm, P. Bailey, R. Morrison. POMS - a persistent object manage-

ment system, Software Practice and Experience, Vol. 14, No 1, pages 49- 71, 1984.

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 20

[Cook71] S. Cook, The Complexity of Theorem Proving Procedures, Proceedings of Third Annual ACM Sym-
posium on Theory of Computing, pp 151-158, May 1971.

[Cop99] J. Copeland and R. Sylvan, Australasian Journal of Philosophy, vol. 77 (1999), pp. 46-66.
[Cop02] J. Copeland, Accelerated Turing Machines, Minds and Machines, Vol. 12, pages 281-301, 2002.
[Dav58] M. Davis, Computability and Undecidability, McGraw-Hill, 1958.
[Deu85] D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer, Pro-

ceedings of the Royal Society of London A 400, pp. 97-117, 1985.
[Ebe00] E. Eberbach, Expressiveness of $-Calculus: What Matters?, in: Advances in Soft Computing, in: (eds.

M.Klopotek, M.Michalewicz, S.T.Wierzchon) Adances in Soft Computing, Proc. of the 9th Intern.
Symp. on Intelligent Information Systems IIS’2000, Bystra, Poland, Physica-Verlag, 2000, 145-157.

[Ebe01] E. Eberbach, $-Calculus Bounded Rationality = Process Algebra + Anytime Algorithms, in:
(ed.J.C.Misra) Applicable Mathematics: Its Perspectives and Challenges, Narosa Publishing House,
New Delhi, Mumbai, Calcutta, 2001, 213-220.

[Ebe02] E. Eberbach, On Expressiveness of Evolutionary Computation: Is EC Algorithmic?, Proc. 2002 World
Congress on Computational Intelligence WCCI’2002, Honolulu, HI, 2002, 564-569.

[Ein20] A. Einstein, Relativity, Methuen and Company, London, 1920.
[Ek99] B. Ekdahl, Interactive Computing does not supercede Church’s thesis, Association of Management and

the International Association of Management, 17th Int. Conf. San Diego, Proc. Computer Science, Vol
17, No. 2, Part B, pages 261-265,1999.

[Fer98] A. Ferrari, JPVM: Network Parallel Computing in Java, ACM 1998 Workshop on Java for High Per-
formance Network Computing, 1998.

[Fey59] R. Feynman, There’s plenty of Room at the Bottom, lecture to the American Physical Society, 1959,
reprinted in in Hey, Antony, ed. Feynmann and Computing Westview Press, Oxford, 2002.

[Fey82] R. Feynman, Simulating Physics with Computers, International Journal Theoretical Physics, Vol 21,
Nos. 6/7, (1982), reprinted in in Hey, Antony, ed. Feynmann and Computing Westview Press, Oxford,
2002.

[FLP] M.Fischer, N. Lynch, M. Paterson, Impossibility of distributed consensus with one faulty process,
Proc. 2nd ACM SIGACT-SIGMOD Symposium on principles of database systems, 1982.

[Gar95] M. Garzon, Models of Massive Parallelism: Analysis of Cellular Automata and Neural Networks, An
EATCS series, Springer-Verlag, Berlin, Heidelberg, New York, 1995.

[Ge94] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: Parallel Virtual
Machine A Users’ Guide and Tutorial for Networked Parallel Computing. MIT Press, 1994.

[Gol01] D. Goldin, S. Smolka and P.Wegner, Turing Machines, Transition Systems, and Interaction, in Proc.
8th Int. Workshop on Expressiveness in Concurrency, Aalborg, Denmark, 2001.

[Gra97] P. Gray, V. Sunderam, IceT Distributed Computing and Java, Concurrency, Practice and Experience,
Vol. 9, No. 11, Nov. 1997.

[Ham00] J. Hamkins and A. Lewis, Infinite time Turing machines, The Journal of Symbolic Logic, Vol. 65(2),
pages 567-604, 2000.

[Hay89] P. Hayes and C. B. Jones, Specications are not (necessarily) executable, Software Enmgineering Jour-
nal, Vol. 4, No. 6, pp330-338, 1989.

[Hod83] A, Hodges, Alan Turing: The Enigma, Simon and Schuster, New York, 1983.
[Kle35] S. C. Kleene, General Recursive Functions of Natural Numbers, American Journal of Matematics,

Vol. 57, pages153-173 & 219-244, 1935.
[Kuh62] T. Kuhn, The Structure of Scientific Revolutions, University of Chicago, 1962.
[Lan61] R. Landauer, ‘Irreversibility and Heat Generation in the Computing Process’, IBM Journal of Research

and Development vol. 5, No. 3, pp. 183–91, 1961.
[Lan91] R. Landauer, ‘Information is Physical’, Physics Today, May 1991.
[Lan00] R. Landauer, Information is Inevitably Physical, in Hey, Antony, ed. Feynmann and Computing West-

view Press, Oxford, (2002).
[Las02] J. Lassgue, Turing, entre formel et forme ; remarques sur la convergence des perspectives mor-

phologiques, Intellectica, Vol 2002/2, No. 35, pages 185-198, 2002.
[Mil92] R. Milner, The Polyadic π-calculus: A Tutorial, in F. L. Bauer, W. Brauer (eds.), Logic and Algebra

of Specification, Springer-Verlag, 2003-246, 1992.
[Mi93] R. Milner, Elements of Interaction: Turing Award Lecture, Com. ACM, Vol 36, No. 1, pages 78-90,

1993.
[MPI94] F. MPI, MPI: A Message-Passing Interface. Technical Report. UMI Order Number: CSE-94-013.,

Oregon Graduate Institute School of Science & Engineering, 1994.

ARE THERE NEW MODELS OF COMPUTATION: REPLY TO WEGNER AND EBERBACH 21

[Tur36a] A. M. Turing, On Computable Numbers with an Application to the Entschiedungsproblem, Proc.
London Mathematical Soc., Ser. 2 , Vol 42, pages 230-265, 1936-7.

[Tur39] A. M. Turing, Systems of Logic Based on Ordinals, Proc. London Mathematical Soc., Ser. 2 , Vol 45,
pages 161-228, 1939.

[Tur47] A. M. Turing, Lecture on the Automatic Computing Engine (1947), in B. J. Copeland (ed), The Es-
sential Turing, Clarendon, Oxford, 2004.

[Tur50] A. M. Turing, Computing Machinery and Intelligence, Mind, Vol. LIX, No. 236, pages , 1950.
[Tur00] D. Turner, B. Pierce,“Pict: A programming language based on the picalculus.” . In G. Plotkin, C.

Stirling and M. Tofte, editors, Proof, Language and Interaction: Essays in Honour of Robin Milner,
pages 455–494. MIT Press, 2000.

[Wal01] D. Sangiori and D. Walker, The π-calculus, Cambridge University Press, 2001.
[Weg97a] P. Wegner, Why Interaction is more Powerful than Algorithms, Communications of the ACM, Vol 40,

No. 5, pages 80-91, 1997.
[Weg97b] P. Wegner, Interactive Software Technology, in: A. B. Tucker Jr (ed), The Computer Science and

Engineering Handbook, CRC Press, pp2440-2463, 1997.
[Weg04b] P. Wegner, and E. Eberbach, New Models of Computation, Computer Journal, Vol 47, No. 1, pages

4-9, 2004.
[Yar04] V. Yarmolenko, P. Cockshott, E. Borland, L. Mackenzie, P. Graham, Jπ INTERFACE: A Java Imple-

mentation of the π-Calculus for Grid Computing, Proceedings Middleware Grid Conference, Toronto-
Canada (Oct 2004)

