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Formal Specification and Quantitative Analysis
of a Constellation of Navigation Satellites

Zhaoguang Peng,a,c Yu Lu,b*† Alice Miller,b Tingdi Zhaoc and Chris Johnsonb

Navigation satellites are a core component of navigation satellite-based systems such as Global Positioning System, Global
Navigation Satellite System and Galileo, which provide location and timing information for a variety of uses. Such satellites are
designed for operating on orbit to perform tasks and have lifetimes of 10 years or more. Reliability, availability and maintain-
ability analysis of systems has been indispensable in the design phase of satellites in order to achieve minimum failures or to
increase mean time between failures and thus to plan maintenance strategies, optimise reliability and maximise availability.
In this paper, we present formal models of both a single satellite and a navigation satellite constellation and logical specifi-
cation of their reliability, availability and maintainability properties, respectively. The probabilistic model checker PRISM has
been used to perform automated analysis of these quantitative properties. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

With the emergence of efficient, high-performance and low-cost satellites, earth-orbiting satellites are often deployed in satel-
lite constellations and space systems to ensure reliable and dependable missions. These kinds of satellites have played an
essential part in both civil and military contexts and support a wide range of applications ranging from satellite navigation

to space stations. Most of these applications are not only safety-critical but also mission-critical; thus, they heavily depend on such
infrastructures within the systems. A group of artificial satellites that work in concert is known as a satellite constellation. A satellite
constellation is a number of satellites with coordinated ground coverage, operating together under shared control, synchronised so
that they overlap in coverage and complement rather than interfere with other satellites coverage.

A navigation satellite system is a satellite constellation consisting of a number of navigation satellites that provide autonomous
geospatial positioning with global or regional coverage. It is by far one of the most successful applications of satellites and has been
developed since 1973. A navigation satellite system with global coverage is referred to as a global navigation satellite system (GNSS).
Leading international projects include the US Global Position System (GPS) and Russia’s Global Navigation Satellite System (GLONASS),
both of which are fully operational GNSSs. In addition, China is expanding its regional Beidou navigation system into the global com-
pass navigation system, and the European Union’s Galileo positioning system is a GNSS in the initial deployment phase. Both of these
systems are planned to be fully operational in the next decade. Other countries such as India, France and Japan are in the process
of developing their own regional navigation systems. See Hofmann-Wellenhof and Lichtenegger1 for a good overview of navigation
satellite systems.

A satellite is designed to a functional requirement, and it is important that it satisfies this requirement. However, it is also desirable
that the satellite should be predictably available, and this depends upon its reliability and availability. We aim to help the military or
civil end-users of the satellite to assess the likelihood and consequences of fault or failure to their operations. Reliability, availability
and maintainability (RAM) analysis has been indispensable in the design phase of navigation satellite systems in order to achieve
minimum failures or to increase mean time between failures (MTBFs) and thus to plan maintenance strategies, optimise reliability and
maximise availability. The question of how to select optimal configurations and maintenance plans and underlying resources to satisfy
requirements and improve efficiency is a key research question. This concern calls for effective solutions to the challenges of verifying
large and complex navigation systems.

Until now, attempts to verifying satellite-based systems have been piecemeal. Verification largely depends on brute force
approaches, such as simulation and testing. Simulation is the common testing and validation approach used for the verification of
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satellite systems. Given a system, a finite subset of the possible scenarios is selected in a specific simulation environment, and then, sta-
tistical analysis techniques are applied to obtain probabilistic results for that system. However, simulation has been unable to keep up
with the growth in design complexity of satellite systems. On the other hand, formal verification is a well-established technique in com-
puter science for either detecting errors or providing increased confidence in the reliability of a system. It is therefore timely to apply
formal verification techniques to this domain. Formal verification can be applied to formally verify satellite systems using automated
tools including model checkers or theorem provers.

Model checking is a formal verification technique that involves defining a model of a system from a formal specification. The model
is then used to check desired properties of the system. This involves exploring the underlying state space of the model and specifying
properties via some formal logic such as temporal logic. In this context, the effects of proposed changes to an on-orbit system can be
first checked via a model, rather than via expensive prototypes. The required RAM properties of satellite systems can be expressed in
temporal logic and so lend themselves very well to proof via model checking.

The goal of the paper is to adopt probabilistic model checking to cope with the verification demand introduced by satellite systems.
Probabilistic model checking is a formal method for specifying quantitative properties of a system model. Models obtained by this
technique are normally extensions or variants of Markov chains or automata, extended with costs and rewards that estimate resources
and their usage during operation. Properties to be verified or analysed are specified in temporal logic with auxiliary operators such
as probability and reward. We present an automated quantitative analysis of RAM of both a single satellite system and a navigation
satellite system, using the probabilistic model checker PRISM.2

Our paper is organised as follows. In Section 2, we describe the underlying navigation satellite systems. In Section 3, the use of formal
methods is introduced, while in Section 4, we give technical background on probabilistic model checking. In Section 5, we present
our formal specifications of a single satellite and constellation systems and their associated continuous-time Markov chain models,
respectively. Then, we analyse RAM using the probabilistic model checker PRISM for a single satellite and a satellite constellation in
Sections 6. In Section 7, we report related work for verifying satellite systems using model checking. Finally, in Section 8, we conclude
and outline directions for future research.

2. Satellite systems

As an important application of satellite constellation, navigation satellite systems consist of three major segments: a space segment,
a control segment and a user segment. The space segment is made up of a number of satellites and is responsible for sending the
navigation signal on the specific frequency. It is constantly orbiting the surface at an altitude of approximate three earth radii and
emitting signals that travel at approximately the speed of light. The control segment monitors the health and status of the space
segment and controls the state of satellites and updates the data of those satellites. The user segment consists of antennas and receiver
processors, which receive the signals broadcasted by the satellites and decode them to provide precise information about the receiver’s
position and velocity.

In a satellite constellation, fault or failure of more than one satellite will have a direct impact on the stable state of the space geometry
and temporal relationship, and the performance of the constellation. So, the performance of the constellation is a direct consequence
of the state of the constellation. Therefore, the state of the constellation has a close relationship with the state of every satellite in the
constellation. So, each satellite is critical to the constellation.

In this paper, our task is to help the end-users of satellite-based systems to evaluate the probability and consequences of faults or
failures. The terms of fault and failure in our context can be defined according to Czichos3 as follows:

� Fault is the condition of a satellite that occurs when one of its components or assemblies degrades or exhibits abnormal behaviour.
� Failure is the termination of the ability of a satellite to perform a required function.

Failure is an event as distinguished from fault, which is a state. According to Czichos,3 the failure mode is the result by which a
failure is observed. After a failure, a satellite in the constellation will be systematically examined in order to identify the failure mode
and to determine the nature of the failure and its basic cause. There are three kinds of failure mode of the satellite: long-term failure
(unrecoverable failure), short-term failure, and operations and maintenance (O&M) failure. These failure modes are described as follows:

� Long-term failure is vital to the satellite. If a long-time failure has happened, it usually needs to launch another satellite to replace
the failed one. Practically, it indicates that the failed satellite is at the end of its life. It has also been called wear-out failure.
� Short-term failure refers to a failure that can be repaired in several hours or days. This kind of failure mode means that there is

usually no need to launch a new satellite to replace the failed satellite.
� O&M failure is due to planned maintenance operations, such as navigation satellite orbit manoeuvre and atomic clock switching.

We usually do not consider the outage time that is induced by these operations as a failure. It is not expected to impact the
continuity of the constellation but the performance of the constellation.

Whenever a satellite has a fault or fails, there is a chance to repair the satellite on orbit by, for example, rebooting the satellite system,
updating the satellite software or switching the orbit of the satellite. There are three satellite backup modes available for maintenance
strategies: on-orbit backup, parking-orbit backup and launch-on-need (LON) backup. The on-orbit and parking-orbit backup modes
are further referred to as space backup. In this paper, we consider both space backup and LON backup. The main navigation satellite
system to be modelled and analysed is depicted in Figure 1.
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Figure 1. An overview of navigation satellite systems

Satellites deployed at the parking-orbit backup mode can also be used to work with on-orbit satellites. For LON backup mode, it
usually takes several months to replace failed satellite, while for space backup mode, it only takes 1 or 2 days. Because of the lower
mean time to repair (MTTR) for the space backup mode, it has been widely applied in most constellation projects. In the GPS project,
the redundant satellites are working with on-orbit satellites, so failed satellites can be replaced in a short time.

3. Analysis techniques

In this paper, our models are continuous-time Markov chains (CTMCs), and we verify our models using model checking. Before formally
introducing this technique and discussing the role of formal verification, we briefly review some traditional software and hardware
verification and analysis techniques that can be applied to analysing satellite-based systems, which are led by testing and simulation.

Testing is a dynamic verification technique that involves actually running software systems. Testing takes the system under
analysis and uses inputs as tests. Correctness is thus verified by running the system to traverse a set of execution paths. Based on
the results during test execution, the actual output of the system is compared with the system specification, which is usually in the
form of documents.

Simulation is similar to testing but is applied to system models, which represent the underlying system for analysis. Models are
usually described using hardware description languages. A simulator is used to examine execution paths of the system model based
on configuration inputs. These inputs can be provided by a user or by automated approaches such as using a random generator. A
mismatch between the simulator’s result and the specification of the system exhibits the incorrect behaviours.

Both of these verification techniques are limited in that they only allow exploration of a small subset of many possible scenarios.
Formal methods is the application of mathematical modelling and reasoning to prove that an implementation coincides with precisely
expressed notion of formal specification. In this context, the purpose of formal analysis and verification is to analyse the performance
and to verify the correctness and properties of satellite-based systems in such a way that faults and failures can be identified. Model
checking and theorem proving are formal techniques that can be used to detect faults and failures in a formal specification.

Although, historically, these forms of verification were used to prove correctness of explicit software and hardware designs, these
days, they are also used for failure analysis. They are generally applied during the design phase, where they are arguably most
effective, for verifying correctness and other essential properties. Model checking is an automated analysis technique that requires
expert knowledge to use. The user must provide an initial specification of the system itself, as well as logical properties describing
its desired behaviour.

Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 345–361
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One strength of model checking to traditional analysis techniques is that it is not sensitive to the probability that a fault or failure is
exposed; this contrasts with testing and simulation that are aimed at tracing the most probable faults or failures. Moreover, it allows one
to precisely analyse results of checking desired properties. Model checking is a general analysis technique that is applicable to a wide
range of applications such as embedded systems, software engineering and hardware design. It also supports analysing properties
individually, thus allowing one to focus essential properties first. This enables incomplete formal models to be specified and verified.

The formal model of systems can be defined using a high-level formalism or extracted directly form software using methods such
as abstract interpretation. Verification involves checking paths of the state-transition graph (or state-space) of the model. Traditionally,
this involves either exhaustive or on-the-fly search of the state-space in which states are stored explicitly. Another method—symbolic
model checking4—involves search of a symbolic representation of the state space, in which groups of states and transitions are
explored in a single step.

Quantitative verification is an analysis technique for establishing quantitative properties of a system model. Models analysed
through this method are typically variants of Markov chains, annotated with costs and rewards that describe resources and their usage
during execution. Properties are expressed in temporal logic extended with probabilistic and reward operators. Quantitative verifica-
tion involves a combination of a traversal of the state transition system of the model and numerical computation. In this paper, we
employ the power of probabilistic model checking, which is a leading quantitative verification and analysis technique for a wide variety
of systems.

4. Probabilistic model checking

In this section we introduce some formal notation that is relevant to probabilistic model checking. Our definitions in Sections 4.1
and 4.2 follow Baier and Katoen,5 from which further details can be found.

4.1. Continuous-time Markov chains

Our approach is event based because of the fault and failure events that can be sensed and monitored in the satellite systems. Rates
are assigned to events, and our underlying semantics is CTMCs: the state space is discrete, but time is continuous. In this section, we
briefly review the basic concept of CTMCs.

Definition 1
Let AP be a fixed, finite set of atomic propositions. Formally, a CTMC C is a tuple (S, sinit , R, L) where

� S D fs1, s2, : : : , sng is a finite set of states.
� sinit 2 S is the initial state.
� R : S � S! R�0 is the transition rate matrix.
� L : S! 2AP is a labelling function, which assigns to each state si 2 S the set L.si/ of atomic propositions a 2 AP that are valid in si .

Intuitively, R.si , sj/ > 0 if and only if there is a transition from state si to state sj . Furthermore, R.si , sj/ specifies that the probability of
moving from si to sj within t time units is 1 � e�R.si ,sj/�t , an exponential distribution with rate R.si , sj/. If R.si , sj/ > 0 for more than one
state sj , a competition between the transitions originating in si exists, known as the race condition.

The probability to move from a non-absorbing state si to a particular state sj within t time units, that is, the transition si ! sj wins
the race, is given by

P.si , sj , t/ D
R.si , sj/

E.si/
�
�
1 � e�E.Si/�t

�
, (1)

where E.si/ D
P

sj2S R.si , sj/ denotes the total rate at which any transition outgoing from state si is taken. More precisely, E.si/ specifies

that the probability of taking a transition outgoing from the state si within t time units is 1�e�E.Si/�t , because the minimum of two expo-
nentially distributed random variables is an exponentially distributed random variable with rate the sum of their rates. Consequently,
the probability of moving from a non-absorbing state si to sj by a single transition, denoted P.si , sj/, is determined by the probability
that the delay of going from si to sj finishes before the delays of other outgoing edges from si ; formally, P.si , sj/ D R.si , sj/=E.s/. For an
absorbing state si , the total rate is E.si/. In that case, we have P.si , sj/ D 0 for any state sj .

4.2. Continuous stochastic logic

The probabilistic model checker PRISM provides support for automated analysis of a wide range of quantitative properties, such as
‘what is the probability of a failure causing the satellite to stop working within 12 h?’, ‘what is the worst-case probability of the satellite
on-board system terminating because of an error, over all possible initial configurations?’ or ‘what is the worst-case expected time
taken for the satellite signal to be received?’
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In this paper, we use continuous stochastic logic (CSL)6, 7 to specify RAM properties. CSL is inspired by the logic computation tree
logic (CTL)8 and its extensions to discrete time stochastic systems (PCTL)9 and continuous time non-stochastic systems (TCTL).10 There
are two types of formulae in CSL: state formulae, which are true or false in a specific state, and path formulae, which are true or false
along a specific path.

Definition 2
Let a 2 AP be an atomic proposition, p 2 Œ0, 1� be a real number, ‰ 2 f�,<,>,�g be a comparison operator and I � R�0 be a
non-empty interval. The syntax of CSL formulas over the set of atomic propositions AP is defined inductively as follows.

� True is a state formula.
� Each a 2 AP is a state formula.
� Ifˆ and‰ are state formulas, then so are:ˆ andˆ ^‰.
� Ifˆ is state formula, then so is S‰p.ˆ/.
� If ' is a path formula, then P‰p.'/.
� Ifˆ and‰ are state formulas, then XIˆ andˆUI‰ are path formulas.

Formula S‰p.ˆ/ asserts that the steady-state probability for a state satisfying ˆ meets the bound‰ p. Similarly, formula P‰p.'/

asserts that the probability measure of the paths satisfying ' meets the bound given by‰ p. The operator P‰p../ replaces the usual
CTL path quantifiers 9 and 8. Intuitively, 9' represents that there exists a path for which ' holds and corresponds to P>0.'/, and 8'
represents that for all paths ' holds and corresponds to P>1.'/. The temporal operator XI is the timed variant of the standard next
operator in CTL; the path formula XIˆ asserts that a transition is made to a ˆ state at some time point t 2 I. Operator UI is the timed
variant of the until operator of CTL; the path formula ˆUI‰ asserts that ‰ is satisfied at some time instant in the interval I and that at
all preceding time instantsˆ holds.

One of the most important operators is the P operator, which is used to reason about the probability of an event. This operator was
originally proposed for use in the logic PCTL but also features in the other logics supported by PRISM, such as CSL. The P operator is
applicable to all types of models supported by PRISM.

It is often useful to compute the actual probability that some behaviour of a model is observed. Therefore, PRISM allows a variation
of the P operator to be used in a query, that is, PD‹Œpathprop�, which returns a numerical rather than a Boolean value (i.e. the probability
that pathprop is true). In our paper, we are interested in directly specifying RAM properties, which evaluate to a numerical value. For
example, we might wish to calculate the probability that process 1 terminates before process 2 does (say). This can be specified as
PD‹ŒŠproc2_terminate U proc1_terminate�, where U is the ‘until’ temporal operator.

Another important operator we use is the R operator, which specifies a cumulative reward property that associate a reward with
each path of a model, but only up to a given time bound. The property RD‹ŒC <D t� corresponds to the reward cumulated along a
path until t time units have elapsed. For CTMCs, the bound t can evaluate to a real value. Some typical examples of properties using P
and R operators can be found on the Property Specification section of the PRISM website.

4.3. Reactive modules of PRISM

PRISM supports the analysis of several types of probabilistic models: discrete-time Markov chains (DTMCs), CTMCs, Markov decision
processes (MDPs), probabilistic automata (PAs) and also probabilistic timed automata (PTAs), with optional extensions of costs and
rewards.2 Moreover, PRISM allows us to verify properties specified in the temporal logics PCTL for DTMCs and MDPs and CSL for CTMCs.
Models are described using the PRISM language, a simple, state-based language.

Markov models to be verified using specified in PRISM are specified using the PRISM modelling language, which is based on the reac-
tive modules formalism.11 A fundamental component of this language is a module. A system is constructed as the parallel composition
of a number of modules. A module is specified as

module name : : : endmodule

A module definition consists of two parts: one containing variable declarations and the other commands. At any time, the state of a
model is determined by the current value of all of the variables of all of the components (modules). A variable declaration has the form:

x : Œ0..2� init 0;

In this example, variable x is declared, with range Œ0..2� and initial value 0. The behaviour of each module is specified using
commands, comprising a guard and one or more updates of the form:

Œaction� guard ! rate : update

or

Œaction� guard ! rate1 : update1 C rate2 : update2 C : : :

Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 345–361
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The (action) label is optional and is used to force two or more modules to synchronise. Updates in commands are labelled with
positive-valued rates2 for CTMCs. The C indicates the usual non-deterministic choice. Within a module, multiple transitions can be
specified as either several different updates in a command or multiple commands with overlapping guards. The following examples:

Œ � x D 0 ! 0.5 : .x0 D 0/,

Œ � x D 0 ! 0.8 : .x0 D 1/,

and

Œ � x D 0! 0.5 : .x0 D 0/ C 0.8 : .x0 D 1/,

are equivalent. The guard x D 0 indicates that command is only executed when variable x has value 0. The updates .x0 D 0/ and
.x0 D 1/ and their associated rates indicate that the value of x will remain at 0 with rate 0.5 and change to 1 with rate 0.8. In a CTMC,
when multiple possible transitions are available in a state, a race condition occurs.12 The rate of the synchronised transition is the
product of all the individual rates.

5. Formal specification of satellite systems

In this section, we give a description of the basic formal models of both a single satellite and a constellation of navigation satellites.

5.1. A formal model of a single satellite

The abstract model of a single satellite is illustrated in Figure 2, parameters are omitted. We take a CTMC as our underlying PRISM model
for our abstract model.

We specify our CTMC model with states, a transition rate matrix and a labelling function. Initially, the satellite runs in the normal
state. After a period of execution, it could be interrupted by a planned or an unplanned interruption. Planned interruptions are normally
caused by certain types of O&M, which could include manoeuvring the station, atomic clock maintenance, software updates and hard-
ware maintenance. Unplanned interruptions can be caused by solar radiation, the earth’s magnetic field cosmic rays, which result in a
satellite single-event upset. However, both planned and unplanned interruptions are usually temporary, lasting just several hours. An
unplanned interruption usually disappears automatically. The satellite can fail at any time during its lifetime due to end-of-life outage
or other vital failures.

When the satellite fails, staff on the ground must decide upon the best approach to repair it. It may be possible that failures can
be resolved on orbit by giving specific software commands to the satellite. Otherwise, it might be necessary to move a redundant
satellite into position to replace the failed satellite. If no redundant satellite is available, then a new satellite must be manufactured and
launched. In the worst case, the new satellite does not launch successfully because of a known probability of satellite launch failure.

Most of our parameter values correspond to those of the latest US GPS system, GPS Block III satellites. The GPS III series is the newest
block of GPS satellites. GPS III provides more powerful signals than previous versions in addition to enhanced signal reliability, accuracy
and integrity. The key improvement is the 15 years’ design lifespan.13 Because of privacy and secrecy reasons, National Aeronautics

Figure 2. A reference model of a single satellite
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and Space Administration (NASA) does not release all actual data of GPS III that we need in our analysis. Thus, in order to perform the
analysis convincingly, we use some generic data of some very similar satellites instead. We believe that this will not result in a loss of
generality because all data come from real satellites.

All parameters used in our CTMC model and properties are specified in Table I and are described as follows. We use p to express
probability and t for time, and the reliability of the satellite is r. If the satellite fails, we say that it moves from a ‘normal’ state to a ‘
failure’ state. The mean time to unplanned interruption is tu, while the mean time to planned interruption is tp. When the satellite fails,
the probability of the failure being resolved on orbit by moving a redundant satellite to replace the failed one is pb. If on-orbit repair is
not possible, a new satellite is needed. The time taken to decide to build a new satellite and for one to be manufactured are tr and td ,
respectively. If a new satellite is to be manufactured, the probability of successful launch is py . After successful launch, the time taken
for the satellite to move to the right position and a normal signal sent from it to be received on the ground is tk . Our PRISM specification
is given in Figure 3.

Specifically, in Figure 3, tj is the time from launching the satellite to moving it to the right orbit when the satellite has been success-
fully carried to the orbit if there are no spare satellites on the ground, and ts is the time from launching the satellite to moving it to the
right orbit when the satellite has not been carried to the right orbit if there are no spare satellites on the ground, and tk the time from
launching the satellite to moving it to the right orbit when the satellite has been successfully carried to the orbit if spare satellites is
available on the ground, and tm is the time from launching the satellite to moving it to the right orbit when the satellite has not been
carried to the right orbit if spare satellites is available on the ground.

Table I. Parameters used in the model for the single satellite system
r MTBF MTTR tu tp pb tr td te py tk

years hours hours hours hours hours hours hours

0.80 15 24 4320 4320 0.80 24 1440 4320 0.90 24

Figure 3. PRISM module for a single satellite

Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 345–361
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5.2. A formal model of a constellation of navigation satellites

We have modelled a single satellite as a CTMC, by specifying it in PRISM. However, the RAM analysis of a single satellite appears insuf-
ficient for larger navigation satellite systems. For a large global navigation system, at least 24 satellites are required. Even for a regional
navigation system, at least four satellites are required. Our PRISM model for a satellite constellation is thus constructed using our
specification for a single satellite, with a number of modifications as follows.

� The number of satellites is declared as a global variable, and multiple satellite modules are instantiated.
� The configuration of the satellite constellation is defined.
� Redundant satellites that are usually called spare satellites are included.

Note that the last modification above is due to the fact that, in a real system, if an on orbit satellite fails, redundant on orbit satellites
are used to move and replace them, to ensure the availability of the constellation.

The reference model of the satellite constellation is depicted in Figure 4. The constellation has n satellites on orbit, and m spare
satellites. If the on-orbit satellites do not fail, the state of the constellation keeps n satellites available. Once an on-orbit satellite fails,
one of the spare satellites will replace it immediately to keep n in working condition. If any on-orbit satellite fails and there is no spare
satellite available to replace it, the number of satellites in the constellation will be reduced to a number smaller than n. Thus, spare
satellites play a crucial effect on the availability of the satellite constellation.

In the reference model, if the number of satellites in the constellation is n and the number of spare satellites is m, where m � 0 and
n � 1, the launch-on-schedule strategy is to not launch a new satellite. At any time at most one satellite can be repaired. If any on-orbit
satellite fails, it is immediately replaced by a spare satellite, and repair of the failed satellite commences. If there are no spare satellites,
the constellation must operate with fewer than n satellites.

Figure 4. A reference model of a constellation of navigation satellites

Table II. Parameters for the navigation
satellite systems
r MTBF.T/ MTTR n m

0.80 15 years 5 months 24 3

Figure 5. PRISM module for the satellite constellation
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Because the focus of our research is to apply the probabilistic model checking approach and to study its applicability to a satellite
constellation, the object of our paper is not limited to any specific navigation satellite system. The system we study here follows a
standard configuration for global navigation system. Because the current US GPS is the most widely used navigation system, parameter
values of the constellation also refer to the latest basic parameter settings of such constellation. The parameter values are shown in
Table II.

Our PRISM specification is given in Figure 5. Assume that the failure and repair rates of a satellite are � and�, respectively. When the
constellation is operating with n usable satellites, the state transfer rate of the constellation is n�. When there are no spare satellites
and satellites begin to fail, the transfer rate reduces accordingly to n�, where � is the number of functioning satellites.

6. Quantitative properties and automated analysis

6.1. Desired properties

We have identified the need to analyse RAM properties of navigation satellite systems. In the GPS standard proposed in previous work,14

there are two definitions of availability. The first one is the probability that the slots in the constellation will be occupied by a satellite
transmitting a trackable and healthy standard positioning service (SPS) signal in space (SIS). The second definition is the percentage of
time that the SPS SIS is available to an SPS receiver. According to the same standard, there are two kinds of availability of satellites. The
first is the per-slot availability, and the second is the constellation availability, which can be described as follows:

� Per-slot availability is the time that a slot in the constellation will be occupied by a satellite that is transmitting a trackable and
healthy SPS SIS.
� Constellation availability is the time that a specified number of slots in the constellation are occupied by satellites that are

transmitting a trackable and healthy SPS SIS.

In our research, we do not consider the environmental effect of the signal for the availability analysis. We only consider fault or failure
of satellites. In our context, availability means the ratio of running time for normal satellites to total running time for both normal and
failed satellites. The availabilities that we have analysed are single satellite availability and satellite constellation availability.

The reliability of a satellite depends on planned and unplanned interruptions and failure states in the system. The probability of
successful launch is the reliability of the satellite, and the maintainability of the satellite is the probability that a satellite can be repaired
on orbit. Generally, both reliability and maintainability can be considered as availability properties of the satellite. Reliability must be
sufficient to support the mission capability needed in its expected operating environment.

If reliability and maintainability are not adequately designed into satellite systems, there is risk that the design will breach desired
availability requirements. Therefore, such system availability baseline is determined by the threshold of design or development costs,
which is significantly higher because of resulting corrective action costs. This will cost more than anticipated to use and operate, or will
fail to provide the expected availability.

Satellites will deteriorate with time because of failure mechanisms. We assume that time delay is a random variable selected from
an exponential distribution, which is an assumption used in PRISM. According to system reliability theory,15 the reliability of a satellite
R.t/ can be defined as

R.t/ D PrfT > tg D e��t , (2)

from which we obtain

�.t/ D
�lnR.t/

E.si/
. (3)

Satellite failures typically occur at some constant failure rate �, and failure probability depends on the rate � and the exposure time
t. According to Czichos,3 typically failure rates are carefully derived from substantiated historical data such as MTBF. We have

� D
�lnR

T
H) � D

�lnR

MTBF
, (4)

where t D T D MTBF, and MTBF is the design parameter or the statistics parameter. Referring to the latest characteristics of satellites
used for GPSs, we assume the MTBF of the satellite to be 15 years. As a result, R D 0.80 and MTBF D 15 years. Further, the MTTR is 24 h.

� D
1

MTTR
. (5)

For the evaluation of the availability of the constellation, we focus on long-term failure effects to the constellation. The long term
reflect the lifetime of the satellite and can be described by the MTBF and MTTR. The MTBF is used to get the parameter failure rate �
according to Equation (4). The MTTR is used to calculate the parameter repair rate � according to Equation (5).
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6.2. Formal analysis of a single satellite

In this section, we describe the parameters used in our model and their values. We then use the PRISM probabilistic model checker to
analyse some important properties of the single satellite system. The properties include RAM. The temporal logic CSL is used to analyse
the navigation systems, because PRISM supports the use of CSL to verify properties of a CTMC. We then present and analyse our model
checking results.

6.2.1. Reliability properties and results. Reliability properties of a single satellite that we can analyse using PRISM include the following:

1. When r D 0.80, the probability that a satellite will need to be replaced by a new one in 15 years:
PD‹ŒF <D T s D 5�; T D 129600

2. When r D 0.80, the probability that a satellite will need to be replaced by a new one because of complete failure in 15 years over
time T:
PD‹ŒF <D T s D 5�; r D 0.80; T D 0 : 129600 : 8640

3. When r D 0.80, how many times a satellite will need to be replaced by a new one in 15 years:
RD‹ŒC <D T�; T D 129600; r D 0.80
The reward expression in the PRISM model is the following:
rewards 00num_replace00

Œg� true : 1;
Œe� true : 1;
endrewards

4. How many times a satellite will need to be replaced by a new one over different reliabilities in 15 years:
RD‹ŒC <D T�; T D 129600; r D 0.01 : 0.99 : 0.05
The reward expression is the same as that for reliability property 3.

In the properties above (and in all other contexts henceforth), 129600 is the lifetime of a satellite in hours (evaluating to approx-
imately 15 years). Parameter r denotes reliability, and proposition s D 5 asserts that there is a spare satellite on the ground. The
expression r D 0.01 : 0.99 : 0.05 indicates that the reliability ranges from 0.01 to 0.99 with interval size 0.05.

The analysis results of reliability properties, which we obtain from PRISM, are as follows. The result of the property 1 is 0.0771. The
result of property 2 is shown in Figure 6(a). The result of property 3 is 0.08. The result of property 4 is shown in Figure 6(b). From
Figure 6(b), we can see that the number of times the satellite will have a failure and be unable to be repaired in 15 years is 0.08,
under the precondition that the reliability is 0.80. If the reliability is set to 0.5, the number of vital failures will be smaller than 0.25
during 15 years. The number of times of unplanned interruptions can be also obtained from the PRISM by checking the rewards of the
unplanned interruption, which is 29.95 times unplanned interruption for the satellite in 15 years.

6.2.2. Maintainability properties and results. Maintainability properties of a single satellite that we can analyse using PRISM include
the following:

1. When r D 0.80, the number of times that satellites need to be repaired on orbit in 15 years:
RD‹ŒC <D T�; T D 129600; r D 0.80
The reward expression in PRISM model is the following:
rewards 00num_repair00

Œd� true : 1;
endrewards

2. The number of times that the satellite needs maintenance when the reliability is from 0.01 to 0.99 in 15 years:
RD‹ŒC <D T�; T D 129600; r D 0.01 : 0.99 : 0.01

Figure 6. Analysis results of reliability properties of a single satellite
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3. The number of cases that a satellite needs to be repaired when the MTBF is from 1 to 15 years:
RD‹ŒC <D T�; T D 129600; r D 0.01 : 0.99 : 0.01; MTBF D 1 : 129600 : 8640
The reward expression is the same as that for maintainability property 1.

4. When r D 0.80, the number of cases that a satellite needs to be repaired on orbit but not eventually succeed in 15 years:
RD‹ŒC <D T�; T D 129600; r D 0.80
The reward expression is the same as that for maintainability property 1.

The analysis results of maintainability properties, which we obtain from PRISM, are as follows. The result of the property 1 is 0.18.
The result of property 2 is shown in Figure 7(a). The result of the property 3 is shown in Figure 7(b). The result of property 4 is 0.036.
The number of times the satellite needs to be repaired on orbit over time is shown in Figure 7(a). When the reliability of the satellite is
increased to 0.5, the number of times the satellite needs to be repaired will decrease to 0.5. Figure 7(b) illustrates that the number of
times that the satellite needs to be repaired is below 1 when the MTBF is 2 years.

6.2.3. Availability properties and results. Availability properties of a single satellite that we can analyse using PRISM include
the following:

1. When r D 0.80, the availability of the satellite in 15 years:
.RD‹ŒC <D T�/=T ; T D 129600; r D 0.80
The reward expression in PRISM model is the following:
rewards 00availability00

s D 0 : 1;
endrewards

2. The availability of a satellite over the satellite reliability in 15 years:
RD‹ŒC <D T�; T D 129600; r D 0.01 : 0.99 : 0.01
The reward expression is the same as that for availability property 1.

3. The relationship between satellite availability and its maintenance time taken for planned interruption:
.RD‹ŒC <D T�/=T ; T D 129600; r D 0.80, o D 1 : 48 : 3
The reward expression is the same as that for availability property 1.

Figure 7. Analysis results of maintainability properties of a single satellite

Figure 8. Analysis results of availability properties of a single satellite
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The analysis results of availability properties, which we obtain from PRISM, are as follows. The result of property 1 is 129378 h. The
result of property 2 is shown in Figure 8(a). The result of property 3 is shown in Figure 8(b). From Figure 8(a), we see that if the reliability
increases to 0.4, the availability of the satellite reaches 0.995. So if the required probability of the available satellite is 0.995, the reliability
must have minimum value 0.4. Figure 8(b) indicates that if the required availability is 0.995, the time taken for planned interruption for
the satellite will be smaller than 16 h.

6.3. Formal analysis of a constellation of navigation satellites

In this section, we analyse the properties of the satellite system that is made up of a constellation of navigation satellites. Similar to the
case of the single satellite, we use PRISM to check the RAM of the navigation system. We first present properties and their corresponding
CSL, and then present and analyse the results of verifying these properties.

6.3.1. Reliability properties and results. Reliability properties of the navigation satellite system that we can analyse using PRISM include:

1. When the reliability is 0.80, the probability that the number of the useable satellites in the constellation is smaller than 24 in 15
years:
PD‹ŒF <D T .s D 4/�; T D 129600

2. When the reliability is 0.80, the probability that the number of the useable satellites in the constellation is smaller than 22 in 15
years:
PD‹ŒF <D T .s D 6/�; T D 129600

3. The number of times that all redundant satellites fail in 15 years over the reliability and time:
RD‹ŒC <D T�
The reward expression in PRISM model is the following:
rewards 00num_fail00

Œa2� true : 1;
endrewards

The proposition s D n states that n satellites in the constellation fail. The analysis results of reliability properties, which we obtain
from PRISM, are as follows. The result of property 1 is 0.01171. The result of property 2 is 0.0796. The result of property 3 is shown in
Figure 9.

From Figure 9(a), when the reliability is between 0 and 0.25, the number of times that all redundant satellites need to be repaired
is proportional to the reliability. As the reliability increases so does the number of required repairs, until the number of repairs reaches
4.76. However when the reliability is between 0.25 and 1, the number of times that all redundant satellite need to be repaired is inversely
proportional to reliability. This is due to the fact that when the reliability decreases to below a specific value, redundant satellites can
no longer be repaired. According to Figure 9(b), the number of times that all redundant satellites need to be repaired is between 0 and
0.095 in 15 years.

6.3.2. Maintainability properties and results. Maintainability properties of the navigation satellite system that we can analyse using
PRISM include:

1. The average number of times to repair all satellites in the constellation in 15 years:
RD‹ŒC <D T�
The reward expression in PRISM model is shown as the following: rewards 00num_repair00

Œbi� true : 1;
for all i, 1 <D i <D 27
endrewards
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Figure 9. Analysis results of reliability properties of the satellite constellation
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2. The number of times to repair all satellites in the constellation over the reliability in 15 years:
RD‹ŒC <D T�; r D 0.01 : 0.99 : 0.05
The reward expression in PRISM model is the same as that for maintainability property 1.

3. The probability of the case that the number of useable satellites in the constellation is smaller than 22 in 15 years over the number
of times for repairing satellites:
PD‹ŒF <D T .s D 6/�; T D 129600; MTTR D 0.1 : 3600 : 72

The analysis results of maintainability properties, which we obtain from PRISM, are as follows. The result of property 1 is 5.18. The
result of property 2 is shown in Figure 10(a). The result of the property 3 is shown in Figure 10(b).

From Figure 10(a) we see that as reliability increases, the number of times that all satellites in the constellation need to be
repaired over 15 years decreases from 35 to 2.5 when the reliability reaches 0.90. As depicted in Figure 10(b), the probability that the
constellation consists of n satellites with n is smaller than 22 in 15 years is 0.0225.

6.3.3. Availability properties and results. Availability properties of the navigation satellite system that we can analyse using PRISM
include:

1. The period of time that the constellation consists of 24 satellites in 15 years:
RD‹ŒC <D T�;,
and reward expression in the PRISM model is shown as
rewards 00reward00

s D i : 1; where 0 <D i <D 3
endrewards

2. The availability of the constellation consists of 24 satellites in 15 years:
.RD‹ŒC <D T�/=T ;,
and reward expression is the same as the availability property 1;

3. The availability of the constellation consists of 24 satellites in 15 years over the reliability:
.RD‹ŒC <D T�/=T ; r D 0.01 : 0.99 : 0.05,
and reward expression is the same as the availability property 1;
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Figure 10. Analysis results of maintainability properties of the satellite constellation

Figure 11. Analysis results of availability properties of the satellite constellation
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4. The availability of the constellation consists of 24 satellites in 15 years over the repair time:
.RD‹ŒC <D T�/=T ; MTTR D 0.1 : 3600 : 72
and reward expression is the same as the availability property 1.

The analysis results of availability properties, which we obtain from PRISM, are as follows. The result of property 1 is 129545 h. The
result of property 2 is 0.99958. The results of properties 3 and 4 are shown in Figure 11(a) and 11(b), respectively.

The availability of the satellite constellation as the reliability and time taken to repair satellites increases is shown in Figure 11(a) and
11(b), respectively. According to Figure 11(a), if the availability of the constellation is 0.9999 and the time taken to repair a satellite is
5 months, the reliability is at least 0.86. When the reliability is 0.80 , for the same availability requirement of the constellation, when the
satellite has a fault or fails, the time taken to repair a satellite is at most 2520 h (3.5 months).

6.4. Discussion of results

Because parameter settings of our formal models are based on GPS Block III, which is the newest generation of GPS systems, our analysis
results can be compared to existing GPS statistical analysis. According to a report of Lockheed Martin,16 a leading global security and
aerospace company, the availability of the GPS Block III is given as 99.9%. The availability we evaluate in this paper is close to the actual
data. According to a further Lockheed Martin report,17 the constellation availability of the GPS Block III is at least 99.88%.

In this paper, the availability we evaluate for two scenarios is in each case close to the actual data. This has proved to be both useful
and efficient to use probabilistic model checking approach for the modelling and analysis of a singe satellite and a constellation of
navigation satellites. To the best of our knowledge, we are the first to use the formal technique of probabilistic model checking to
perform RAM analysis of satellite systems. These results indicate that our approach can also be applied to a wider range of quantitative
properties of formal models taken from many application domains for satellite systems.

6.5. Benefits of the approach

To address the performance of satellite systems, it is essential to accurately quantify aspects such as RAM. There are two common
techniques that can be used for evaluating these features. One is the reliability block, and the other is the fault tree. However, neither
technique is suitable to evaluate probabilistic properties because they are static techniques. In a fault tree or reliability block formalism,
it is necessary to assume the probabilities of each fault or failure are independent, while this is not the case in reality.

Other benefits of applying probabilistic model checking with PRISM for the specification and analysis of satellite systems is that the
results can be plotted as graphs that can be inspected for trends and anomalies. Furthermore, we are able to compute exact quantities,
rather than approximations based on a large number of simulations, thus enabling us to obtain complete and exhaustive conclusions
for all possible parameter values. In addition, PRISM enables automated analysis. This helps manual analysis with automatic analysis
support, thus making development more efficient and minimising human errors during the design phase.

There are also some disadvantages to using Markov models, not least that their specification, and the specification of useful proper-
ties, requires a high degree of mathematical skill. Markov models may be large and cumbersome in some cases, and the specification
can be error-prone. In addition, as a system increases in complexity, so does the size of the state-space associated with a corresponding
model. This results in a longer (possibly intractable) search.

7. Related work

There have been a number of notable attempts to use formal methods to address the problems of design exploration for a satellite
system. The theorem prover Prototype Verification System (PVS)18 was used to verify desired properties in system models of Ariane 5
where the cost of failure is high. The Process Improvement experiment of a Code Generator to the Ariane Launcher (PICGAL) project19

analysed ground-based software for launch vehicles similar to Ariane 5. In a NASA report,20 formal methods and their application to
critical systems are explained to stakeholders from the aerospace domain. In the study of Kelley and Dessouky,21 Markov models are
used to evaluate the cost of availability of coverage of satellite constellation. The potential role of formal methods in the analysis of
software failures in space missions is discussed by Johnson.22

Similarly, Brat et al.23 explore how verification techniques, such as static analysis, model checking and compositional verification,
can be used to gain trust in space-based systems. Model checking has proved to be a suitable formal technique for exposing errors
in satellites, mainly due to classical concurrency errors. Unforeseen interleaving between processes may cause undesired events to
occur. In the study of Havelund et al.,24 the Simple Promela Interpreter (SPIN) model checker25 was used to formally analyse a multi-
threaded plan execution module, which is a component of NASA’s artificial intelligence-based spacecraft control system as a part of
the Deep Space 1 mission. Five previously undiscovered errors were identified in the spacecraft controller, in one case representing a
major design flaw.

The model checker Mur 26 has been used by Shen27 to model the entry, descent and landing phase of the Mars Polar Lander.
It was then used to search for sequences of states that led to the violation of a Mur invariant. This stated that the thrust of the
pulse–width modulation, which controls the thrust of the descent engines, should always be above a certain altitude. In the study of
Gan et al.,28 the model checker NuSMV29 is used to model and verify the implementation of a mission and safety critical embedded
satellite software control system. The control system is responsible for maintaining the altitude of the satellite and for performing fault
detection, isolation and recovery decisions, at a detailed level.
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Furthermore, model checking is used by Cavaliere et al.30 to simulate satellite operational procedures, and it exploits a simulator
of a satellite as a black box in order to formally verify operational procedures. In previous work,30, 31 exhaustive search of all possible
simulation scenarios is performed, using the simulator as a model. Thus, the verification is automated and complete. Moreover, the
approach of system level formal verification to exploit a simulator in order to carry out formal verification has been further developed
in previous work32, 33 and applied to biological contexts. Finally, all these approaches use the explicit model checker CMurphi.34

Our preliminary research into the verification of satellite systems, which we restrict our analysis to a single satellite, is presented
by Peng et al.35 In work36 similar to ours, formal techniques have been used on a regular design of a modern satellite. In that work,
the Correctness, Modelling and Performance of Aerospace Systems (COMPASS) automated tool is used to carry out their analysis.
COMPASS37 supports model checking techniques for verifying correctness, using fault trees for safety analysis. The major difference
between this work and ours is that we perform formal analysis of quantitative properties such as RAM of both a single satellite and a
constellation of satellites. Whereas, Esteve et al.36 mainly verify qualitative properties (such as correctness, safety and dependability) of
a single satellite.

8. Conclusions and future work

Reliability, availability and maintainability analysis of systems has been indispensable in the design phase of satellites in order to achieve
minimum failures or to increase MTBFs and thus to plan maintainability strategies, optimise reliability and maximise availability. Tra-
ditional approaches are not suitable for performing RAM analysis of navigation satellite systems. We present formal models of both a
single satellite system and a constellation of navigation satellites and logical specification of RAM properties. We have analysed a set of
properties using the automatic probabilistic model checker PRISM.

There are many technical and theoretical challenges that remain to be addressed. In particular, satellite failure often forms part of
more complex problems that show through different aspects of the engineering of space-based systems. The technical challenges also
include basic issues with the representation of safety and space mission critical characteristics of satellite telecommunications because
of a group of satellites working together given the limitations of classical modelling approach.

In order to fully explore satellite behaviour, it will be necessary to exploit further formal techniques. For instance, if we want to model
the mobility of connection between satellites, it may be necessary to express behaviour via an extension to the �-calculus and model
check using PRISM (a technique identified by Norman et al.38). This kind of issue must be addressed in order to identify the causes of
satellite system failure and to support the development of satellite systems.

As PRISM assumes events to occur according to an exponential distribution, we are limited to making the same assump-
tion about the events in our systems. In fact, many types of satellite failure follow a different distribution. In particular, a
number of failures of satellites have a Weibull distribution,39 which follows the conventional three-component bathtub curve,
which models a burn-in and wear-out phase for failure prediction. For future work, we will look at how to represent arbitrary
distributions in probabilistic models, and to what extent such kind of distributions are able to be supported by the probabilistic model
checking approach.
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