
Bounded Polymorphism in

Session Types

Malcolm Hole and Simon Gay

Department of Computing Science TR-2003-132
University of Glasgow March 2003
Glasgow G12 8QQ
Scotland

Bounded Polymorphism in Session Types

Simon Gay1 and Malcolm Hole2

1 Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.
Email: <simon@dcs.gla.ac.uk>

2 Department of Computer Science, Royal Holloway, University of London,
Egham, Surrey TW20 0EX, UK. Email: <M.Hole@cs.rhul.ac.uk>

March 26, 2003

Abstract

We review work on session types and the π-calculus, and give an example identifying
a use for bounded polymorphic types in this setting. We then define a variant of the
π-calculus with the appropriate syntax, and propose a static bounded polymorphic
type system, for which we prove type soundness. We use our rules to give a typing
derivation and show the sequence of reductions in our example. Finally, we discuss
related work and possible future work in this area.

This research was funded by the EPSRC project “Novel Type Systems for
Concurrent Programming Languages” (GR/L75177,GR/N39494).

1 Introduction

Distributed client-server systems are structured around protocols which specify the form and
sequence of communications between agents. Such protocols are often complex, involving
substantial numbers of states and a variety of state transitions caused by different types of
message. When implementing a client or server which is meant to follow a particular proto-
col, it is clearly desirable to be able to verify (preferably automatically) that the sequence
and structure of messages sent and received is correct according to the protocol. However,
standard programming languages do not provide good support for this kind of verification.

The theory of session types addresses this problem by defining a notion of type which can
capture the specification of a client-server protocol. Session types can be associated with
communication channels, and the actual use of a channel by a program can be statically
checked against its type. Session types were proposed (in the context of a language based on
the π-calculus [13, 20]) by Takeuchi, Honda and Kubo [21] and have been studied further by
Honda, Vasconcelos and Kubo [8] and the present authors [3, 4]. More recently Vallecillo,
Vasconcelos and Ravara [23] have applied session types to the specification of component
object systems, and Gay, Ravara and Vasconcelos [6] have begun to transfer session types
from the π-calculus to a more conventional programming language.

In previous papers [3, 5] we increased the expressive power of session types in the π-
calculus by defining a notion of subtyping, based on Pierce and Sangiorgi’s [14, 15] system
of subtyping in the π-calculus but extended to the additional type constructors involved
in session types. The main application of subtyping is to allow certain kinds of server
upgrades, which alter the protocol and hence its session type, to be made without removing
the type-correctness of older clients which are unaware of the upgrade. However, the range
of permissible upgrades is not as large as we would like, and the goal of the present paper is
to extend it. We are still working within a language based on the π-calculus.

Our solution is to introduce a notion of bounded polymorphism, similar in general terms
to kernel F<:[1, 16] but adapted to the π-calculus. As far as we know this is the first study of
bounded polymorphism in the π-calculus, and the first study of any form of polymorphism in
relation to session types. We discuss some previous work on polymorphism in the π-calculus
in Section 7.

The rest of the paper is structured as follows. In Section 2 we review session types, illus-
trate their application to the specification of client-server protocols, describe the additional
expressive power provided by subtyping, and explain how we can use bounded polymor-
phism to increase the expressive power still further. In Sections 3, 4 and 5 we formalise the
syntax, type system and operational semantics of our version of the π-calculus, and outline
the proof of soundness of the type system. In Section 6 we present example derivations, and
in Section 7 we conclude, discuss related work, and indicate directions for further work.

2 Session Types in the Pi Calculus

Session types in the π-calculus provide the facility for a greater degree of structure in the
interaction between a client and a server. Both parties participating in a sequence of com-
munications are statically type checked, not only to ensure that the types of messages sent
are those expected, but also that the ordering of messages is correct. Furthermore, choices
can be offered and selections made by both client and server, the whole dialogue taking place

1

on a single channel.
Consider a server for mathematical operations which offers sine and square functions.

The communications with the client take place on a single session channel, x, with ports x+

and x−. We call + and − polarities, and we use them to indicate which end of a session
channel is being used in each occurence in a process. In this example, the server will use x+

and the client x−. x+ and x− each have an associated session type, which we will call S and
S, respectively.

S = &〈sin : ?[int] . ![real] . end, sqr : ?[int] . ![int] . end〉
S = ⊕〈sin : ![int] . ?[real] . end, sqr : ![int] . ?[int] . end〉

The &〈. . .〉 constructor (pronounced branch) in the type S indicates that a choice is offered,
in this case between two labels, sin and sqr, each of which then has a continuation type
representing a series of inputs and outputs (? for input, ! for output). Conversely, the
⊕〈. . .〉 constructor (pronounced choice) in the type S indicates the making of a choice. Note
that the pattern of sending and receiving for each label here is the opposite of that in the
type of the server’s port.

One possible implementation of a server and client using a channel with these types would
be

server = x+ . {sin :x+ ? [a : int] . x+ ! [sin(a)] . 0,
sqr :x+ ? [a : int] . x+ ! [a2] . 0}

client = x− / sin . x− ! [90] . x− ? [r : real] . 0

Here the server uses the .{. . .} construct (pronounced offer) to offer the labels sin and sqr.
Each label then has a continuation process performing the necessary inputs and outputs as
specified in the type. The client uses the / construct (pronounced choose) to choose the label
sin from those on offer and then performs the appropriate sequence of outputs and inputs.
As is usual in the π-calculus, we use parallel composition, |, to form a single process from
two others and write typing judgements in the following way.

x+ : S, x− : S, 90 : int ` server | client

2.1 Subtyping

Subtyping allows us to upgrade a server whilst maintaining backward compatibility with
clients that are written for the old version. Continuing our example, we might want to add
a tangent operation to our server. We might also want to modify the server to accept real
number inputs to the trigonometric operations. The type of the server’s end of the new
channel, S ′, would be

S ′ = &〈sin : ?[real] . ![real] . end, sqr : ?[int] . ![int] . end, tan : ?[real] . ![real] . end〉

with the server now being implemented as

server = x+ . {sin :x+ ? [a : real] . x+ ! [sin(a)] . 0,
sqr :x+ ? [a : int] . x+ ! [a2] . 0,
tan :x+ ? [a : real] . x+ ! [tan(a)] . 0}

The client, unaware of the change made to the server, would still like to communicate with
it on a channel where the server’s end has type S. With our definition of subtyping this can
happen, as it follows from the fact that int 6 real and the fact that S ′ offers additional labels
to those in S that S 6 S ′.

2

2.2 Bounded Polymorphism

We can see that subtyping allows us to describe server upgrades in a structured way. There is
a problem with this, however, in that there is a class of server upgrades for which subtyping
alone is not sufficient. Consider now a client-server interaction involving a single addition
operation. The communications again take place on a single channel, x, with two ports, x+

and x−. Here the type of x+ is

S = &〈plus : ?[real] . ?[real] . ![real] . end〉

A single label, plus, is offered, its continuation type showing that a real is input, followed by
another, and finally the resulting real is output. The client side of the channel, x−, has the
complementary type

S = ⊕〈plus : ![real] . ![real] . ?[real] . end〉

where a choice is made, albeit from the same single label. As one would expect, outputs
exist in the continuation type where inputs are present in S and vice versa.

If we consider int to be a subtype of real, we might hope that we could use our ’plus
server’ to add two integers on channel x. A process with a server and client performing this
interaction in parallel would look as follows.

P = x+ . {plus :x+ ? [a : real] . x+ ? [b : real] . x+ ! [a + b] . 0}
| x− / plus . x− ! [7] . x− ! [11] . x− ? [r : int] . 0

Here, the client chooses the plus operation offered. It then sends the integer 7 followed by
the integer 11 to the server, which adds these and sends back the result which the client
binds to the name r. Unfortunately, however, the typing judgement

x+ : S, x− : S, 7 : int, 11 : int ` P

is not correct, the reason being as follows: In our definition of subtyping, input is covariant
and output is contravariant: ?[int] 6 ?[real] and ![real] 6 ![int]. So, where the client wishes
to output the integers to be added, it can use the port’s capability to output real numbers
(as ![real] 6 ![int]) and the integers are promoted to reals inside the server, the result of
adding them being typed as a real too. When receiving the result, however, the type system
prevents the client from using the port’s capability to input reals to input an integer (as
?[real] 66 ?[int]) and thus the process is not typable.

One solution to this problem would be to have a separate server for each type. There
are obvious disadvantages to this approach, though, and a more elegant solution would be
preferable. We present a bounded polymorphic session type system with type variables and
their upper bounds attached to labels in the offer construct. The process would now be
written

Q = x+ . {plus(X 6 real) :x+ ? [a : X] . x+ ? [b : X] . x+ ! [a + b] . 0}
| x− / plus(int) . x− ! [7] . x− ! [11] . x− ? [r : int] . 0

where attached to the plus label in the server is a type variable X and an upper bound of
real. The client can pass with the label any subtype of real, which is then substituted for

3

X in the continuation process. In this case, the client chooses plus with type int and our
reduction rules allow this to reduce to the process

Q′ = x+ ? [a : int] . x+ ? [b : int] . x+ ! [a + b] . 0 | x− ! [7] . x− ! [11] . x− ? [r : int] . 0

where both client and server are expecting to send and receive integers at every communi-
cation step. Our typing rules allow the following typing judgement to be correct.

x+ : S ′, x− : S ′, 7 : int, 11 : int ` Q

where

S ′ = &〈plus(X 6 real) :?[X] . ?[X] . ![X] . end〉
S ′ = ⊕〈plus(X 6 real) : ![X] . ![X] . ?[X] . end〉

3 Syntax and Notation

Our language is based on a polyadic π-calculus with output prefixing [13] and is very similar
syntactically to the language we proposed for session types with subtyping [3]. The inclusion
of output prefixing is different from many recent presentations of the π-calculus, but it is
essential because our type system must be able to impose an order on separate outputs on
the same channel. We omit the original π-calculus choice construct, P +Q, and the matching
construct which allows channel names to be tested for equality. We add a conditional process
expression, however, written if b then P else Q where b is a boolean value, and therefore we
also have a data type of booleans, as well as integers and reals. Other data types could be
added along with appropriate primitive operations.

The most important addition to the syntax are the constructs for choosing between a
collection of labelled processes while exchanging a type to be used in the continuation of
an interaction, an extension of the constructs proposed by Honda et al. [8, 21]. As the aim
of this paper is to look at bounded polymorphism in conjunction with session types, we do
not include syntax for non-session channels. Neither do we include recursive processes or
recursive types (although these could be added), and therefore omit the standard π-calculus
replication operator, !. The need for linear control of session channels leads to the use
of polarities on session ports which play a similar role to the polarities used on types by
Kobayashi et al. [9, 10].

The type system has syntax for type variables and data types; these being the types
that can be used as upper bounds. It also has constructors for session types similar to those
proposed by Honda et al. [8, 21], but with type bindings attached to each label in a branch
or offer type. Subtyping will be defined in Section 4.

In general we use lower case letters for channel names, upper case P , Q, R for processes,
upper case T , U etc. for types, l1, . . . , ln for labels of choices, and X1, . . . , Xn for type
variables. We write x̃ for a finite sequence x1, . . . , xn of names, T̃ for a finite sequence
T1, . . . , Tn of types, and x̃ : T̃ for a finite sequence x1 : T1, . . . , xn : Tn of typed names.

4

3.1 Types

The syntax of types is defined by the following grammar.

Types T ::= B | S
Type Bounds B ::= D

| X (type variable)
Data Types D ::= bool | int | real
Session Types S ::= end

| ?[T̃] . S

| ![T̃] . S
| &〈li(Xi 6 Bi) :Si〉i∈{1,...,n}
| ⊕〈li(Xi 6 Bi) :Si〉i∈{1,...,n}

Free and bound type variables are defined as follows: variables X1, . . . , Xn are bound in
&〈li(Xi 6 Bi) :Si〉i∈{1,...,n} and ⊕〈li(Xi 6 Bi) :Si〉i∈{1,...,n} and are free otherwise. We identify
types up to α-equivalence.

The type S is a session type for one port of a session channel, say x+. If x+ has type S
then x− will have type S, the dual (or complementary) type of S, which is defined inductively
as follows.

end = end

?[T̃] . S = ![T̃] . S ![T̃] . S = ?[T̃] . S

&〈li(Xi 6 Bi) :Si〉i∈{1,...,n} = ⊕〈li(Xi 6 Bi) :Si〉i∈{1,...,n}

⊕〈li(Xi 6 Bi) :Si〉i∈{1,...,n} = &〈li(Xi 6 Bi) :Si〉i∈{1,...,n}

As we have type variables, we define substitution, again inductively, as follows.

D{B/X} = D
X{B/X} = B
Y {B/X} = X if Y 6= X

end{B/X} = end

(?[T̃] . S){B/X} = ?[T̃{B/X}] . S{B/X}
(![T̃] . S){B/X} = ![T̃{B/X}] . S{B/X}

(&〈li(Xi6Bi) :Si〉i∈{1,...,n}){B/X} = &〈li(Xi6Bi{B/X}) :Si{B/X}〉i∈{1,...,n}
∗

(⊕〈li(Xi6Bi) :Si〉i∈{1,...,n}){B/X} = ⊕〈li(Xi6Bi{B/X}) :Si{B/X}〉i∈{1,...,n}
∗

∗where ∀i ∈ {1, . . . , n}.X 6= Xi

3.2 Processes

The syntax of processes is defined by the following grammar.

P ::= 0
| P |Q | xp . {li(Xi 6 Bi) :Pi}i∈{1,...,n}
| (νx± : S)P | xp / l(B) . P

| xp ? [ỹ : T̃] . P | if x then P else Q
| xp ! [ỹ] . P

Most of this syntax is fairly standard. 0 is the inactive process, | is parallel composition
and (νx± : S)P declares a local channel x with two ports, x+ and x−, of types S and S

5

respectively for use in P . The process xp ? [ỹ : T̃] . P receives the names ỹ, which have types
T̃ , on port xp, and then executes P . The process xp ! [ỹ] . P outputs the names ỹ along
the port xp and then executes P . Process xp . {li(Xi 6 Bi) :Pi}i∈{1,...,n} offers a choice of
subsequent behaviours on port xp — one of the Pi can be selected as the continuation process
by sending on session port xp the appropriate label, li, and an accompanying type B that is
a subtype of Bi, as explained in Section 1. Process xp / l(B) . P sends the label l and type
B along port xp in order to make a selection from an offered choice, and then executes P .
The conditional expression, as one would expect, selects P or Q as the continuation process
depending on the boolean value, b.

We define free and bound names as usual: x is bound in (νx± : S)P , the names in ỹ are
bound in xp ? [ỹ : T̃] . P , and all other occurrences are free. Type variables X1, . . . , Xn are
bound in xp . {li(Xi 6 Bi) :Pi}i∈{1,...,n} and free in all other cases. A process with no free
names or variables we call a program. We define α-equivalence as usual, and identify pro-
cesses which are α-equivalent. We also define two substitution operations: P{x̃/ỹ} denotes
P with the names x1, . . . , xn simultaneously substituted for y1, . . . , yn; P{B/X} denotes P
with the type B substituted for X. In both cases, we assume that bound names/types are
renamed if necessary to avoid capture of substituting names.

As usual we define a structural congruence relation, written ≡, which helps to define the
operational semantics. It is the smallest congruence (on α-equivalence classes of processes)
closed under the following rules.

P | 0 ≡ P S-Unit
P |Q ≡ Q | P S-Comm

P | (Q |R) ≡ (P |Q) |R S-Assoc
(νxp : T)P |Q ≡ (νxp : T)(P |Q) if x is not free in Q S-Extr

(νxp : T)(νyq : U)P ≡ (νyq : U)(νxp : T)P S-Switch
xp . {li(Xi 6 Bi) :Pi}i∈{1,...,n} ≡ xp . {lσ(i)(Xσ(i) 6 Bσ(i)) :Pσ(i)}i∈{1,...,n}

S-Offer

In rule S-Offer, σ is a permutation on {1, . . . , n}.

3.3 Environments

An environment is a sequence of type variables and their upper bounds followed by a set of
typed names, written as follows.

X1 6 B1, . . . , Xm 6 Bm; xp1

1 : T1, . . . , x
pn
n : Tn

For an environment to be valid, each Bi can only refer to type variables X1 to Xi−1 and all
names, xp1

1 to xpn
n , must be distinct.

We use ∆; Γ, ∆1; Γ1, ∆2; Γ2 etc. to stand for environments, and if ∆ = ∅ we write just
Γ. We write x ∈ Γ to indicate that x is one of the names appearing in Γ. We then write
∆; Γ ` xp : T to indicate that the type of xp in ∆; Γ is T and ∆; Γ ` xp 6 T to indicate
that the type of xp in ∆; Γ is a subtype of T . When xp 6∈ Γ we write Γ, xp : T for the set
formed by adding xp : T to the set of typed names in Γ. When Γ1 and Γ2 have disjoint sets
of names, we write Γ1, Γ2 for their union. Implicitly, true : bool and false : bool appear in
every environment. We say that an environment is completed if it contains no session types
except for end and balanced if, for every session port in the environment with some type S,
the other port of that channel is also in the environment with type S.

6

4 The Type System

4.1 Subtyping

The principles behind the definition of subtyping in our previous paper [3] have been de-
scribed in Section 1. Our definition here is simplified due to the omission of non-session
channel types and recursive types. Type variable bindings are added to the labels in the
branch and choice rules, but are simply carried through. The main effect of introducing type
variables is that subtyping judgements are now relative to some ∆, a finite sequence of type
variables with upper bounds, equivalent to the first part of an environment.

Our definition of subtyping is algorithmic in Pierce’s terminology [16] — that is to say,
transitivity and reflexivity are theorems rather than definitions. We can also prove that if
T 6 U then U 6 T . Because we do not have recursive types, we have a simple inductive
definition according to the rules in Figure 1.

AS-Data
∆ ` D 6 D

AS-IntReal
∆ ` int 6 real

AS-TVar
∆, X 6 B, ∆′ ` X 6 B

AS-End
∆ ` end 6 end

∆ ` V 6 W ∀i ∈ {1, . . . , n}.(∆ ` Ti 6 Ui)
AS-In

∆ ` ?[T̃] . V 6 ?[Ũ] . W

∆ ` V 6 W ∀i ∈ {1, . . . , n}.(∆ ` Ui 6 Ti)
AS-Out

∆ ` ![T̃] . V 6 ![Ũ] . W

m 6 n ∀i ∈ {1, . . . ,m}.(∆, Xi 6 Bi ` Si 6 Ti)
AS-Branch

∆ ` &〈li(Xi 6 Bi) :Si〉i∈{1,...,m} 6 &〈li(Xi 6 Bi) :Ti〉i∈{1,...,n}

m 6 n ∀i ∈ {1, . . . ,m}.(∆, Xi 6 Bi ` Si 6 Ti)
AS-Choice

∆ ` ⊕〈li(Xi 6 Bi) :Si〉i∈{1,...,n} 6 ⊕〈li(Xi 6 Bi) :Ti〉i∈{1,...,m}

Figure 1: Subtyping Rules

4.2 Typing Rules

The typing rules are defined in Figure 2. T-Nil ensures that all interactions are finished
when typing the nil process, 0, by forcing the environment to be completed. In T-Par, the
rule for parallel composition, note that the two environments must have identical sequences
of type variables with upper bounds but distinct sets of names. This is because the upper
bounds of free type variables are global assumptions, but a name representing a session port
can only be used by one process at a time. The T-New rule forces the two ports of a session
channel to have dual types when bound in order that sequences of communications on tha
channel will not get out of step. T-Cond is standard.

The next four rules all involve communication on a session channel with the possibility
that its type will be promoted according to the subtyping given in the hypothesis of the
rule. Other than the subtyping, T-In is standard. In T-Out, the environment typing the
process P does not include the ỹ to ensure that each yi is only used by one process at a

7

∆; Γ completed
T-Nil

∆; Γ ` 0

∆; Γ1 ` P ∆; Γ2 ` Q
T-Par

∆; Γ1, Γ2 ` P |Q

∆; Γ, x+ : S, x− : S̄ ` P
T-New

∆; Γ ` (νx± : S)P

∆; Γ ` P ∆; Γ ` Q ∆; Γ ` x 6 bool
T-Cond

∆; Γ ` if x then P else Q

∆; Γ, xp : S, ỹ : Ũ ` P ∆ ` T 6 ?[Ũ] . S
T-In

∆; Γ, xp : T ` xp ? [ỹ : Ũ] . P

∆; Γ, xp : S ` P ∆ ` T 6 ![Ũ] . S
T-Out

∆; Γ, xp : T, ỹ : Ũ ` xp ! [ỹ] . P

∀i ∈ {1, . . . , n}.(∆, Xi 6 Bi; Γ, xp : Si ` Pi) ∆ ` T 6 &〈li(Xi 6 Bi) :Si〉i∈{1,...,n}

∆; Γ, xp : T ` xp . {li(Xi 6 Bi) :Pi}i∈{1,...,n} T-Offer

∆; Γ, xp : Si{B/Xi} ` P ∆ ` T 6 ⊕〈li(Xi 6 Bi) :Si〉i∈{1,...,n} 1≤ i≤ n ∆ ` B 6 Bi

∆; Γ, xp : T ` xp / li(B) . P T-Choose

Figure 2: Typing Rules

time. In T-Offer, there are a number of potential continuation processes depending on
the label received. Although the type variables X1, . . . , Xn are bound in the offer construct,
each Pi has Xi free and must be well typed in an environment where the type variable
Xi and its upper bound Bi are added to the ∆ component. In the final rule, T-Choose,
the environment that types the continuation process P is more complicated. Each type Si

contains a type variable Xi. P does not though, as it uses the chosen type B that is passed
with the label. P , therefore, must be typable in an environment where the session port has
type Si with B substituted for Xi. Finally, the type B must be a subtype of the appropriate
upper bound, Bi.

For the purposes of the examples in this paper we assume a language for arithmetic
expressions involving typing rules such as the following.

∆; Γ ` a : X ∆; Γ ` b : X ∆ ` X 6 real
T-Plus

∆; Γ ` a + b : X

More generally, we could extend the language to include constructors such as product types,
record types and function types with appropriate subtyping rules, giving a much richer
language.

5 Operational Semantics
As usual for languages based on the π-calculus, the operational semantics is defined using

a reduction relation [12]. P
x,l(B)−→ Q means that process P reduces to process Q in a single

step, either by means of a communication, a choice or a conditional statement. Where the

8

reduction involves a communication or choice, x is the channel on which this takes place.
Only if the reduction is a choice, l(B) is the label, l, which is chosen and the type, B, that
is passed with the label. In all other reductions x = τ and l(B) = .

Reductions are labelled in this way for two reasons: Firstly, where the reduction is on a
channel bound by a ν, we need to know this information to change the type in the ν. (This
occurs in the R-NewX rule described below.) Additionally, it is needed for the statement
and the proof of the subject reduction theorem, also described below. The labels have no
semantic significance and would be omitted in any implementation.

p = q̄
R-Comm

xp ? [ỹ : T̃] . P | xq ! [z̃] . Q
x,−→ P{z̃/ỹ} |Q

i ∈ {1, . . . , n} p = q̄
R-Select

xp . {li(Xi 6 Bi) :Pi}i∈{1,...,n} | xp / li(B) . Q
x,li(B)−→ Pi{B/Xi} |Q

R-True
if true then P else Q

τ,−→ P
R-False

if false then P else Q
τ,−→ Q

P
α,l(V)−→ P ′

R-Par

P |Q α,l(V)−→ P ′ |Q

P ′ ≡ P P
α,l(V)−→ Q Q ≡ Q′

R-Cong

P ′ α,l(V)−→ Q′

P
α,l(V)−→ P ′ α 6= x

R-New

(νx± : S)P
α,l(V)−→ (νx± : S)P ′

P
x,l(V)−→ P ′

R-NewX
(νx± : S)P

τ,−→ (νx± : tail(S, l(V)))P ′

Figure 3: Reduction Rules

Our reduction relation is the smallest relation closed under the rules in Figure 3.
R-Comm is the standard rule for communication, where the names received are substi-
tuted in the continuation process P . Note that we have a condition in the hypothesis that
the session ports must have dual polarities. R-Select is the rule for selection from a choice
of labels. A reduction is possible if the label chosen is one of those offered and, again, if the
ports have dual polarities. Note here that a type substitution occurs in the continuation of
the process offering the choice. R-True and R-False are standard, defining reduction in
conditional expressions. R-Par and R-Cong are also standard, defining reduction under
parallel composition and structural congruence. Finally, we have two reduction rules for
processes under ν bindings. R-New, allows reductions under a ν binding where the chan-
nel, x, on which the reduction takes place is not the name being bound. R-NewX, allows
reductions under a ν binding where the reduction is on the channel being bound. In this
case, the resulting process has a ν binding with a new type for the channel given by applying

9

the tail function to the old type, where tail is defined as follows.

tail(?[T̃].S,) = S

tail(![T̃].S,) = S
tail(&〈li(Xi 6 Ui) :Si〉i∈{1,...,n}, li(V)) = Si{V/Xi}
tail(⊕〈li(Xi 6 Ui) :Ti〉i∈{1,...,n}, li(V)) = Si{V/Xi}

We prove type soundness in the usual way: We prove a subject reduction theorem demon-
strating that a well-typed process with a reduction will reduce to another well-typed process.
Then we prove that any possible reductions immediately possible in a well-typed process do
not cause errors. Together, these results imply that a well-typed process can reduce safely
through any sequence of reduction steps.

We only prove type soundness for processes where the environment is balanced. This
is because we are only interested in reductions resulting from the execution of programs.
Although it is possible to type processes with unbalanced environments, for these to form
part of a program the typing derivation would eventually have to balance the environment
for the channels in it to be bound by a ν.

Theorem 1 (Subject Reduction) If Γ ` P , P
α,l(B)−→ P ′ and Γ is balanced then Γ′ ` P ′

and Γ′ is balanced.

Proof: By induction on the derivation of Γ ` P . The assumptions that Γ ` P is derivable
and Γ is balanced provide the information about the components of P ′ which is needed to
build a derivation of Γ′ ` P ′.

Theorem 2 (Run-Time Safety) If ∆; Γ ` P , P ≡ (νṽ : Ṽ)(Q | R) and ∆; Γ is balanced,
then

1. if Q ≡ xp ? [ỹ : T̃] . Q1 | xq ! [z] . Q2 then ∀zi ∈ z̃.∆; Γ, ṽ : Ṽ ` zi : Ui where Ui 6 Ti

2. if Q ≡ xp.{li(Xi 6 Bi) :Qi}i∈{1,...,n} |xq/li(B) . S then li ∈ {l1, . . . , ln} and ∆ ` B 6 Bi

3. if Q ≡ if x then P else Q then ∆; Γ, ṽ : Ṽ ` x : T where T 6 bool

Proof: From the derivation of ∆; Γ ` P . On reconstructing the typing derivation for each
of the potential reductions the typing rules yield the information necessary to construct the
relevant conclusion.

6 Example

In this section we give an example of a typing derivation and a sequence of reductions for a
process. The process is the addition interaction from Section 1.

6.1 Typing Derivation
Here we derive

∅; x+ : S, x− : S, 11 : int, 7 : int ` x+ . {plus(X 6 real) :P} | x− / plus(int) . Q

10

where
S = &〈plus(X 6 real) :T 〉
T = ?[X] . ?[X] . ![X] . end

P = x+ ? [a : X] . x+ ? [b : X] . x+ ! [a + b] . 0

Q = x− ! [7] . x− ! [11] . x− ? [r : int] . 0

First we derive P , the body of the polymorphic plus operation. Here we have a single type
variable X with an upper bound real, so ∆ = X 6 real.

(1)

∆; x+ : end completed

T-Nil
∆; x+ : end ` 0 ∆ ` ![X] . end 6 ![X] . end

T-Out
∆; x+ : ![X] . end, a + b : X ` x+ ! [a + b] . 0

(1) ∆ ` ?[X] . ![X] . end 6 ?[X] . ![X] . end
T-In

∆; x+ : ?[X] . ![X] . end, a : X ` x+ ? [b : X] . x+ ! [a + b] . 0 ∆ ` T 6 T
T-In

∆; x+ : T ` P

Then we derive Q, the body of the client that has integers to be added.

(2)

∅; x− : end, r : int completed

T-Nil
∅; x− : end, r : int ` 0 ∅ ` ?[int] . end 6 ?[int] . end

T-In
∅; x− : ?[int] . end ` x− ? [r : int] . 0

(3) ∅ ` T{int/X} 6 T{int/X}

(2) ∅ ` ![int] . ?[int] . end 6 ![int] . ?[int] . end
T-Out

∅; x− : ![int] . ?[int] . end, 11 : int ` x− ! [11] . x− ? [r : int] . 0 (3)
T-Out

∅; x− : T{int/X}, 11 : int, 7 : int ` Q

Finally, we add the offer construct to P and the choose construct to Q. The type variable X
is bound in the offer construct, the result being that both processes now have no free type
variables and can be put in parallel.

(4)

{
∆; x+ : T ` P ∅ ` S 6 S

T-Offer
∅; x+ : S ` x+ . {plus(X 6 real) :P}

(5)

{
∅; x− : T{int/X}, 11 : int, 7 : int ` Q ∅ ` S 6 S ∅ ` int 6 real

T-Choose
∅; x− : S, 11 : int, 7 : int ` x− / plus(int) . Q

(4) (5)
T-Par

∅; x+ : S, x− : S, 11 : int, 7 : int ` x+ . {plus(X 6 real) :P} | x− / plus(int) . Q

11

6.2 Reduction Steps

There are four reduction steps in the execution of the process. The first is an application of
the R-Select rule, the other three being applications of the R-Comm rule.

(a) x+ . {plus(X 6 real) :P} | x− / plus(int) . Q
x,plus(int)−→ P{int/X} |Q

(b) x+ ? [a : int] . x+ ? [b : int] . x+ ! [a + b] . 0 | x− ! [7] . x− ! [11] . x− ? [r : int] . 0
x,−→ x+ ? [b : int] . x+ ! [a + b] . 0 | x− ! [11] . x− ? [r : int] . 0

(c) x+ ? [b : int] . x+ ! [a + b] . 0 | x− ! [11] . x− ? [r : int] . 0
x,−→ x+ ! [a + b] . 0 | x− ? [r : int] . 0

(d) x+ ! [a + b] . 0 | x− ? [r : int] . 0
x,−→ 0

7 Conclusions and Future Work

We have identified a problem with the use of subtyping in combination with session types
in the π-calculus in that it is only possible for a client to take advantage of this subtyping
in relation to messages sent to the server, not those received from it. We have proposed a
system of bounded polymorphism incorporating session types which solves this problem by
introducing a dependency between the type of a message from the client (a selection) and
the types of messages which come from the server after that selection has been made.

7.1 Related Work

Polymorphism (in the style of the polymorphic lambda calculus (System F) [7, 19]) has been
studied in the π- calculus by Turner [22] and Pierce and Sangiorgi [17]. The programming
language Pict, based on the π- calculus, has a polymorphic type system. Weaker ML-
style polymorphism has been studied in π-calculus-like languages by Vasconcelos and Honda
[24] and the first author [2]. A rather different style of polymorphism has been proposed
by Liu and Walker [11]. We believe that the present paper is the first study of bounded
polymorphism in the π- calculus, and the first study of polymorphism in relation to session
types.

7.2 Further Work

In the syntax of processes we have restricted our upper bounds to be datatypes or other type
variables. This may seem like an arbitrary restriction, but the reason for this is as follows:
It is the case that if T 6 U then U 6 T . One result of this is that if we have a type variable
X with a session type as its upper bound, say ?[bool] . end, we have a lower bound for X,
i.e. ![bool] . end, but no upper bound. With no upper bound, it is not possible to construct
a typing derivation for processes using X, and so no programs using session types as upper
bounds would be typeble, even if the syntax of processes allowed it.

One possible solution may be to include a lower and upper bound on type variables i.e.
B1 6 X 6 B2. This would provide the necessary lower and upper bounds for dual types:
B2 6 X 6 B1. It would be necessary to find some motivating examples for this, however,
and it may be the case that there are no useful classes of process that we would want to be

12

typable with session types as upper bounds. Clearly there is scope for further work in this
area.

Our definition of subtyping for branch and choice types resembles kernel F<:in that the
upper bounds do not change when you go up the subtyping relation. We could investigate
a system more similar to full F<:, but again would need some motivating examples. Finally,
we could add normal channels and investigate bounded polymorphism as an extension to the
type system of the Pict [18] programming language, with type variable bindings separated
from the offer construct.

Acknowledgements

This research was funded by the EPSRC project “Novel Type Systems for Concurrent Pro-
gramming Languages” (GR/L75177,GR/N39494). Paul Taylor’s proof tree macros were used
in the production of this report.

References

[1] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymor-
phism. Computing Surveys, 17(4):471–522, December 1985.

[2] S. J. Gay. A sort inference algorithm for the polyadic π-calculus. In Proceedings, 20th
ACM Symposium on Principles of Programming Languages. ACM Press, 1993.

[3] S. J. Gay and M. J. Hole. Types and subtypes for client-server interactions. In S. D.
Swierstra, editor, ESOP’99: Proceedings of the European Symposium on Programming
Languages and Systems, volume 1576 of Lecture Notes in Computer Science, pages 74–
90. Springer-Verlag, 1999.

[4] S. J. Gay and M. J. Hole. Types for correct communication in client-server systems.
Technical Report CSD-TR-00-07, Department of Computer Science, Royal Holloway,
University of London, 2000.

[5] S. J. Gay and M. J. Hole. Types and subtypes for correct communication in client-server
systems. Technical Report TR-2003-131, Department of Computing Science, University
of Glasgow, February 2003.

[6] S. J. Gay, A. Ravara, and V. T. Vasconcelos. Session types for inter-process communi-
cation. Technical Report TR-2003-133, Department of Computing Science, University
of Glasgow, March 2003.

[7] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans l’arithmétique
d’ordre supérieur. PhD thesis, University of Paris VII, 1972.

[8] K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type discipline
for structured communication-based programming. In C. Hankin, editor, ESOP’98:
Proceedings of the European Symposium on Programming, volume 1381 of Lecture Notes
in Computer Science, pages 122–138. Springer-Verlag, 1998.

13

[9] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. In
Proceedings, 23rd ACM Symposium on Principles of Programming Languages, 1996.

[10] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the Pi-Calculus. ACM
Transactions on Programming Languages and Systems, 21(5):914–947, September 1999.

[11] X. Liu and D. Walker. A polymorphic type system for the polyadic π-calculus. In
CONCUR’95: Proceedings of the International Conference on Concurrency Theory,
volume 962 of LNCS. Springer-Verlag, 1995.

[12] R. Milner. The polyadic π-calculus: A tutorial. Technical Report 91-180, Laboratory
for Foundations of Computer Science, Department of Computer Science, University of
Edinburgh, 1991.

[13] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II. Infor-
mation and Computation, 100(1):1–77, September 1992.

[14] B. C. Pierce and D. Sangiorgi. Types and subtypes for mobile processes. In Proceedings,
Eighth Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society
Press, 1993.

[15] B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathematical
Structures in Computer Science, 6(5), 1996.

[16] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[17] B. C. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic pi-calculus.
In Proceedings, 24th ACM Symposium on Principles of Programming Languages, 1997.

[18] B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-calculus.
Technical Report CSCI 476, Computer Science Department, Indiana University, 1997.
In Proof, Language and Interaction: Essays in Honour of Robin Milner, Gordon Plotkin,
Colin Stirling, and Mads Tofte, editors, MIT Press, 2000.

[19] J. C. Reynolds. Towards a theory of type structure. In Paris colloquium on programming,
volume 19 of LNCS. Springer-Verlag, 1974.

[20] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

[21] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing
system. In C. Halatsis, D. G. Maritsas, G. Philokyprou, and S. Theodoridis, editors,
PARLE ’94: Parallel Architectures and Languages Europe, 6th International PARLE
Conference, Proceedings, volume 817 of Lecture Notes in Computer Science. Springer-
Verlag, 1994.

[22] D. N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation. PhD thesis,
University of Edinburgh, 1996.

[23] A. Vallecillo, V. T. Vasconcelos, and A. Ravara. Typing the behavior of objects and
components using session types. In 1st International Workshop on Foundations of
Coordination Languages and Software Architectures (FOCLASA 2002), volume 68 of
Electronic Notes in Theoretical Computer Science. Elsevier, August 2002.

14

[24] V. T. Vasconcelos and K. Honda. Principal typing schemes in a polyadic π-calculus.
In CONCUR’93: Proceedings of the International Conference on Concurrency Theory,
Lecture Notes in Computer Science. Springer-Verlag, 1993.

15

