Multi-Core Data Flow Analysis

Jeremy Singer Martin Ward
Glasgow De Montford

Core A Core A

Intel quad-core

A co.uk: multithreading: Books

<[> || A http://www.amazon.co.uk/s/ref=nb_sb_ss_c_1_147url=search-alias%3Dstripbooks&field-keywords=multithreading&x=0&y=0&sprefix=multithreading ¢ | (Q~ Google

Any Release Date
Last 30 days (11)
Last 90 days (44) 1.
Next 90 days (6)

Department
< Any Department
Books
Computing &
Internet (1,694) 2.
Study
Books (1,589)

Art, Architecture
&
Photography
(56)

Science &
Nature (565)

Scientific,
Technical &
Medical (336)

Business, Finance

NULTITHREADING

Reference (83)
Home &

Garden (13)
Sports, Hobbies &

Games (42)
Children's

Books (6)

LOOK INSIDEL

& Law (177) 3. Loox wsoe
Music, Stage & g

Screen (10) om‘mi.' =
Society, Politics & :hlﬁl

Philosophy (35) i

Showing 1 - 12 of 1,832 Results Sort by [Relevance

C++ Concurrency in Action: Practical Multithreading by Anthony Williams (Paperback - 28 Feb 2011)
Buy new: £50-99 £43.34

Available for pre-order. This item will be released on 28 February 2011.

Eligible for FREE Super Saver Delivery.

Modern Multithreading: Implementing, Testing, and Debugging Multithreaded Java and
C++/Pthreads/Win32 Programs by Richard H. Carver and Kuo-Chung Tai (Paperback - 11 Nov 2005)

Buy new: £55:95 £53.15

24 new from £37.98 7 used from £48.57

Get it by Thursday, Oct 7 if you order in the next 22 hours and choose express delivery.

Eligible for FREE Super Saver Delivery.

Only 2 left in stock - order soon.

(1)

Excerpt - Front Cover: "MULTITHREADING Implementing, Testing, and Debugging Multithreaded Java and C++ Pthreads Winn
Programs Richml H. Carver 8€¢a€¢a€¢a€¢a€¢a€tacta€¢a€ta€t¢=m-- Kuo-Chung Tal"

Concurrent Programming on Windows: Architecture, Principles, and Patterns (Microsoft .Net
Development) by Joe Duffy and Herb Sutter (Paperback - 28 Oct 2008)

Buy new: £35:99 £20.62

27 new from £17.86 7 used from £17.00

Get it by Thursday, Oct 7 if you order in the next 22 hours and choose express delivery.

Eligible for FREE Super Saver Delivery.

Foiotrdc (3)

Excerpt - Front Matter: " ... book covers all of these areas. When you begin using multithreading throughout an application, the
importance of clean architecture and design is critical"

Travel & 4. - The Art of Multiprocessor Programming by Maurice Herlihy and Nir Shavit (Paperback - 29 Apr 2008) -

<>

N

Comp ilers

Prmcuples, Techmques,
and Tools

Alfred V.Aho g (5%
RaviSethi & '
Jeffrey D. Ullman

Compilation

Execution

Native JIT

code compiler

Welcome to Java™

Java will make your Internet experience richer.
Whether you are playing games or music, getting
email on your mobile phone, checking out a
webcam, learning about the universe, or anything
in between, Java can make it better.

View License Agreement...

You must accept the license agreement by dicking
the Accept button to download the product.

[]Show advanced options panel Accept >

= distcc Monitor -

\

Host Slot |File State
localhost 1 fork.c Compile
nevada 0 ialloc.c Compile
nevada 1 crec32.c Compile
nevada 2 vm86.c Compile
nevada 3 datagram.c Preprocess
proforma 0 loop.c Compile
proforma 1 slab.c Receive
proforma 2 pageattr.c Preprocess

Load average: 3.31, 1.96, 1.83

2 LLVM

Static Single Assighment Form

* A program is defined to be in SSA form if each
variable is a target of exactly one assignment
statement in the program text.

Single Assignment Form

* A program is defined to be in SSA form if each
variable is a target of exactly one assignment
statement in the

Static Single Assighment Form

* A program is defined to be in SSA form if each
variable is a target of exactly one assignment
statement in the program text.

n K

Y1

"
Il

x.+1

SSA Construction Algorithm

 start with control flow graph derived from
program

* Variable names from orig program, and
compiler-generated temporaries

* produce control flow graph with SSA property

Two phases for construction

1. insert @p-functions

2. rename variables

High-level @-function insertion

 for each variable x
—for each definition of x
—follow control flow paths from def,

—at each merge point where def is no
longer the only definition of xin
scope, insert a @-function for x

Actual @-function insertion algorithm

Algorithm 1 Classical ¢-function insertion algorithm

1: W<+ {}
2: for all v : variable names in original program do

15:
16:
17:

for all d : definition statements of variable v do
let B be the basic block containing d
W «— W U{B}
end for
while W # {} do
remove a basic block X from W
for all Y : block € DF(X) do
if Y does not contain a ¢-function for v then
add v < ¢(...) at start of Y
if Y has not already been processed in W then
W+ Wu{Y}
end if
end if
end for
end while

18: end for

Actual @-function insertion algorithm

Algorithm parallel-a] ¢-function insertion algorithm

1: W)
2: IDOALL: variable names in original program do

3: for all d : definition statements of variable v do
4: let B be the basic block containing d
5: W« WU{B . .
6. end for tB) privatize W
7: while W # {} do
8: remove a basic block X from W
9: for all Y : block € DF(X) do
10: if Y does not contain a ¢-function for v then
11: add v < ¢(...) at start of ¥ gynchronize updates to CFG
12: if Y has not already been proccssed in Vv tacn
13: W+ Wu{Y}
14: end if
15: end if
16: end for

17: end while

18 ENHDO

High-level renaming algorithm

have an int counter for each orig var: Count(v)
have a stack of new vars for each orig var: Stack

(V)
go through program statements in order

At def of x, increment Count(x), push X ;. ONtO
Stack(x), rename x to Stack(x)

At use of x, rename x to Stack(x)
When defs go out of scope, pop them off Stack(x)

Actual renaming algorithm

Algorithm 3 Classical SSA renaming algorithm

1: for all V' : variables in original program do
2: Count(V) «+ 0

3: S(V) < EmptyStack

4: end for

5: call Search(EntryNode)

6:

6:

7: procedure Search(X : BasicBlock)
8: for all A : statement in X do

9: if A is not a ¢-function then

10: for all u : variables used in A do
11: replace use of u with S(u) in A
12: end for

13: end if

14: for all v : variables defined in A do
15: i < Count(v)

16: replace definition of v with v; in A
17: push v; onto S(v)

18: Count(v) + i+ 1

19: end for

20: end for

21: for all Y € Succ(X) do
22: let j be the index of the ¢-function operands in Y that correspond to basic block

X
23: for all F': ¢-function in Y do
24: let V be the jth operand in F
25: replace V with S(V) at the jth operand in F
26: end for
27: end for

28: for all Z € Children(X) do

29: call Search(Z)

30: end for

31: for all A : statements in X do

32: for all V; : variables defined in A do

33: let V be the original variable corresponding to V;
34: pop S(V)

35: end for

36: end for

37: end procedure

6:
7: procedure Search(X : BasicBlock)
8: for all A : statement in X do

9: if A is not a ¢-function then

10: for all u : variables used in A do
11: replace use of u with S(u) in A
12: end for

13: end if

14: for all v : variables defined in A do
15: i < Count(v)

16: replace definition of v with v; in A
17: push v; onto S(v)

18 Count(v) «i+1 synchronize Count

19: end for

20: end for

21: for all Y € Succ(X) do

22: let j be the index of the ¢-function operands in Y that correspond to basic block

X
23: for all F': ¢-function in Y do
24: let V be the jth operand in F
25: replace V with S(V) at the jth operand in F
26: end for
27: end for

2¢: dloall Z € Children(X) do
29: call Search(Z)

30, r privatize S
JP@QH a§ A : statements in X do

32: for all V; : variables defined in A do

33: let V be the original variable corresponding to V;
34: pop S(V)

35: end for

36: end for

37: end procedure

Implementation Details

* Algorithms implemented in Soot
— a Java bytecode compiler framework

* Parallelism via Java fork/join framework
— thread pool
— lightweight tasks
— work-stealing queues

* Thread-safe data structures

— java.util.concurrent.ConcurrentHashMap

Evaluation

* Use standard Java benchmark programs
— DaCapo, Java Grande

* Problem —some methods are so small that the
parallel algorithm performs worse that the
sequential one

e Solution — have a method size threshold,
below which we always use sequential
algorithm, above which we use parallel

Evaluation Platform

(i@ Core i7-920

e 4 cores X 2 contexts

JVM - 1.6, Hotspot v14.0-b16
Soot—-v2.4.0
Linux — x86_64 v2.6.31

speedup

SSA Speedup on DaCapo

e
3.5 T i
3 B ‘w i
25 |
2 L * l
15 -
. I

100 1000 10000

method length threshold
avrora —— jython g pmd - e
batik luindex sunflow ~--m--

fop «emee lusearch xalan oome

speedup

SSA Speedup on Java Grande

1 10 100 1000 10000
method length threshold
euler —— raytracer g
moldyn search

montecarlo - "o

Explain with Method Size Stats

app description # methods | mean length | maz length

avrora program simulator 2836 21.9 1083

batik SVG image processing 7137 34.3 41033

o fop PDF generator 6749 44.5 33089
8 jython Python interpreter 20664 25.4 7846
® luindex text indexing 1885 30.6 493
A lusearch text search 1613 26.9 1187
pmd static analysis 6477 33.6 2881

sunflow raytracer 1109 50.4 6308

xalan XML parser 6189 29.5 2881

o euler fluid dynamics 27 295.81 1822

s g moldyn molecular dynamics simulation 20 102.20 931
% & | montecarlo | Monte Carlo simulation 178 17.65 211
= O raytracer raytracer 65 30.63 229
search alpha-beta search 29 86.34 465

C] (Q" Google

I + [J http://www.docjar.com/html/api/org/apache/fop/text/linebreak/LineBreakUtils.java.html

Wikipedia News (410)v confsv SE3

dl Google Apple

private static byte lineBreakProperties[][]

new byte[512][];

private static void init 0() {

b I e e - T AN AN AN % AN AN AN AN AN WV
s (N NOYN N - OY L T T e e e N S
A =~ &~ & &« =N &~ "N ANANONNNNONON
s (N NOYNN N - OY L . L N N N S N
A =~ &~ & & =N &~ "N ANANONOOOON
=N NOYN NN - O L N T T L N U S N
A = s v s s NN s S NOYNONOON OO
s N NOYNN NN ~ O NN L L N N N
A =~ v v v s N s SN ANANOANNANNNON
SN ANOANN ~ON ~ &~ & & & & & & & =
A =~ &~ & & =N &~ "N ANANONNNNONON
s N NOYNN N -O L T T e e e N S
AN =~ & & & 2N ~“"~1I N O NONOOOON
s N NOYNN N - O E N . L N N N N S N N
A =~ &~ & &~ =N ~T N AN NONOONOO
s N ANOYO NN “ O - L N T T L N S N
A =~ &» v v s N &~ "N ANANOANNONONO
=N NOYN NN ~ O~ L N T T T N N
A =~ & & v s N “"ANANANNOANNONONO
s N NOYO NN - <t L T T e e N N N
A =~ &~ & & =N ~ONANANONNNNONON
=N NOYNN N - O E N L L T N N N S N N
A =~ & v &« s N HOANANNONNNNONGON
=N NOYNN OV L L N L T N S S SN
A =~ & & s s NOOANANNONNNNONGON
=N ANOYNN O P T T e e N N S . L Y
A = s 2 AN ANO AN ANNONNNNNON
s N NOYN O P O T e e N N N . L N N
A = 5 s 2 AN ANOANANNONNNNONON
s N ANOYAN O L T N e
M =~ &~ &~ &= s AN NOANANNONNNNONGON
N ANANOYAN O L L e N N . T N N S
= s s s A N NO AN AN NONOOOOO
AN NN O I . S S
= s s s s s N AN AN AN AN NOOODO O OYN
AN NOYO O N . T S N U S S
= s s s s AN AN AN AN AN NOOOOOY YO
AN NOYON O . T S N N U N S N
= s s s s s N AN AN AN AN NOOTOOYOY OO

9,9,9,9,9,9,%9,9,9,4,22,6,6,10,9,9,9,9,9,9,

P OO e b d bd b bd b d Cd d Cd d

—m e e = 000000000000 O
QOO OOOOPLPPPPPPPP PP PP
PP PP PP P D DD D N
N> Q0 0000000.0.0.0.0
bbbbbbbwwwwwwwwwwwww
2 2222220000000 00000O0
T R R -
< B < < < B < I < B <

1T | | [[O O | Y | Y | O I
mnnnnnon
e e O S N0 ONNO - ANM
O - i N UMDV M~NONdT A A A A A1 NNNN
0 n on n n n ononononononmomomomuoomuomuomuomaum
0O00OOOOOLOLOLOOOOOOOOOO O
[[[
PP PP PP PP PPPPPPPPPP PP
N e e T T T T T T T T T VT
0O0OOOOOOOLOLOOOOOOOOOO
ST T o TR o TR o TR o TR o TR s TR s TR o T o TR o TR o TR o TR o TN s TR s TN e TN o TR o
O0OO0OO0OO0OODODODODOODOODODOOOOODO
I L W L ¥ W W e W W W ¥ L W I VI VI I VI VI ¥
[« PR PR VIR PR« PR PR PR« PR P o PR PR PR« PR o PR PR« PR PR PR PR 9
MMM MMM Y Y Y Y MY
O O © © O moCCOCOCOCoOCCOC OO O ©
0O0O0OOOOOOOLOOOOOOOOOOO
I U W R U R W W W W I W I W W W VI VI ¥
mMoMmMmMmMmMMMMMMMMMMMMMMMM
OO0 OOOLOLOLOOOOOOOOO O
I = B = < B A < - - B =B = A =B = A = B = B = I < B < B < I < Y <
B s i i N i i i [| o
A A AAAAAAAAAAAAAAA-AH

speedup

Effects of Method Inlining

\\\\
\\\\
\\\\

.
l“
.
.

......

1 10 100
method length threshold

montecarlo - " search

raytracer - = -

1000

10000

Throw rotten fruit now

* Most methods are too short for parallel
algorithm.

* SSA construction time is insignificant in overall
compilation process.

 Why not parallelize SSA construction for
multiple methods at once?

Concluding Remarks

* We have presented one technique for
parallelization of data flow analysis, to take
advantage of multicore resources.

* We see overhead of fork/join parallelism
versus saving of parallel execution — need to

find threshold.

