Umver31ty School of
(y“ Gl asgow Computing Science

ForgetMeNot

Jeremy.Singer@glasgow.ac.uk

ENDS Seminar - 11 Dec 2013

P

T Unuiversity | School of
iy of Glasgow ‘ Computing Science

8
N
VIA VERITAS VITA

ForgetMeNot

a Nnew memory
management scheme

ENDS Seminar - 11 Dec 2013

a1 University ‘ School of
& of Glasgow | Computing Science

ForgetMeNot

a new memory
mis management scheme

ENDS Seminar - 11 Dec 2013

Typical Java application behaviour

* xalan from DaCapo benchmark
XML processing application
* runin 1GB heap with large input data

GC log output

GC 30813K->3748K(992256K), 0.0034510 secs]

Full GC 3748K->3502K(992256K), 0.0198550 secs
196014K->6473K(992256K), 0.0036810 secs]
198985K->604/K(992256K), 0.00211/0 secs]
198559K->5727K(992256K), 0.0023560 secs]
198239K->5759K(992256K), 0.0022000 secs]
198271K->580/K(1019904K), 0.0020840 secs]
22596/7/K->6191K(992256K), 0.0029830 secs]
226351K->6139K(1019904K), 0.0033360 secs]
253947K->586/K(1019904K), 0.0019180 secs]
2536/5K->6011K(1019904K), 0.001/530 secs]
253819K->610/K(1019904K), 0.00159/0 secs]
253915K->6091K(1019904K), 0.0015730 secs]
253899K->6051K(1019904K), 0.0014930 secs]
253859K->6235K(1019904K), 0.0014950 secs]

254043K->634/K(1019904K), 0.001/450 secs]

O
0.
1.
5 ¢
% ¢
3.
3.
g ¢
3.
4.
4.
4.
4.
4.
oF
5.

= (@ @ (@ @ 2 (@)

Summary of run

located data that died: 47 GB
d-gen data that died: 8 MB
ive at end data: 5 MB

ost 0P

- jie YUt

ENDS Seminar - 11 Dec 2013

GC causes overhead

e stop the world — pauses

http://gun.io/blog/how-to-hire-
android-developers/

Android is plagued by what we developers colloquially call "jank." When an iPhone

app scrolls smoothly and the Android counterpart stutters, that's jank. When an
Android app overrides the back button inappropriately, has an ugly title bar, or
crashes unexpectedly and unrepeatability, that's jank. Jank sucks.

Bring up this concept with your developer. They'll know what you're talking about,
and if they're up to snuff, they'll immediately start getting defensive about their

beloved platform and start offering their own anti-jank patterns.

They should know about how to properly use database-backed ScrollViews,
reusable ViewHolders, and how to only redraw the parts of the screen that have

changed. Ideally, they'll have seen the Google I/O talks talks on how to avoid jank,

ENDS Seminar - 11 Dec 2013 9

GC causes overhead

stop the world activities
eat up parallel threads
barriers in application code
space in object headers

Broad Spectrum of Storage

|1 cache
DRAM
HDD

Google Drive

Amazon
Glacier Store

£ 5760
£10
£ 0.05

£ 0.05 per
month

£ 0.01 per
month

1 ns

50 ns
4 ms
2.5ms+ ...

5 hours

Cache instead of Collect

* |locate infrequently accessed data further from
compute elements

— handles for objects, rather than direct pointers
— prefetching
— predicting access frequency

Overwrite instead of Collect

* [Rinard, 2007]

[Rinard, 2007]

Detecting and Eliminating Memory Leaks Using Cyclic Memory
Allocation

Huu Hai Nguyen and Martin Rinard

Department of Electrical Engineering and Computer Science
Computer Science and Artificial Intelligence Laboratory
Singapore-MIT Alliance
Massachusetts Institute of Technology
Cambridge, MA 021139

nguyen@nus.edu.sg,rinard @csail.mit.edu

Abstract to overlay live objects in memory. Our results indicate tk
our bounds estimation technique is quite accurate in practic
providing incorrect results for only two of the 152 suitat
m-bounded sites that it identifies. To evaluate the potent

We present and evaluate a new technique for detecting and
eliminating memory leaks in programs with dynamic mem-
ory allocation. This technique observes the execution of the

i t of overlaying live objects, we artificially reduce t
program on a sequence of training inputs to find mEI%)&] . Impac
allocatlon sites, which have the property that at any miar- 11 Beudids’ at m-bounded sites and observe the resulting b

I S T S T T havior. The resultine overlaving of live ohiects often da

Overwrite instead of Collect

[Rinard, 2007]
bounded circular allocation buffers
store at most n objects at each alloc site

run pine fairly successfully

dealing with crashes
— restart app
— checkpointing / runtime fault tolerance

— try/catch, weak pointers / programmer fault
tolerance

Reachability approximates liveness

* GC uses conservative approximation for
liveness

* |f | can access an object, will I?
* empirical study
* can we predict object death

— are there better proxies than reachability?

Conclusions

* Lots of changes in system memory
configurations and costs

* |let’s rethink the way we do memory
management

* Three ideas here
— cache, don’t collect
— overwrite, don’t collect

— speculative collection

