Java Programming 2 - Lecture #1 - Jeremy.Singer@glasgow.ac.uk

About the Java Programming Language

Java is an object-oriented, high-level programming language. It is a platform-neutral language, with a
‘write once run anywhere’ philosophy. This is supported by a virtual machine architecture called the
Java Virtual Machine (JVM). Java source programs are compiled to JVM bytecode class files, which are
converted to native machine code on platform-specific JVM instances.

.java source .class IVM executable

code files Java bytecode files VM machine code
romniler riintime

Java is currently one of the top programming languages, according to most popularity metrics." Since its
introduction in the late 1990s, it has rapidly grown in importance due to its familiar programming syntax
(C-like), good support for modularity, relatively safe features (e.g. garbage collection) and
comprehensive library support.

Our First Java Program
It is traditional to write a ‘hello world’ program as a first step in a new language:

S
* a first example program to print Hello world
*/

public class Hello {
public static void main(String [] args) {

System.out.println (“Hello world”);

Contrast with Python

Whereas Python programs are concise, Java programs appear verbose in comparison. Python has
dynamic typing, but Java uses static typing. Python scripts are generally interpreted from source,
whereas Java programs are compiled to bytecode then executed in a high-performance just-in-time
native compiler.

! E.g. see http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Supporting User Input in Simple Java Programs

There are two ways to receive text-based user input in simple programs like our ‘hello world’ example.

1) Users can pass command line arguments to the program, which are stored in consecutive
elements of the String array that is the only parameter of the main method. Here is a simple
example:

public static void main(String [] args) {

System.out.println(“Hello ” + args([0]);

2) Programs can request input from the standard input stream using the Scanner library class®. The
Scanner class will parse the input and return it (if possible) as a value of the appropriate type.
Here is a simple example:

public static void main(String [] args) {
java.util.Scanner scanner =
new java.util.Scanner (System.in);
int 1 = scanner.nextInt () ;

System.out.println (“Come in, number ” + 1i);

Questions

1) What does object-orientation mean?

2) So far we have come across at least five different Java types. How many can you spot in the
source code examples above?

2CheckouttheScannerlibmrydocumentationat
http://docs.oracle.com/javase/7/docs/api/java/util/Scanner.html

Java Programming 2 - Lecture #2 - Jeremy.Singer@glasgow.ac.uk &

Java Primitive Types
Java has eight primitive types defined and supported in the language and underlying virtual machine.
These are shown in the table below.

Type Description Default initial value
byte 8-bit signed integer value 0

short 16-bit signed integer value 0

int 32-bit signed integer value 0

long 64-bit signed integer value 0L

float 32-bit single precision IEEE 754 floating point value +0.0F

double 64-bit double precision IEEE 754 floating point value +0.0

boolean boolean value false

char 16-bit Unicode character value \u0000

Since Java is a statically typed language, types must be declared for:

* local variablese.g. int 1i;
* classfieldse.g.class C { boolean b;}
* method return and parameter values e.g. public float getValue(long 1) {..}

Matching Values with Types

Match the following values with their corresponding primitive types from the table above.

false 1.3e-9 ‘a’ -256 256 1L Double.POSITIVE INFINITY

Java Identifiers
An identifier is the textual label for a named Java entity, such as a class, field, method, parameter, local
variable... There are rules and conventions for identifiers.

The main rule is that an identifier must begin with a letter or an underscore, and must be at least one
character long. Non-initial characters may be letters, numbers or underscores. Note that since Java
supports the Unicode character set, letters are not restricted to the 26 characters of the Latin alphabet.

Conventions are not enforced by the Java compiler, but should be observed by careful programmers to
make source code easier to understand. Coding standards and guidelines will specify different
conventions. Near-universal conventions include:

¢ initial capital letter for class name, initial lower case for other identifiers

* multi-word identifiers are encoded in CamelCase e.g.
ArrayIndexOutOfBoundsException

¢ constant values have all caps identifiers e.g. Math.PI

Simple For Loops
The Java for loop has the same semantics as in C. The three clauses in the parentheses are for
initialization, termination condition check and post-loop-body update of the iteration variable(s). Thus:

for (int i=0; i<10; i++) { doSomething();}

is equivalent to:

int i; while (i<10) { doSomething(); i++;}

Below is a simple method that counts the number of vowel characters in a String object.

/**
* count the number of vowel chars [aeiou] 1in a String
* @arg s String to process
* @return number of vowel chars in s
*/
public static int numVowels(String s) {
int vowels = 0;
for (int i=0; i<s.length(); i++) {

char ¢ = s.charAt(i);

4

if (c=='"a
c=="e’ || ..) {

vowels++;

}

return vowels;

Notice the use of String API (application programmer interface) methods 1ength () and
charAt (). We can investigate the full set of St ring methods via the online Java API".

Questions
1) Check out the switch control-flow construct for Java. Can you replace the above i f statement

to check for vowels with a switch?

2) Isvoid a primitive type in Java?

! Just google for Java String APl Oracle and the appropriate webpage should be top of the search results.

Java Programming 2 - Lecture #3 - Jeremy.Singer@glasgow.ac.uk

Identifier Scope
In C-like languages, a block of statements is enclosed in curly braces { }. Generally all statements in the
block have the same indentation level, but this is not mandatory (unlike Python). A local variable
declared in a block is in scope (i.e. accessible) from the point of its declaration to the end of the
enclosing block. For method parameters, the parameter is in scope until the end of the method. For
iteration variables declared in a for loop initializer, the variables are in scope until the end of the loop
body.

No two local variables or method parameters that are in scope can share the same identifier name.
However a variable may have the same name as a package, type, method, field or statement label.
Below is a pathological example, from the Java Language Specification (2™ ed, pl13).

class a {
a a(a a) {
a:
for (;;) {
if (a.a(a) == a)
break a;
}

return a;

Switch statements

Whereas an if statement evaluates a boolean expression and conditionally executes one of two
statements/blocks, on the other hand a switch statement evaluates an integer expression (byte,
short, int, long, char, or enum) or a String (Java 7+) and conditionally executes one or more of
the multiple case blocks.

In the example source code below, note the use of a catch-all default case as the last case block in
the switch construct. This is mandatory unless all the possible values are covered by explicitly labeled
cases. Case labels must be constant expressions. Note the use of break statements to prevent fall-
through from one case to another (except where the cases share a code block).

/**
* lookup scrabble points for a single letter
* @arg c the letter to lookup
* @return the scrabble score for this letter
*/

public static int letterScore(char c) {
int score;

switch (c) {

\ r .

case ‘z
score = 10;

break;

case ‘x':
score = 8;
break;

/7.

case !

g’:

case ‘d’:
score = 2;
break;

default:
score = 1;
break;

}

return score;

Advanced Loop Control Flow

We have already looked at for and while loops. The break and continue statements' can be used
inside these loop bodies to direct control flow explicitly. A break is used to exit a loop entirely. A
continue is used to skip to the end of the current iteration and commence the next iteration (if any).

for (int i=0; i<args.length; i++) {
if (args[i].equals (“needle”) {
System.out.println (“found needle in haystack”);

break;

! See the helpful official documentation at http://docs.oracle.com/javase/tutorial/java/nutsandbolts/branch.html
for more details.

Java Programming 2 - Lecture #4 - Jeremy.Singer@glasgow.ac.uk

Type Conversions

Since Java is a statically typed language®, a declared variable can only hold values of a single, specific
type. In order to store a value of type t; in a variable of type t,, the value must be converted to type t,
before the assignment occurs. Some type conversions are implicit, i.e. the programmer does not need to
indicate the conversion in the source code. These are generally widening conversions, where little or no
information is lost. Example widening conversions include byte to 1ong, or int to double.

When a type conversion would result in significant potential loss of information, e.g. double to float
or int to short, thisis known as a narrowing conversion. In such cases, the conversion must be made
explicit using a type-cast operator which specifies the target type in brackets. For example:

int i = 1025;

byte b = (byte)i; // b has value 1
Floating-point to integer type conversions use the round to zero convention if the floating-point value is
in the representable range of the target integer type. For —ve and +ve numbers that are too large in
magnitude to represent, the MIN VALUE or the MAX VALUE of the integer type is selected,
respectively. The Java Language Specification gives full details of the type conversion rules’.

It is worth mentioning one other kind of conversion, from St ring objects to primitive values. Each of
the primitive wrapper classes has a static method to convert from a String to a primitive value of that
type. For instance, Integer.parselInt (“42”) will return the value 42 of type int. Consider the
program below, which takes a sequence of integers from the program arguments and sums the positive
integers until a 0 value appears, or there are no more arguments.

public static void main(String [] args) {

int i, sum = 0;
try {
for (i=0; i<args.length; i++) {
int value = Integer.parselnt(args[il);
if (value==0) break;

sum += value;

}

System.out.printf (“Sum of first %d args is %d\n”, i, sum);
}
catch (NumberFormatException e) {

// error in parsing

In contrast to dynamically typed languages, such as Python, Ruby and Javascript.
2 http://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html

Constant Values

The Java final modifier indicates that the relevant entity (for now, just class variables and local
variables) is a constant. Constant class variables are useful values for general calculations, for example
Math.E and Math.PI.(Note that constant class variables generally have all-caps identifiers.) Constant
local variables are useful to indicate values that should not change after their initial assignment, e.g. the
length of an array or a String can be stored in a £inal variable. The use of final is encouraged®
because it makes source code easier to read and also to optimize.

Math Library Methods

The Java Math library has some useful static methods for numeric calculations. These include
trigonometric functions like Math.sin (), simple utility functions like Math .pow (), etc. Check out
the full documentation at http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html. Note that

most of these methods operate on double values.

One particularly useful method is Math.random () which returns a pseudo-random double value, in
the range [0.0, 1.0). Values are uniformly distributed in this range. So, to get an int value in the range
[1,100], the code would look like:

int 1 = (int) (1 + Math.random()*100) ;

Fun Task

Write a Java program that computes a ‘secret’ random number in the range 1 to 20. The program
prompts the user for guess values. For each guess, the program outputs HIGHER, LOWER or CORRECT.
Until the guess is CORRECT, the user is prompted for another guess.

Hints: use the random number generation method above. Use Scanner.nextInt () on
System. in to acquire userinput. Use System.out.println () to output messages to the user. A
while loop (ora do/while)is appropriate for the control flow.

Question
1) Should method parameters be marked as final? If so, why? If not, why not?

® http://www.javapractices.com/topic/TopicAction.do?ld=23

Java Programming 2 - Lecture #5 - Jeremy.Singer@glasgow.ac.uk

Classes and Objects

Classes are types and objects are instances of types. Compare with the boolean primitive type, which
has true and false instance values. An example class is P1anet, with objects such asmercury,
venus, or skaro. A class contains members, which are either data fields or methods. The data fields
store state that describes some attributes of the object. The methods represent behaviour that
processes and transforms the object state. Effectively a class is an abstract description of a set of real-
world entities. (This is the object-oriented principle of abstraction.) Each instance of a class has data and

behaviour associated with it. (This is the object-oriented principle of encapsulation.)

Example Case Study
Below is a simple class representing a bank account.

public class BankAccount {
int balance;
String name;
int 1id;

static int nextId = 0;

void deposit(int value) { this.balance += value; }
void withdraw (int value) { this.balance -= value; }
BankAccount (String name, int initialAmount) {

this.name = name;

this.balance = initialAmount;

this.id = BankAccount.nextId++;

Object Instantiation

The constructor for an object looks like a method that has the same name as the class. The constructor
sets up initial values for the data fields to initialize the object state. If no constructor is explicitly defined,
then a default no-args constructor is automatically included. To invoke the constructor, use the new

keyword in Java. e.g. BankAccount b = new BankAccount ("test", 0);

Static members

A static member is associated with a class, rather than with any object created from that class. So for
static data fields, there is exactly one variable, no matter how many objects of the class have been
instantiated. A static method performs a general task for the class, rather than for any specific object. A
static method can only access static variables and call static methods in the class. A static method is
generally invoked via the class name, rather than via an object reference. e.g.
BankAccount.setInterestRate (0.5);

Inherited Methods

All objects inherit some methods from the class at the root of the inheritance tree, which is
java.lang.Object'. One such methodis toString (), which generates a String representation
of the object. By default, this String displays the name of the class type and the address in memory of
the object. However you can override this behaviour by supplying a custom toString () definition.
Another method inherited by all objects is equals () which compares two objects for equality and
returns a boolean value. Note that the == operator implements value equality for primitives, and
reference equality for objects (i.e. an object is only equal to itself). A custom equals () method allows

us to implement some kind of value equality for objects of a specific class.

Here is an example equality test for BankAccount objects. We assume that if two BankAccount

objects have equal int ids then the corresponding accounts are equal.

public boolean equals (Object o) {
boolean equal = false;
if (o instanceof BankAccount) {
BankAccount b = (BankAccount) o;
equal = (this.id == b.id);
}

return equal;

Questions

For the BankAccount class as defined above, how do we stop client code from resetting the nextId
static field to allow multiple accounts to share the same id? Also, how do we stop client code from
directly modifying the id fields of individual BankAccount instances?

!See http://docs.oracle.com/javase/tutorial/java/landl/objectclass.html for details.

Java Programming 2 - Lecture #6 - Jeremy.Singer@glasgow.ac.uk

Member Visibility Modifiers
In order to limit the visibility of class members, i.e. fields and methods, it is possible to specify an access
modifier as part of a member declaration. The table below shows the extent of visibility for members

with the various modifiers.

Modifier Same class Same package Any subclass Any class
public v v v v
protected v v v

(default) v V4

private v

private data fields are used for internal class state that must be accessed in a controlled way,

perhaps through getter and setter methods. See example below.

public class Person {
private int age;

public int getAge () {
return this.age;

}

public void setAge (int age) {
assert (age>=0); // age must be non-negative

this.age = age;

private methods are used for non-API methods that are utility/helper methods internal to a class.

Class Inheritance

Some classes are related to each other via an inheritance hierarchy. More general classes will have
characteristics in common with more specialized classes. A class B can be defined as a subclass of class
A, in which case B inherits the members of A. Effectively B is-a specialized version of A, or an extension
of A'. Subclasses are declared in Java using the extends keyword i.e.

public class B extends A { .. }

This notion of class inheritance is one of the most powerful object-oriented features of Java. The Java
language supports single inheritance (rather than multiple inheritance like C++). This means that the

!See http://docs.oracle.com/javase/tutorial/java/landl/subclasses.html for more details.

Java inheritance hierarchy is a tree rather than a directed acyclic graph. The root of the Java inheritance
hierarchy is the java.lang.Object class.

Method Overriding
If a subclass has a method with an identical signature (name, return type and parameter types) as a
superclass, then the subclass method is said to override the superclass method. Effectively, this is the

way that the subclass specifies alternative behaviour to the superclass. See the example below.

public class Person {
private Gender g;
public String getTitle() {
String title;
if (g==Gender.MALE) title = “Mr.”;
else title = “Ms.”;

return title;

}

public class TitledPerson extends Person {
private String title;
public String getTitle() {

return this.title;

Polymorphism

Polymorphism? literally means ‘many forms’. It means that wherever an instance of class 2 is expected
in a program, one may supply an instance of class B which is a subclass of A. This is an application of the
Liskov substitution principle®. Polymorphism is supported by virtual method invocation in Java — method
calls are dynamically dispatched based on the runtime type of the receiver object.

Questions
1) Can static methods be overridden in the same way as instance methods? If so, why? If not,
why not?
2) What is the point of a class with only private constructors?

’See http://docs.oracle.com/javase/tutorial/java/landl/polymorphism.html for details.
® This is starting to get into hard-core CS theory, see http://c2.com/cgi/wiki?LiskovSubstitutionPrinciple if
interested.

Java Programming 2 - Lecture #7 - Jeremy.Singer@glasgow.ac.uk

Static Methods
Recall that static methods are associated with a class rather than any particular instance. These

static methods are generally utility methods. Examples include:

* Math.random () which returns a double value in the range [0,1)
* System.exit (int status) which terminates all threads and aborts the running JVM
* Integer.parselnt (String s) which triesto interpret the parameter s as a 32-bit

integer value

Exceptions

When errors occur in program execution, Exception objects are thrown. All Exception objects
belong to classes that are subclasses of java.lang.Exception'. Some Exception objects are
subclasses of RuntimeException —these are unchecked. All other Exceptions are checked, and if

they may be thrown then they must be caught or declared in the enclosing method’s throws clause.

An example of a checked exception is FileNotFoundException. An example of an unchecked

exception is ArrayIndexOutOfBoundsException.
It is possible to instantiate and throw exceptions directly in your own code, i.e.
throw new Exception();

Customized exceptions can be created — either (1) by supplying an error message String in the
Exception constructor (the String can be retrieved via the Exception.getMessage () instance

method) — or (2) by extending the Exception class and possibly adding new instance fields.

Handling Exceptions

A try block should enclose code that may throw an Exception instance. A try block may be
followed by one or more catch blocks, each of which takes a single Exception parameter. The
catch blocks are evaluated in sequential order, and the first catch block whose parameter type
matches the thrown exception is executed. A t ry block may also be associated with a finally block,
which is executed either after the non-exceptional exit from the try block, or after any matching
catch block has been executed. Example source code is shown below:

!See http://www.oracle.com/technetwork/articles/entarch/effective-exceptions-092345.html for a discussion of
Exceptions in Java.

try {

}

catch (Exception e) {
}

finally {

}

Abstract Classes and Methods

Some superclasses have ‘holes’ in them, which subclasses can fill in” when they extend the superclass.

The “holey’ superclasses are marked as abstract classes, which have abstract methods declared in

them. The abstract class only defines a partial implementation. An abstract class cannot be

instantiated. An abstract method only has a signature and no method body, thus it cannot be called.

A subclass of an abstract class must supply an implementation for the inherited abstract

methods, or the subclass itself must be marked as abstract.

The abstract method mechanism is a way to enforce that subclasses conform to a particular API. An

example is shown below. All subclasses of TwoDimensionalPoint mustimplement the

distanceToOrigin () method.

public abstract class TwoDimensionalPoint {
double x;
double y;
public abstract double distanceToOrigin();

public class CartesianPoint extends TwoDimensionalPoint {
public double distanceToOrigin () {
return Math.sqgrt (x*x+ty*y);

public class ManhattanPoint extends TwoDimensionalPoint {
public double distanceToOrigin () {
return Math.abs(x) + Math.abs(y);

Questions
1) Canan abstract class have constructors? If so, why? If not, why not?
2) What is the relationship between an abstract classand an interface?

Java Programming 2 - Lecture #8 - Jeremy.Singer@glasgow.ac.uk

Constructor Chaining

In a constructor body, the first action must be to call a superclass constructor. If there is no explicit
superclass constructor call, then the compiler inserts a default no-args constructor to the superclass, i.e.
super (). Every time a constructor is invoked, there is a chain of constructor calls going up the
inheritance hierarchy all the way back to java.lang.Object. We can see this by inserting

println statements into a set of constructors:

public class A {

public A() { /*super();*/ System.out.println(“A constructor”); }
}
public class B extends A {

public B() { /*super();*/ System.out.println(“B constructor”); }
}
public class C extends B {

public C() { /*super();*/ System.out.println(“C constructor”); }
}

If there is not a no-args constructor in the superclass, then the subclass constructor must specify

explicitly which superclass constructor is to be called.

Calling Superclass Methods

In a similar way to superclass constructor invocation, it is possible to invoke a method from the
superclass that is overridden in a subclass, using the super pseudo-variable®. The super variable is a
reference to the current instance, with the type of its immediate superclass in the inheritance hierarchy.
Invoking a method through the super reference is not subject to polymorphic overriding (unlike

method invocation via the this reference.)

Leaves on the Inheritance Tree

In some cases, a developer may not want a class to be subclassed. If the class is marked as final, then
it cannot be subclassed. Similarly, if a method is marked as final, then it cannot be overridden in a
subclass. final classes and methods can improve security” (or predictability) — a developer can be
certain that an instance of a final class does what is expected, rather than any overriding behaviour.
In the code below, marking the PasswordChecker class as final (or the check method) would prevent

subclass injection attacks.

!See http://docs.oracle.com/javase/tutorial/java/landl/super.html for more details about super.
’ See http://www.oracle.com/technetwork/java/seccodeguide-139067.html#4 for attacks and corresponding
defence techniques.

public class PasswordChecker {
public boolean check(String username, String password) {
String passwordHash = hash (password) ;
String correctHash = lookupHash (username) ;

return (passwordHash.equals (correctHash) ;

public class DodgyChecker {
public boolean check(String username, String password) {

return true;

More on Exceptions

Recall that when an Exception is thrown in a try block, the associated catch blocks are examined
in sequential order and only the first matching catch block (if any) is executed. This means that catch
blocks should be ordered from least general to most general. The Java compiler will complain about
unreachable code if more general catch blocks (e.g. catch (Exception e) {})are positioned

above less general catch blocks.
Three useful methods in Exception objects are:

0 e.getMessage () —returns a String with some information about the exception

o e.printStackTrace () — prints out the calling context of the exception at the point
it was thrown

o e.toString () —generally returns a String indicating the concrete type of the

Exception instance

Exception messages may be printed to the System.err PrintStream, rather than the usual

System.out PrintStream.

Questions
How would you create a constructor for class Foo that creates an exact copy of another instance of Foo?
See the helpful Java Practices website® for more details.

® http://www.javapractices.com/topic/TopicAction.do?ld=12

Java Programming 2 - Lecture #9 - Jeremy.Singer@glasgow.ac.uk

Java Arrays
An array is a fixed length sequence of consecutive memory locations, indexed by an integer subscript.
Arrays are supported directly by the underlying Java Virtual Machine, so they are efficient to use.

Declaring Array Types
Each array has a type, which specifies the type of the individual elements and the dimensionality of the
array. For example, int [] is a one-dimensional int array and String[] [] is a two-dimensional

String array. Element types may be Java primitive types or Object (reference) types.

When an array is declared (perhaps as a method parameter, a local variable or a class member) it is
given a name. The name either comes after the type (i.e. String [] args)orisinserted within the
type (i.e. String args|[]). This latter form is a C-style hangover.

Initializing Array Values

An array declaration does not reserve space for the array elements, or specify the length of the array.
Instead it only declares a reference to the (currently uncreated) array. This means that the uninitialized
array reference is a null pointer value. The array may be created via a call to new or with an explicit
initializer.

int [] a = new int[10];

String [] as = { “each”, “peach”, “pear”, “plum” };

Subscripting Array References

Once the array has been created, array elements can be indexed via integer subscripts, e.g. a [3],

as [1]. Subscripts start from 0 (unlike Fortran, COBOL or Matlab). The maximum allowable subscript is
slightly less than Integer .MAX VALUE. However if a subscript is greater than or equal to the length
of the array, then an ArrayIndexOutOfBoundsException unchecked Java exception is thrown at
runtime.

The length of an array is constant, stored in a field of that name, e.g. a. length, as. length. Note

that for String objects, 1ength () is a method whereas for arrays, 1ength is a field.

Iterating over Arrays
The standard idiom for iterating over an array is to use a for loop.

for (int i=0; i<a.length; i++) {

An alternative, more concise, notation is to use the for-each loop idiom, in cases where the array

indexing does not need to be explicit.

for (String s: as) {

System.out.println(s);

Helper Methods for Arrays

Since an array is effectively an object in Java, it inherits all the methods from java.lang.Object.

The java.util.Arrays'class contains a set of static helper methods for array manipulation,

including Arrays.toString () and Arrays.fill ().

The ArrayList Data Structure

The major limitation of Java arrays is that they have a fixed length. The java.util. ArrayList2

class is a more flexible (although less efficient) library class that implements variable length arrays. The
ArrayList class is part of the Java Collections framework®. Creation, subscripting and other operations are
now all library methods rather than built-in syntax. Further, ArrayList element types must be objects

rather than primitive values. See the example below.

ArrayList<Integer> nums =
nums.add (1) ;
nums.add (1) ;
2;
int fib =

int 1 =

1;

while
fib = nums.get(i-1)
nums.add (£fib) ;

(fib < LIMIT && nums.size ()

+ nums.get(i-2);

new ArrayList<Integer>();

< SIZE LIMIT) {

Note that ArrayList structures can be converted to arrays, and vice versa using the Arrays helper

methods.

!See http://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html
% See http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
®See http://docs.oracle.com/javase/7/docs/technotes/guides/collections/index.html

Java Programming 2 - Lecture #10 - Jeremy.Singer@glasgow.ac.uk

Java Collections

The Collections framework® is a Java standard library. Each Collections class supports the processing of a
series of related elements in a common data structure. In this course, we are going to consider the
java.util.ArrayList class, but there are other kinds of Collections including Set, Stack and
HashMap. You will explore some of these data structures in the ADS2 course next semester. The
advantage of the Collections framework is that it provides a standardized, reusable implementation for
these common data structures.

The Collections framework forms an object-oriented class hierarchy. The base class® is
java.util. Collection® which defines methods that all Collections must implement including

add (), remove (), contains (), size () and toArray ().

The ArrayList Data Structure

The major limitation of Java arrays is that they have a fixed length. The java.util.ArrayList*
class is a more flexible (although correspondingly less efficient) Collections class that implements
variable length arrays. The backing array grows and shrinks dynamically as elements are added to the
ArrayList.

ArrayList operations are invoked by method calls, rather than by built-in Java syntax (unlike arrays).

Below is an example source code snippet:

ArrayList<Integer> nums = new ArrayList<Integer>();

nums.add (1) ;

nums.add (1) ;

int 1 = 2;

int fib = 1;

while (fib < LIMIT && nums.size() < SIZE LIMIT) ({
fib = nums.get(i-1) + nums.get (i-2);
nums.add (£fib) ;

Elements can be removed from an ArrayList using the remove () call. If an element is removed

from the middle of the list, elements to the right are shuffled down.

! http://docs.oracle.com/javase/7/docs/technotes/guides/collections/overview.html
2Actuallyaninterface,butwehaven’tIearntabouttheseyet.

3 http://docs.oracle.com/javase/7/docs/api/java/util/Collection.html

* See http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html

Note that ArrayList structures can be converted to arrays using the toArray () method, and vice
versa using the java.util.Arrays’ helper methods.

Iterating over Collections
Collections are Iterable, which means that we can use a for—each loop to iterate over Collection

elements.

ArrayList<String> words = new ArrayList<String>();
nums.add (Yantidisestablishmentarianism”) ;
nums.add (“monosyllabic”) ;
int totalChars = 0;
for (String word : words) {
totalChars += word.length ()
}
System.out.printf (“total number of characters: %d\n”,
totalChars) ;

Generic Types

Collection classes are type-parameterized. The type specified in angle brackets after the Collection class
name specifies the type of the elements stored in that Collection. This makes the Collections classes
generic, in that they can be used with any type of element. The most general element is
java.lang.Object. Note that subclasses of the specified element type are also valid element types. The
element type is specified for the declaration and the construction of the Collection — e.g.

ArrayList<Object> objects = new ArrayList<Object>();

Wrapper Classes
Only object references (i.e. pointers to objects in the heap) can be stored as elements in a Collection.
Therefore primitive values cannot be stored directly as Collection elements. To get around this, we use

wrapper classes for each primitive. java.lang.Integer is the wrapper class for the int primitive type.

int 1iPrim = 42;
Integer iWrap = new Integer (iPrim);
int x = iWrap.intValue () ;

Question

Strings and Wrapper classes are immutable. What does this mean? Why is it useful?

> http://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html

T

)

= s 3
Java Programming 2 - Lecture #11 - Jeremy.Singer@glasgow.ac.uk 4

Generic Classes

As we saw last week, the Java Collections Framework uses type parameters to allow the data structures
to be specialized for particular element types, e.g. ArrayList<String>. Itis also possible to define

your own generic classes® with type parameters. In the example below, we will define a Pair class with
a single type parameter T. Note how T is specified in angle brackets at the start of the class declaration.

Then this type parameter can be used as a reference type within the scope of the class body.

public class Pair<T> {
private T first;
private T second;

public T getFirst() {
return this.first;

public void setFirst (T first) |

this.first = first;

Note that type parameters may be constrained in terms of the object-oriented inheritance hierarchy?.
For instance, suppose the Pair generic class above should only be allowed to store

java.lang. Number? types, we would specify this as:

public class Pair<T extends Number> {..}

Generics are a compile-time feature of Java. They are useful for compile-time type checking. However
generics are erased before runtime. This has several important implications:

* static members are shared across all specialized versions of a generic class
* thereis no way of distinguishing between types of generic classes using instanceof or Java

reflection facilities at runtime

!See http://docs.oracle.com/javase/tutorial/java/generics/types.html for full details
’See http://docs.oracle.com/javase/tutorial/java/generics/bounded.html for details
’ Number is a superclass of the library numeric types, see
http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html

Packages in Java

Java packages” are a unit of modularity. A package is used to group together a set of related resources
(generally Java classes). Use the package keyword at the top of a Java source code file to specify the
package to which a class belongs. Generally, a class in package Foo should be stored in directory Foo on
the filesystem. If no package is specified, then the class belongs to the default package, which is the
current working directory.

A fully-qualified classname includes its package, e.g. java.lang.String or
java.util.ArrayList. However a class may be referred to without its package name if the
import statement is used. This statement opens the namespace of the imported package to the

current scope.

package a;

public class A { ..}

package b;
public class B { A.a .. }

package c;
import a.A;
import b.B;
public class C { A .. B .. }

Classes in the current package do not require their fully-qualified names. Also the java . lang package

is imported implicitly.

Package Naming Conventions

In theory, every Java class defined by any software developer should have a globally unique name. To
accomplish this, there is a standard convention’ for naming packages. Developers use their associated
internet domain name in reverse form, followed by a locally unique suffix. So for instance, for JP2
example programs, | might use the package uk.ac.glasgow.dc.jp2

Questions
To which packages do the following classes belong?

. Scanner

. FileNotFoundException
. List

. Boolean

=W N

* See http://docs.oracle.com/javase/tutorial/java/package/ for a good tutorial on packages
> See http://en.wikipedia.org/wiki/Java_package#Package naming_conventions

Java Programming 2 - Lecture #12 - Jeremy.Singer@glasgow.ac.uk

Object-Oriented Class Hierarchies

Below are some example class hierarchies, with most general on the left, and most specific on the right.

TvProgramme

java.lang.
Exception

BankAccount

Planet

Motivating the need for Interfaces

A subclass specializes some feature of its superclass, as demonstrated above. However sometimes there
are class features which run orthogonal to the inheritance hierarchy. For instance, Human and Parrot
objects can both speak (), butin a typical inheritance hierarchy, they would not have a common
superclass (other than Vertebrate, which does not have the speak () method since most other

animals with a backbone are unable to talk).

The problem is, we want some classes to inherit behaviour from multiple parent classes. Human should
be a subclass of both Primate and TalkingCreature. Parrot should be a subclass of both Bird

and TalkingCreature.

The solution in Java® is to use interfaces to encapsulate these relationships that are orthogonal to the
main inheritance hierarchy. An interface specifies a number of abstract methods (i.e. method signatures
but no bodies). A class that implements an interface is obliged to provide an overriding method

definition for the abstract methods inherited from the interface (unless the class is declared as abstract).

Effectively, an interface is a form of contract that implementing classes must honour.

! More clunky solutions to this problem (e.g. C++) include multiple inheritance. More elegant solutions (e.g. Scala)
include traits ormixins.

Lets 9"
GoWN9:

interface TalkingAnimal {
void speak(String s);

}

public class Human extends Primate
implements TalkingAnimal {
public void speak(String s) {
// vocal chord vibrations..

}

public class Parrot extends Bird
implements TalkingAnimal {
public void speak(String s) {
// stretch trachea and whistle..

Note that a class may only extend one superclass, but it may implement many interfaces. Also,

interfaces may extend other interfaces. Interfaces should only contain method signatures, which are

implicitly public and abstract, and constant valued fields, which are explicitly static and

final.

The Comparable Interface

The Java standard library includes an interface java.lang.Comparable<T>” which requires

implementing classes to provide a single method compareTo (). This interface enables the correct

behaviour of the generic java.util.Collections.sort () ® method.

public class Country implements Comparable<Country> {
String name;
int population; // in millions
public int compareTo (Country other) {
return (this.population-other.population);

ArrayList<Country> cl = new ArrayList<Country<>();
cl.add(new Country (“USA”, 300);

cl.add(new Country(“Scotland”, 5);

cl.add(new Country(“China”, 1300);

Collections.sort(cl);

’See http://docs.oracle.com/javase/7/docs/api/java/lang/Comparable.html
®See http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html

Java Programming 2 - Lecture #13 - Jeremy.Singer@glasgow.ac.uk
JVM Memory Layout

Runtime memory in the Java virtual machine is organized into distinct areas" as you know from CS2.

The stack’ is used to store local variables that belong to a single method. When the method is invoked, a
stack frame for that method is pushed onto the stack. When the method returns, the corresponding
stack frame is popped from the stack. This means that local variables are only alive from the time the
method is called until the time the method returns.

The heap is used to store data that is dynamically allocated via the new keyword, such as objects and
arrays. Heap-allocated data remains alive so long as it is reachable from a root reference (e.g. a local
variable on a stack frame or a global variable in a static field). When heap-allocated data is no longer
reachable, it may be garbage collected. Garbage collection is triggered when the heap fills up, or when
the program invokes System.gc () ®.If there is not enough space in the heap for new data to be

allocated, then the virtual machine throws an OutOfMemoryError.

Each class file contains a constant pool area, which stores compile-time constants such as string literals
and integer values. Also runtime linking information (method names, etc) is stored in the constant pool.
When classes are loaded at runtime, the constant pool information is copied into the virtual machine
constant pool area which is shared between all runtime threads.

Inserting into ArrayLists

Last week we saw that we could compare objects that implement the Comparable interface. Let’s use
this to insert objects into an ArrayList to maintain a sorted order. Effectively, this is the basis for the
insertion sort algorithm which you will learn more about in ADS2 next semester.

list = new ArraylList<Comparable> () ;
for (String arg : args) {
boolean inserted = false;
for (int 1=0; i<list.size () && !inserted; i++) {
if (list.get (i) .compareTo (arg)>0) {
// first list element that’s greater than arg
list.add (i, arg);

inserted = true;

}

if (!inserted) {
// add arg to end of list (largest element)
list.add(arqg) ;

}

!See http://docs.oracle.com/javase/specs/jvms/se5.0/html/Overview.doc.htmI#1732 for full details.
?In fact there is one stack per thread, but we will not consider multi-threaded code just yet.
® See http://docs.oracle.com/javase/7/docs/api/java/lang/System.html

Functional Operations on Lists
Imagine you want to compute a sum of squares for a list of integers. Using the Java idioms we know
already, the code might like similar to:

int sum = 0;

for (int 1 : 1ist) {
squarelList.put (i*1i);

}

for (int square : squareList) {
sum += square;

It would be possible to fuse the two loops into a single loop body, although the code might look less
clear and an optimizing compiler will probably do this anyway. In either case, the code looks messy. This
kind of map / reduce computation is better expressed using a functional idiom.

The next version of Java (i.e. Java 8) should support lambdas, which are anonymous functions that can
be applied to streams of data. The above example might be rewritten as:

int sum = list.stream().map(i -> {i*i}).sum();

This code is simpler and more intuitive in every way. The programmer intention is explicitly seen in the
program. This code is functional, elegant and parallelizable. Note that the precise syntax for lambda
expressions is subject to change. Java 8 pre-release binaries are available now®. Other JVM languages
(e.g. Scala, Clojure, Groovy) already have extensive support for functional operations on list-like data

structures.

Example in Scala
Scala is a JVM language that has more functional characteristics. Here is an interactive session | typed

into the Scala online interpreter”.

val 1 = List(1,2,3,4,5)

l: List[Int] = List(1l, 2, 3, 4, 5)
val 12 = 1l.filter(n=>n%2==0)

12: List[Int] = List(2, 4)

val 13 = l.map(n=>n*n)

13: List[Int] = List(l, 4, 9, 16, 25)
val sum = 13.foldLeft(0)(_+_)

sum: Int = 55

* Download from https://jdk8.java.net/
> Try for yourself at http://www.simplyscala.com/

Java Programming 2 - Lecture #14 - Jeremy.Singer@glasgow.ac.uk

Immutable Data Types

Once an immutable object” has been constructed, its internal state cannot be modified. Examples from
the Java standard libraries include String and primitive wrapper classes like Integer. Operations on
String objects like concatenation actually return newly constructed String objects and leave the

original objects unmodified.? There are several key benefits with immutability:

* Immutable objects can be safely shared between threads or data structures.

¢ Deduplication optimizations can save memory. Two immutable objects with the same field
values are effectively indistinguishable and can be mapped onto the same object at runtime.

* Immutable objects are ideal lookup values (keys) in Map data structures like hashtables.

Implementing Immutability

To define an immutable data type, all the instance fields need to be private and have associated
getter methods but no setters. The constructor must set up all the internal state for the object, which
cannot be subsequently modified. If any of the instance fields refer to mutable objects, then the
associated getter should return a reference to a copy, rather than the original field. Look at the Person
example below —the names field refers to an ArrayList, which is a mutable object so the underlying

reference should not be returned directly.

public class Person {

private ArraylList<String> names;

// check out this interesting varargs syntax!
public Person(String.. names) {

this.names = new ArrayList<String>();

for (String name: names) {

this.names.add (name) ;

}

// returns a copy of the names list, not the
// underlying reference
public List<String> getNames () {

return (List) (this.names.clone());

! See http://www.javapractices.com/topic/TopicAction.do?1d=29 for full details on immutability
* This means the use of repeated String concatenation to build up a compound String is highly inefficient — it
is better to use mutable objects like StringBuffer —see later.

Copying Objects

There are two ways to create copies of existing objects: copy constructors or clone methods. A copy
constructor® for a class takes a single parameter, which has the same type as the class. The constructor
simply copies the values of the fields from the supplied object into the new object. See the Pair

example below.

public class Pair<T> ({
private T first;
private T second;
// copy constructor
public Pair (Pair<T> other) {
this.first = other.first;

this.second = other.second;

The clone () method is a general way of copying Objects. An object may only be cloned if its class
implements the C1onable marker interface. All objects inherita clone () method from
java.lang.Object -butinvoking this method on anon-Clonable object will throw the

CloneNotSupportedException.

The default clone operation simply instantiates a new object of the appropriate type, and copies the
values in the fields across to this new object. This is similar to the copy constructor outlined above.
However sometimes this shallow cloning is insufficient. If a reference to a mutable object is copied in
this way, then the two object will share this reference. In such cases, deep cloning is required. A deep
clone requires overriding the inherited clone method with a custom method that creates a new object
and copies/clones instance fields as appropriate.

Cloning is not recommended as good practice by many Java developers® — use of copy constructors
appears to be more widely approved and supported.

Mutating Strings
As outlined above, since Strings are immutable then repeated concatenation is inefficient. It is better

to use a mutable class such as a StringBuf fer’ to update a character string representation.

StringBuffer [] bs = { new StringBuffer (“man”),
new StringBuffer (“califragilistic”) };
for (StringBuffer b : bs) {
b.insert (0, “super”);
}

bs[1l].append(“expialidocious”) ;

® See http://www.javapractices.com/topic/TopicAction.do?ld=12 for more details
* See http://en.wikipedia.org/wiki/Object_copy#In_Java for some reasons.
> See http://docs.oracle.com/javase/7/docs/api/java/lang/StringBuffer.html

Java Programming 2 - Lecture #15 - Jeremy.Singer@glasgow.ac.uk

Persistent Data

Data stored in RAM is volatile — it disappears when the virtual machine quits, or when someone pulls the
power plug. Persistent data may be stored as files in a filesystem or using an alternative backing store
abstraction (e.g. a database). In this lecture, we will concentrate on reading data from input files.

Symmetry in the Libraries

The major Java library for file handling is the java . 1o package. Advanced features are available in the
java.nio package. The basic abstraction for input and output is the stream, which is an ordered
sequence of data (raw bytes or characters). For input, the InputStream is the basic abstract class. For
output, there is a corresponding Output Stream. Concrete input classes include Buf feredReader

and FileReader. Concrete output classes include BufferedWriter and FileWriter.

The simple source code example below takes a single filename argument and counts how many bytes of
data the file contains. Note that the abstract method InputStream. read () is overridden by

subclasses.

public class FileSize {
public static void main (String [] args) {
InputStream in = new FileInputStream(args[0]);
int total = 0;
while (in.read() != -1) {
total++;
}
System.out.printf (“size of file %s is %d bytes\n“, args[0], total);

Filesystem Operations
Actually there is a simpler way to calculate file size, via the File class’, e.g. in above code.

total = new File(args[0]).length();

Other standard filesystem interactions (e.g. setting permissions, listing directories, creating, renaming
and deleting files) are all supported by methods in the File class’.

!See http://docs.oracle.com/javase/7/docs/api/java/io/File.html
>0or by static methods in java.nio.file.Files in Java 7

Reading from a File

We will consider reading data from plain text files in a line-by-line fashion. There are several library
classes in Java to support this operation — we will use the Buf feredReader” class. Notice how the
currentLine variable is assigned as a side-effect in the while statement condition. Also notice the
double checking for IOException —first when the Buf feredReader is constructed and used,

second when the Buf feredReader is closed in the finally clause.

String currentLine;
BufferedReader br;
try {
br = new BufferedReader (new FileReader (FILENAME)) ;
while ((currentLine=br.readLine()) != null) {
// echo line to standard output

System.out.println (currentLine);

}
catch (IOException e) {
e.printStackTrace () ;
}
finally {
try {
if (br != null) {

br.close();

}
catch (IOException ee) {

ee.printStackTrace ()

Java 7 try-with-resources construct
This double try/catch for IOExceptions is particularly inelegant. Java 7 introduces a new try-with-

resources construct”® as syntactic sugar to achieve the same effect without requiring an explicit finally
clause.

Java 7 try-with-resources construct
1) Whyisitimportantto close () files when we have finished using them?
2) Different methods have different ways of signaling that we have reached the end of an input
file, when we have opened a file for reading. List as many of these different end-of-file cues as
you can.

® See http://docs.oracle.com/javase/7/docs/api/java/io/BufferedReader.html
* See http://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

X
Java Programming 2 - Lecture #16 - Jeremy.Singer@glasgow.ac.uk »\y

Writing to a text file
The FileWriter'is the standard library class used for generating text file output. To avoid constant

byte-level filesystem access, these objects are generally wrapped in Buf feredWriter’ objects. The
simple source code below writes a ‘hello world’ file in the current working directory. Note the use of a
try-with-resources statement, which will automatically close the Buf feredWriter object when it
completes. Also note that the newline () method inserts the system-specific characters that encode a

newline (different for DOS and Unix®).

public class HelloFile {
public static void main(String [] args) {
try (BufferedWriter bw =
new BufferedWriter (new FileWriter ("hello.txt"))) {

bw.write("hello world");
bw.newlLine () ;

}

catch (IOException e) {

e.printStackTrace();

Storing Objects in Files

Java serialization® is the process of writing Java objects as binary data, e.g. for transmission over a
network socket or for saving to a file. Objects that can be serialized in this way implement the
Serializable’ markerinterface. Most of the standard library classes are serializable. If you define a
custom class, it can be serialized using the default serialization code, or you can define custom
writeObject () and readObject () methods. Note that transient fields of objects are not

serialized.

!See http://docs.oracle.com/javase/7/docs/api/java/io/FileWriter.html

% See http://docs.oracle.com/javase/7/docs/api/java/io/BufferedWriter.html
® See http://en.wikipedia.org/wiki/Newline#in_programming_languages

* See http://docs.oracle.com/javase/tutorial/essential/io/objectstreams.html
> See http://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html

Java Serialization for Object Output
We use an ObjectOutputStream instance to write out objects in a binary format.

String s = "save me!";

Calendar c¢ = Calendar.getInstance();

Foo f = new Foo();

f.i = new Integer (42);

try (ObjectOutputStream oos =

new ObjectOutputStream(new FileOutputStream ("objects.tmp"))) |
oos.writeObject (s);
oos.writeObject (c);
oos.writeObject (f) ;

}

catch (IOException e) {

e.printStackTrace();

Reading Serialized Objects from a File

We use an ObjectInputStream instance to read objects back into memory from a serialized binary

file. Objects must be read in the same order that they were written. The readObject () method

returns an Object reference — this needs to be cast to the appropriate type to invoke class-specific

behaviour. If the class is not defined on the current CLASSPATH, or the class versions are somehow

inconsistent, then a ClassNotFoundException® is thrown.

try (ObjectInputStream ois =
new ObjectInputStream(new FileInputStream("objects.tmp")))
while (true) {
Object o = ois.readObject();
System.out.println("found object: " + 0);

}
catch (ClassNotFoundException e) {

e.printStackTrace () ;
}
catch (IOException e) {

e.printStackTrace();

System.err.println("serialization error, wrong class version?");

{

Question
In what circumstances might you want to use serialization in your programs?

®See http://docs.oracle.com/javase/7/docs/api/java/lang/ClassNotFoundException.html

	jp2_lecture1
	jp2_lecture2
	jp2_lecture3
	jp2_lecture4
	jp2_lecture5
	jp2_lecture6
	jp2_lecture7
	jp2_lecture8
	jp2_lecture9
	jp2_lecture10
	jp2_lecture11
	jp2_lecture12
	jp2_lecture13
	jp2_lecture14
	jp2_lecture15
	jp2_lecture16

