

Utility-Based Heap Sizing

Callum Cameron Jeremy Singer firstname.lastname@glasgow.ac.uk

Analogies for GC

imaginative metaphorical interpretations of memory management

Analogies for GC

intuitive mathematical interpretations of memory management

Thermodynamics [Baker, 1994]

SURROUNDINGS

Radioactive half-life [Clinger, 1997]

Economic supply/demand [Singer & Jones, 2010]

AN

INQUIRY

INTO THE

Nature and Caufes

OF THE

WEALTH OF NATIONS.

By ADAM SMITH, LL.D. and F.R.S. Formuly Foldfor of Mural Philolophy in the University of Generative

IN TWO VOLUMES.

VOL. 1.

LONDON:

PRINTED FOR W. STRANAN ; AND T. CADELL, IN THE STRAND, MOCCLEXEVE.

MMNet 6 Dec 2013

Our Problem

- multiple parties competing for shared resource
- limitations on resource availability
- want to maximize utility

Simple Example

• haggis and irn bru

Analogy with GC

Utility for single bm

- for a single benchmark, we equate utility with throughput
- for DaCapo benchmarks, relate throughput with number of completed iterations in set time
- utility can be expressed as a function of heap size

•
$$U_{bm} = f(h_{bm})$$

Combined utility for 2 bms

- multiply their individual utilities
- $U_{\text{combined}} = U_{\text{bm1}} * U_{\text{bm2}}$

• =
$$f(h_{bm1}) * g(h_{bm2})$$

• Variations on this equation...

Iso-utility curves (indifference curves)

Maximum Heap Size Budget

• h_{bm1} + h_{bm2} <= M

Intersection of lines

- Maximal utility for given budget when budget line just touches isoutility line
- (draw graph)

Analytical Solution

- substitute h_{bm2} for (M-h_{bm1})
 - since on budget line
- Differentiate combined utility equation wrt each variable to get marginal utilities and *marginal rate of substitution (gradient of indifference curve)*
- When consumers maximize utility with respect to a budget constraint, the indifference curve is tangential to the budget line

Provisional solution:

• Given individual utilities of the form:

$$- U_{bm1} = a (h_{bm1})^{b}$$

- $U_{bm2} = c (h_{bm2})^d$
- We can show that the combined utility is maximized when:

$$-h_{bm1} = M * b / (b+d)$$

$$-h_{bm2} = M - h_{bm1}$$

This makes some sense!

• When we run two benchmarks which are the same, then we should give M/2 to each.

Experiments

- Use OpenJDK with fixed heap size
- Use DaCapo 9.12 benchmarks
- Run on x86_64 Linux

Obtain utility curve for each bm

- do empirical curve fitting
- U_{bm} = a (h_{bm})^b

Aside: don't use AWS

Experiments on local machine

Throughput of 'sunflow default (3 thread(s))' in 20m (5 runs)

Utility curve-fitting

- Assume form $U_{bm} = a (h_{bm})^b$
- least-squares regression
- How does this work for maximising combined utility?

• ...

Utility Space Exploration

- run combined experiment measure overall throughput
- sample space of heap sizes,
- 3d graph
 - h_{bm1} , h_{bm2} on x and y
 - $U(h_{bm1}, h_{bm2})$ on z
- e.g. ...

Evaluation

- compare predicted optimal performance with observed
- single example: predicted performance is 91% of optimal.

To do

- gather more data, more benchmarks
- fit a better equation to our curves
- deal with normalizing utilities
- deal with prioritizing benchmarks

More ambitious extensions

- handle more than two VMs
- incorporate paging into utility space measures, see [Hertz, 2011]
- allow dynamic resizing based on utility calculations
- heterogeneous runtimes (Jikes RVM, Poly/ML, GHC)
- apply to other shared resources (cores)

Conclusions

- Economic theory gives a principled way to share resources
- We have applied utility maximization to *static heap sizing* for two concurrent JVMs
- Lots more to do!