Auto-tuning MapReduce
applications for multicores

Jeremy Singer

http://www.dcs.gla.ac.uk/~jsinger

Umver51ty School of
of Glasgow | Computing Science

Multicores

Moore’s Law

X‘ fto rs

Moore’s Law

processor |

clock
frequency

Moore’s Law

cores

Multicore is everywhere

Manycore is coming

ProglLangs Solutions for Multicore

... JJAVA

PTHREADS orenmp.™™
use GCALAZS-MPI_

FORKJOIN

TASK PARALLEL LIBRARY

MapReduce

A Parallel Design Pattern

MapReduce
Given a list of elements:

— map a function over each element

— Reduce elements with another function
E.g. sum of squares: 2x?

Map the square fn over all elements
Reduce with the plus function

HelloWorld in MapReduce

* Google give the wordcount example
e (whiteboard)

MRJ — mapreduce in Java

* Philosophically
— Reducing complexity burden for programmer
— Let the framework do the work

* Practically

— Integration with Hadoop open-source project

MapReduce Schematic Diagram

] /\-»
inter-
mediate
data —>

i ey, val

l S

:"\f

Fork/Join Library

1
| S,

] l] Work stealing
Tasks
| [[
Fork/Join worker thread
4 N\
Fork/Join Pool
. J

Java Virtual Machine

Operating System

' ' ' '

Cores

MRJ Benchmarks

benchmark | description

grep find string occurrences in input text file

kmeans group 3d points into clusters based on
their Euclidean distance

linearR compute best-fit line for input data file

matrix dense integer matrix multiplication

pca principal components analysis on an in-
teger matrix

sm search input text file for a word

WC count instances of each unique word in
input text file

speedup

4.5

3.5

Benchmark Scalablllty

grep / L ——]
kmeans /L o a . ‘ J
linearR / L g]
matrix / L - O
pca/L _—
sm/ L «eme A -

v
l\‘
vt
. ot
\‘\
v
et

.
ne
W e
/ et Ve
. [LAN "
.
3 .
.
3 .

"
.
.
W .
ot .
Y .*
.
.
"
.

threads

Grep benchmark anomaly

speedup

1T T T T 171

T

OO0 ==m== NN
ENFO Y T NI Yo Yo] ST IVEN

4096

072

048 heap size (MB)

Grep GC overhead

% GC

4096

048 heap size (MB)

Different GC policies affect

performance

input Small Medium Large
heap/GB | 1| 2 | 4 | 1 2 4 1] 2 | 4
8[P[SP|SP] C | P | P C [P
§ 7\/P|SP|SP| C | P | P C | P
2 |6|P|SPISP| C | BC| P C | PC
¥ [4||P|SPISP|SPC| P | P SPC | PC
2/P|[SP|SP| P | P | P [C| P |P
1| S|SP|SP|SPC|SPC|SPC|C| SP |SP

Auto-Tuning

Auto-tuning to predict GC policy

* Predict algorithm and heap layout

* Given benchmark, input, and available
memory

* Machine learning
— Given some training examples
— Generate predictor model

— Test on previously unseen examples

Features for examples

feature type how collected
heap size (MB) integer | system parameter
MRJ worker threads | integer | system parameter
minor GCs (x2) integer | trial execution
major GCs (x2) integer | trial execution
% GC time (x2) real trial execution
bytes allocated integer | trial execution
% String alloc’d real trial execution
% 1int array alloc’d real trial execution

Prediction Outputs

* Garbage collection algorithm:
— serial, parallel, concurrent

* Heap Layout:
— Young/old —ratio 1:2, 1:8

Machine Learning Technique

e Decision Trees

e Random Forest

Cascade of Classifiers
A A
AAAA /\A/\ /\A/\
A A
AAAA /\A/\ /\A/\

A A
AAAA /\A/\ /\A/\

Close to optimal?

I I T | T
5
threads DU
| 1 I | |
1 2 4|1 2 4|1 2 4|1 2 Heap / GB
grep kmeans| linearR | matrix benchmark

No worse than default?

8
threads

1 2 471 2 4|1 2 4|1 2 471 2 4|1 2 41 2 4 Heap / GB

grep kmeans| linearR | matrix pca sm wc

benchmark

Conclusions

* Auto-tuning is beneficial for complex software
systems

* Major subtleties:
— What to tune
— How to describe example problems

— Constraining prediction
* Paper at ISMM 2011

http://www.dcs.gla.ac.uk/~jsinger/
ismm11.pdf

Garbage Collection Auto-Tuning for
Java MapReduce on Multi-Cores

Jeremy Singer

University of Glasgow
jeremy.singer@glasgow.ac.uk

Abstract

MapReduce has been widely accepted as a simple programming
pattern that can form the basis for efficient, large-scale, distributed
data processing. The success of the MapReduce pattern has led to
a variety of implementations for different computational scenar-
ios. In this paper we present MRJ, a MapReduce Java framework
for multi-core architectures. We evaluate its scalability on a four-
core, hyperthreaded Intel Core 17 processor, using a set of standard
MapReduce benchmarks. We investigate the significant impact that

Tavin wmssmbivmnn ~mnuhana aallaatine lhan nam thn cmnwfrcinninnn amd ~Aaal

George Kovoor *

kovoor.george@gmail.com

Gavin Brown Mikel Lujan

University of Manchester
firstname.lastname@manchester.ac.uk

[3]. The pattern still has its detractors [15]. However, it has been
demonstrated to give effective parallelism for important parts of
the computer applications spectrum e.g. machine learning [10],
databases [37], eScience [16].

Our objective is to investigate the MapReduce pattern in the
context of multi-core architectures, rather than within compute
clusters, as commonly used by Amazon, Facebook, Google and
Yahoo, amongst others.

1.1 Motivation for Multi-Core MapReduce

