Auto-tuning MapReduce applications for multicores

Jeremy Singer

http://www.dcs.gla.ac.uk/~jsinger

Multicores

Moore's Law

Moore's Law

Multicore is everywhere

Manycore is coming

ProgLangs Solutions for Multicore

MapReduce

A Parallel Design Pattern

- MapReduce
- Given a list of elements:
 - map a function over each element
 - Reduce elements with another function
- E.g. sum of squares: Σx^2
- Map the square fn over all elements
- Reduce with the plus function

HelloWorld in MapReduce

- Google give the wordcount example
- (whiteboard)

MRJ – mapreduce in Java

- Philosophically
 - Reducing complexity burden for programmer
 - Let the framework do the work
- Practically
 - Integration with Hadoop open-source project

MapReduce Schematic Diagram

Fork/Join Library

MRJ Benchmarks

benchmark	description
grep	find string occurrences in input text file
kmeans	group 3d points into clusters based on
	their Euclidean distance
linearR	compute best-fit line for input data file
matrix	dense integer matrix multiplication
pca	principal components analysis on an in-
-	teger matrix
sm	search input text file for a word
wc	count instances of each unique word in
	input text file

speedup

Grep benchmark anomaly

Grep GC overhead

Different GC policies affect performance

input		Small		Medium			Large			
heap/	(GB	1	2	4	1	2	4	1	2	4
S	8	P	S,P	S,P	C	Р	Р		С	P
sad	7	P	S,P	S,P	C	Р	Р		C	P
#threads	6	P	S,P	S,P	C	P,C	Р		С	P,C
Ħ	4	P	S,P	S,P	S,P,C	Р	Р		S,P,C	P,C
	2	P	S,P	S,P	P	Р	Р	C	Р	P
	1	S	S,P	S,P	S,P,C	S,P,C	S,P,C	C	S,P	S,P

Auto-Tuning

Auto-tuning to predict GC policy

- Predict algorithm and heap layout
- Given benchmark, input, and available memory

- Machine learning
 - Given some training examples
 - Generate predictor model
 - Test on previously unseen examples

Features for examples

feature	type	how collected
heap size (MB)	integer	system parameter
# MRJ worker threads	integer	system parameter
# minor GCs (x2)	integer	trial execution
# major GCs (x2)	integer	trial execution
% GC time (x2)	real	trial execution
bytes allocated	integer	trial execution
% String alloc'd	real	trial execution
% int array alloc'd	real	trial execution

. .

Prediction Outputs

• Garbage collection algorithm:

- serial, parallel, concurrent

• Heap Layout:

– Young/old – ratio 1:2, 1:8

Machine Learning Technique

Decision Trees \bullet

• Random Forest

Cascade of Classifiers

 $\wedge \wedge \wedge \wedge \wedge$

Close to optimal?

No worse than default?

Conclusions

- Auto-tuning is beneficial for complex software systems
- Major subtleties:
 - What to tune
 - How to describe example problems
 - Constraining prediction
- Paper at ISMM 2011

http://www.dcs.gla.ac.uk/~jsinger/ ismm11.pdf

Garbage Collection Auto-Tuning for Java MapReduce on Multi-Cores

Jeremy Singer University of Glasgow jeremy.singer@glasgow.ac.uk George Kovoor*

kovoor.george@gmail.com

Gavin Brown Mikel Luján

University of Manchester firstname.lastname@manchester.ac.uk

Abstract

MapReduce has been widely accepted as a simple programming pattern that can form the basis for efficient, large-scale, distributed data processing. The success of the MapReduce pattern has led to a variety of implementations for different computational scenarios. In this paper we present *MRJ*, a MapReduce Java framework for multi-core architectures. We evaluate its scalability on a fourcore, hyperthreaded Intel Core i7 processor, using a set of standard MapReduce benchmarks. We investigate the significant impact that [3]. The pattern still has its detractors [15]. However, it has been demonstrated to give effective parallelism for important parts of the computer applications spectrum e.g. machine learning [10], databases [37], eScience [16].

Our objective is to investigate the MapReduce pattern in the context of multi-core architectures, rather than within compute clusters, as commonly used by Amazon, Facebook, Google and Yahoo, amongst others.

1.1 Motivation for Multi-Core MapReduce