
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Fundamental Nano-Patterns to Characterize
and Classify Java Methods

Jeremy Singer 1 Gavin Brown Mikel Luján Adam Pocock
Paraskevas Yiapanis

University of Manchester, UK

Abstract

Fundamental nano-patterns are simple, static, binary properties of Java methods,
such as ObjectCreator and Recursive. We present a provisional catalogue of 17 such
nano-patterns. We report statistical and information theoretic metrics to show
the frequency of nano-pattern occurrence in a large corpus of open-source Java
projects. We proceed to give two example case studies that demonstrate potential
applications for nano-patterns. The first study involves a quantitative comparison of
two popular Java benchmarking suites, in terms of their relative object-orientedness
and diversity. The second study involves applying machine learning techniques to
program comprehension, using method nano-patterns as learning features. In both
studies, nano-patterns provide concise summaries of Java methods to enable efficient
and effective analysis.

1 Introduction

Imagine you see the fragment of Java source code given in Figure 1, and
you have the task of describing this method concisely to another software
developer. How would you achieve this goal?

In this paper, we advocate the use of nano-patterns to characterise Java
methods. Nano-patterns are properties of methods that are:

• simple: They can be detected by manual inspection from a Java developer,
or by a trivial automated analysis tool.

• static: They should be determined by analysis of the bytecode, without any
program execution context.

• binary : Each property is either true or false for a given method.

For instance, from our current set of 17 nano-patterns, the fib method in
Figure 1 exhibits only two nano-patterns: namely Recursive and LocalReader.

1 Email: jsinger@cs.man.ac.uk

c©2009 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

Singer

Note that information is also conveyed by the fact that certain patterns are
not exhibited: examples include ObjectCreator and Looping.

1.1 Patterns

At the high level, design patterns [11] encapsulate developer practice, whether
that be existing conventions or managerial aspirations for better practice.
These design patterns are described in terms of software architecture, using
technical prose or UML diagrams. Such patterns describe re-usable templates
for structuring software. Due to their high level nature, they are not directly
executable or verifiable.

Recently there has been much interest in automatic detection of low level
patterns, particularly in static analysis of Java bytecode. Gil and Maman [12]
introduce the concept of micro patterns to characterize Java classes. They pro-
pose the formulation of nano-patterns to characterize methods within Java
classes, however they do not elaborate on this idea. Høst and Østvold [15]
provide a set of simple Java method attributes, which we term fundamental
nano-patterns. In this paper, we extend Høst and Østvold’s attribute set to
give a fuller catalogue of fundamental nano-patterns. These patterns encap-
sulate Java language-specific idioms that are the lingua franca for experienced
software developers. It must be emphasized that this catalogue is still provi-
sional ; we anticipate adding new nano-patterns over time.

There are many potential applications for these kinds of low level patterns.
The list below mentions a number of applications that have been the subject
of recent research investigations.

(i) Catalogues of idioms to enable novice developers to gain experience at
reading and writing code [15].

(ii) Tools to detect bugs from anomalies in pattern usage and interactions
[16,19].

(iii) Auto-completion hints in development environments [19].

(iv) Succinct characterization of code [3].

(v) Empirical evaluation coding styles and standards in a common framework
[12].

int f i b (int x) {
i f (x<=1)

return 1 ;
else

return f i b (x−1) + f i b (x−2);
}

Fig. 1. Fragment of Java source code to be characterized concisely

2

Singer

(vi) Relating dynamic program behaviour with patterns, to guide just-in-time
optimization decisions [17].

1.2 Contributions

The key contributions of this paper are:

(i) A categorized catalogue of fundamental nano-patterns, each with a clear
definition that would enable simple mechanical detection of the pattern
from bytecode, Section 2.

(ii) Formal evaluations of the nano-pattern catalogue, using information the-
ory (Section 3) and data mining (Section 4) techniques.

(iii) Two case studies that demonstrate how nano-patterns can be used to
compare different code bases (Section 5) or to aid program comprehension
via large-scale statistical analysis of Java methods (Section 6).

2 Nano-Pattern Catalogue

Nano-patterns are simple properties exhibited by Java methods. They are
traceable; that is, ‘they can be expressed as a simple formal condition on the
attributes, types, name and body’ of a Java method [12]. They should be
automatically recognisable by a trivial static analysis of Java bytecode.

Høst and Østvold [15] present a catalogue of traceable attributes for Java
methods. They argue that these attributes could be used as building blocks
for defining nano-patterns. In this paper, we refer to these traceable attributes
as fundamental nano-patterns, which could potentially be combined to make
composite nano-patterns.

We have supplemented Høst and Østvold’s original catalogue of fundamen-
tal nano-patterns [15]. The full set of our fundamental nano-patterns is given
in Table 1. The original patterns are given in plain typeface, and our new
patterns are given in bold typeface. Another novelty is that we have grouped
these patterns into four intuitive categories.

It is easy to see how composite nano-patterns could be constructed from
logical combinations of fundamental nano-patterns. For instance, the PureMethod
nano-pattern might be specified as:

¬ FieldWriter ∧ ¬ ArrayWriter ∧ ¬ ObjectCreator ∧ ¬ ArrayCreator ∧ Leaf

A more complex definition of method purity would remove the leaf method
restriction, and replace it with the recursive constraint that all method calls
must also be pure methods. However this definition would require whole-
program analysis, which is considered non-trivial and therefore not suitable
for a nano-pattern. Note that in the remainder of this paper, we restrict
attention to fundamental nano-patterns only.

3

Singer

category name description

Calling

NoParams takes no arguments

NoReturn returns void

Recursive calls itself recursively

SameName calls another method with the same name

Leaf does not issue any method calls

Object-Orientation

ObjectCreator creates new objects

FieldReader reads (static or instance) field values from an object

FieldWriter writes values to (static or instance) field of an object

TypeManipulator uses type casts or instanceof operations

Control Flow

StraightLine no branches in method body

Looping one or more control flow loops in method body

Exceptions may throw an unhandled exception

Data Flow

LocalReader reads values of local variables on stack frame

LocalWriter writes values of local variables on stack frame

ArrayCreator creates a new array

ArrayReader reads values from an array

ArrayWriter writes values to an array

Table 1
Catalogue of fundamental nano patterns. Boldface names are for original patterns

we have devised, all other patterns come from Høst and Østvold’s catalogue.

2.1 Detection Tool

We have developed a command line tool to detect nano-patterns for methods
in Java bytecode class files, based on the ASM bytecode analysis toolkit [6].
Our tool reads in a class file name specified as a command line argument, and
dumps out a bitstring of nano-patterns exhibited for each method in the class.
The detection tool is written in Java; it is only 600 source lines of code. Our
code makes extensive use of data structures and visitor code from the ASM
API. The tool operates in two different ways to detect specific nano-patterns:

(i) Some patterns are found by simple iteration over a method bytecode ar-
ray, searching for specific bytecode instructions that indicate particular
nano-patterns. For example, the newarray bytecode indicates the Array-
Creator nano-pattern.

(ii) Other patterns are found by simple regular expression matches on method
signatures. For example, if the method type signature contains the string
() then the method exhibits the NoParams nano-pattern.

4

Singer

program version description

Ashes Suite 1st public release Java compiler test programs

DaCapo 2006-10-MR2 Object-oriented benchmark suite

JBoss 3.2.2 Application server

JEdit 4.3 Java text editor application

JHotDraw 709 Java graphics application

Jikes RVM 2.9.1 Java virtual machine, includes classpath library

JOlden initial release Pointer-intensive benchmark suite

JUnit 4.4 Test harness

SPECjbb 2005 Java business benchmark

SPECjvm 1998 Simple Java client benchmark suite

Table 2
Java benchmarks used in nano-pattern coverage study

We envisage that it should be possible to automate the generation of ASM-
based detection code for specific nano-patterns, given some kind of formal
specification of the nano-pattern characteristics. A meta-language like JTL
[8] may be useful here. We do not address this issue in the current research.

2.2 Statistics

We analyse a large and varied corpus of Java programs; the details are given
in Table 2. These are all commonly available industry-standard benchmark
suites and open-source Java applications, that have been used in previous
research-based Java source code case studies.

In total, there are 43,880 classes and 306,531 methods in this corpus. We
run our nano-pattern detection tool on all these classes. Table 3 summarises
the results. It gives the proportion of methods that exhibit each kind of
nano-pattern. The overall coverage represents the percentage of all analysed
methods that exhibit any nano-pattern. Since this score is 100%, all methods
analysed exhibit at least one nano-pattern from our catalogue. The mean
number of nano-patterns per method is 4.9.

3 Information Theoretic Characterization

Information theoretic entropy measures the uncertainty associated with a ran-
dom variable. In this section, we consider our nano-pattern detector tool as
a black box supplying values that represent nano-pattern bitstrings. For each
of the different potential bitstrings, there is an associated probability based
on its frequency of occurrence. (We estimate probabilities by frequencies in
our corpus of 306,531 methods.) Given the set of all possible bitstrings B, we
denote the probability of the occurrence of a particular bitstring b ∈ B as pb.

5

Singer

nano-pattern % coverage

LocalReader 89.4

StraightLine 63.6

FieldReader 51.4

Void 50.6

NoParams 39.2

SameName 32.4

LocalWriter 31.1

ObjectCreator 26.5

FieldWriter 26.5

Leaf 20.3

TypeManipulator 15.2

Exceptions 13.6

Looping 11.3

ArrayReader 6.7

ArrayCreator 5.4

ArrayWriter 5.3

Recursive 0.7

Overall 100.0

Table 3
Coverage scores for each nano-pattern on the corpus of Java programs

We compute the entropy H (after Shannon) as:

H = −
∑
b∈B

pblog2(pb)

A low entropy score indicates low uncertainty in the underlying random
variable, which means that nano-patterns are very predictable. This would
reduce their utility for classification. On the other hand, a high entropy score
indicates high uncertainty. The maximum entropy score is log2|B| where |B| is
the number of potential bitstrings. Since there are 17 different nano-patterns
in our catalogue, the maximum entropy score would be 17. This would mean
all nano-patterns are independent, and have a 50% chance of being exhibited
by a method.

In fact, from the 306,531 methods we measured, the entropy of the bit-
strings is 8.47. This value is relatively high, which means the nano-patterns
for a method are not easily predictable. There are some inter-dependencies
between patterns, but these are generally non-trivial. (The next section de-
scribes cross-pattern relationships in detail.)

6

Singer

4 Data Mining Characterization

4.1 Background

Data Mining is ‘the nontrivial extraction of implicit, previously unknown, and
potentially useful information from data’ [10]. A number of techniques exist to
perform data mining on large data sets. One of the most popular techniques
is association rule mining from sets of items in a data set, introduced by [1].
Association rules are obtained via frequent pattern mining. Association rules
take the form of logical implications. Their primary use is for market basket
analysis, where vendors search for items that are often purchased together [5].

We are interested in sets of nano-patterns that are frequently exhibited
together, by Java methods. Such association rules have the form A → B,
meaning that if method m exhibits nano-pattern A, then this implies m also
exhibits B. Along with each rule, there are two related measures of interest:
support and confidence. The support is the proportion of methods that exhibit
both A and B in relation to the total number of methods analysed. The
confidence is the proportion of methods that exhibit both A and B in relation
to the total number of methods that exhibit A. A rule is only retained if it
satisfies user-determined minimum thresholds for both support and confidence
[2].

4.2 Nano-Pattern Analysis

We perform association rule mining on the complete set of 306,531 methods
for which we have nano-pattern data. The rule mining algorithm produces
hundreds of rules. However we immediately discard all rules involving the Lo-
calReader nano-pattern; since it is such a prevalent pattern, any rules involv-
ing it are not really meaningful. Many rules remain after this initial pruning.
Some of these are obvious, for instance: ArrayCreator implies ArrayWriter with
high confidence. In the remainder of this section, we report on three interest-
ing rules that occur due to common Java programming idioms. Each of these
rules exceeds our thresholds for support and confidence. We carry out further
statistical analysis using the lift and χ2 measures to determine whether there
are statistically significant correlations between the associated nano-patterns
in each rule. In each case we find that the nano-patterns are significantly
positively correlated.

Looping→ TypeManipulator(1)

This rule is caused by the prevalence of java.util.Iterator objects used
in while loops over data structures from the Java Collections framework. The
code listing below gives an outline example.

while (i . hasNext ()) {
Element e = (Element) i . next () ;
// . . .

7

Singer

}

In older versions of Java, all objects are coerced to the Object supertype
when they are stored in library container data structures. Even with addition
of generics in Java 5 source, type casts are still present in Java bytecode for
retrieving objects from container data structures. Therefore this rule is an
idiomatic artifact of the Java source to bytecode transformation.

ArrayReader→ Looping(2)

This rule is caused by the idiom of iterating over an entire array, reading
each element. The code listing below gives an outline example.

for (int i =0; i<a . l ength ; i++) {
// . . .
doWork(a [i]) ;
// . . .

}

FieldWriter ∧ StraightLine→ NoReturn(3)

This rule is due to the prevalence of object-oriented setter accessor meth-
ods. Such methods take a single argument, write this value to a field of the
current object and return void. The code listing below gives an outline ex-
ample. One would expect to see this kind of rule for well-written programs in
any object-oriented language.

public void setXYZ (Foo xyz) {
this . xyz = xyz ;
return ;

}

4.3 Applications

There are many potential applications for these kinds of association rules. We
outline three areas below.

(i) Detection of high-level design patterns from low-level nano-patterns. In
general, design pattern discovery is acknowledged to be difficult [14,9].
We have shown above that some combinations of low-level features are
potential indicators for higher-level patterns. Gueheneuc et al [13] explore
this concept further, although with a possibly more restrictive set of static
code features.

(ii) A ‘Programmer’s Lexicon’ style guidebook for novice programmers [15],
outlining common and idiomatic programming conventions. Each discov-
ered convention requires manual annotation to provide some measure of
goodness. In particular, it is likely that prevalent anti-patterns may be
discovered.

8

Singer

(iii) Identification of potential bugs. Given a large and varied corpus of code,
we can extract a set of high-confidence association rules. If these rules
are not kept in new code, an online interactive checker can inform the
developer of the rule violations [19].

5 Case Study A: SPECjvm98 vs DaCapo

In this section, we use nano-patterns to contrast two Java client-side bench-
mark suites. In general, it is difficult to quantify the differences between two
sets of programs: However we demonstrate that nano-patterns provide a good
basis for differentiation.

The SPECjvm98 benchmark suite was originally intended to evaluate the
performance of commercial Java virtual machine (JVM) implementations.
However due to its small size and relative age, it is now only used as a target
for academic research such as points-to analysis [20]. A potential replacement
for SPECjvm98 is the DaCapo benchmark suite, compiled by an academic
research group. The DaCapo introductory paper [4] presents an extensive
empirical study to highlight the differences between these two benchmark
suites. The authors claim that DaCapo is superior to SPECjvm98 for two
main reasons:

(i) DaCapo programs are more object-oriented than SPECjvm98.

(ii) DaCapo programs are more diverse in their behaviour than SPECjvm98.

Using our nano-patterns catalogue, we should be able to provide new quanti-
tative evaluations of these criteria for the two benchmark suites.

5.1 Object Orientation

The DaCapo paper [4] argues that the DaCapo suite is ‘more object-oriented’
than SPECjvm98. The static analysis study that backs up this claim em-
ploys Chidamber and Kemerer metrics [7]. We can evaluate the level of static
object orientation in each benchmark suite, by considering the four nano-
patterns that deal with object orientation. Recall from Table 1 that these are
ObjectCreator, FieldReader, FieldWriter and TypeManipulator. (In this study we
abbreviate these nano-patterns as OC, FR, FW and TM respectively.)

Table 4 presents the results of this analysis. For each benchmark suite, we
consider every Java application separately. For each application, we perform
static analysis on all methods defined in benchmark classes that are loaded
by a JVM during an execution of that benchmark with the default workload.
From this analysis, we report the proportion of methods that exhibit each
OO nano-pattern. We also report the overall OO coverage, which gives the
proportion of methods that exhibit at least one OO nano-pattern.

From these results, it is not immediately clear to see whether DaCapo is
more object-oriented than SPECjvm98. They have similar overall coverage

9

Singer

benchmark # methods % OC % FR % FW % TM % cov

S
P

E
C

jv
m

9
8

201 compress 44 13 65 52 0 86

202 jess 673 33 50 23 8 75

205 raytrace 173 16 58 40 2 86

209 db 34 38 79 50 32 94

213 javac 5601 29 61 26 10 77

222 mpegaudio 280 17 60 38 2 79

227 mtrt 177 15 57 39 2 85

228 jack 302 23 36 49 10 66

geomean 249 21 57 38 5 81

D
a
C

a
p
o

antlr 1788 41 62 39 13 81

bloat 2718 33 66 33 22 85

chart 4182 33 59 26 12 82

eclipse 5385 27 58 29 16 79

fop 5180 24 46 32 7 76

hsqldb 2767 21 58 22 12 72

jython 6549 25 55 19 19 75

luindex 963 28 56 33 9 79

lusearch 1252 27 58 32 10 81

pmd 4923 20 45 26 13 66

xalan 5512 20 54 28 10 75

geomean 3180 27 56 28 12 77

Table 4
Object-oriented nano-pattern coverage for each benchmark

scores for the OO nano-patterns, in relative terms. However note that abso-
lutely, DaCapo is much larger than SPECjvm98. The OO metrics given in
the original DaCapo paper were absolute figures too.

A higher proportion of methods create objects in DaCapo, and it also
has many more type manipulating methods. These are clear indications of
object orientation. On the other hand, there are similar amount of object
field reading for both suites. Interestingly, SPECjvm98 seems to perform much
more object field writing. We investigate the difference between accesses to
static and instance fields, since FR and FW cover both static and instance
accesses by definition. Again we found similar statistics in both suites: around
20% of reads are to static fields, and less than 10% of writes are to static fields.

One potential limitation of this study is that the nano-pattern catalogue
does not presently capture all object-oriented behaviour. For instance, we do
not have any measure of method overriding via virtual method calls. Also we
make no distinction between accessing object fields through a this pointer
and other pointers. Perhaps a richer set of nano-patterns would provide a
clearer picture.

10

Singer

5.2 Diversity

Nano-patterns can be used to indicate similarity between methods; we assert
that similar methods should exhibit similar nano-patterns. The DaCapo pa-
per [4] criticizes the SPECjvm98 benchmarks for being overly similar. The
authors take a set of architectural metrics for each benchmark and perform
a principal components analysis with four dimensions. They show that the
DaCapo programs are spread around this 4-d space, whereas the SPECjvm98
programs are concentrated close together.

Again, we can use nano-patterns to confirm the results of this earlier study.
We consider all nano-patterns in our catalogue from Table 1. Again, we
consider all methods from benchmark classes loaded during execution. To
demonstrate that different benchmarks within a suite are diverse, we take two
measurements for each benchmark.

(i) Number of unique nano-pattern bitstrings : Given a set of nano-pattern
bitstrings for a single benchmark, which of these bitstrings do not appear
in any other benchmark in the suite? This characterizes behaviour that
is unique to one benchmark. We can count the number of such unique
bitstrings as an indicator of benchmark diversity within a suite.

(ii) Information theoretic entropy : Given a set of nano-pattern bitstrings for
each benchmark, we can compute the information theoretic entropy of
that set. High entropy values indicate greater uncertainty, i.e. the bit-
strings are less predictable. Again, this can indicate benchmark diversity
within a suite.

Table 5 reports the results for this analysis of benchmark diversity. It is
clear to see from the geometric mean scores for each benchmark suite that Da-
Capo benchmarks have more unique nano-pattern bitstrings per benchmark,
and that the entropy of nano-pattern bitstrings is higher for DaCapo. This
analysis confirms the claims in the original DaCapo paper [4] that the DaCapo
suite is more diverse than SPECjvm98.

5.3 Caveats

Analysis based on nano-patterns is entirely static. For a true comparison
between the benchmark suites (especially in relation to diversity) it would
be better to look at both static and dynamic behaviour. The DaCapo study
focused entirely on dynamic behaviour, whereas we have only looked at static
behaviour here. However we reach the same conclusions in relation to intra-
suite diversity.

On the other hand, we assert that it is still useful to perform a static
comparison of the benchmark suites in isolation. Often these particular Java
benchmarks are used to compare static analysis techniques (as opposed to run-
time JVM performance) in which case, static object orientation and diversity
become the main concern. Hence this style of empirical comparison based on

11

Singer

benchmark # methods # unique NP sets entropy

S
P

E
C

jv
m

9
8

201 compress 44 6 4.69

202 jess 673 52 6.09

205 raytrace 173 0 4.55

209 db 34 8 4.79

213 javac 5601 628 8.13

222 mpegaudio 280 32 6.48

227 mtrt 177 0 4.58

228 jack 302 24 4.92

geomean 248.63 13.65 5.41

D
a
C

a
p
o

antlr 1788 28 7.22

bloat 2718 49 7.02

chart 4182 98 7.17

eclipse 5385 95 8.35

fop 5180 32 7.01

hsqldb 2767 144 8.29

jython 6549 136 7.13

luindex 963 10 7.62

lusearch 1252 13 7.65

pmd 4923 44 7.57

xalan 5512 110 8.08

geomean 3179.85 50.14 7.54

Table 5
Measurements of benchmark diversity in terms of unique nano-pattern sets and

nano-pattern entropy

nano-patterns is indeed valuable.

6 Case Study B: Method Clustering based on Nano-
Patterns

Clustering is a form of unsupervised learning. It is used to group data points
into a variable number of clusters based upon a similarity measure, usually
a distance metric. This enables a quick characterisation of data into higher
level groupings. In this particular context, we aim to cluster similar methods
to enable program comprehension, where method similarity is based on nano-
pattern bitstrings. There are two main obstacles:

(i) all our nano-pattern features are binary values, which is non-standard
for clustering algorithms that generally operate on real-valued continuous
data.

(ii) our nano-pattern feature space has 17 dimensions. This makes it difficult
to visualize any clusterings.

12

Singer

Fig. 2. 2-d projected nano-pattern data for methods in corpus (note sausage-shaped
clusters)

To work around these problems, we use principal components analysis
(PCA) to project our data into a continuous 2-d space. PCA transforms the
data into a different space. It creates new features out of the axes of maximum
variation in the original data set. This means the largest principal components
contain the most information about the data. Figure 2 shows a visualization
of this projected data. The first two principal components form the axes for
this graph, as these account for most of the variation in the data.

The figure shows a number of different clusters, indicating that there are
several groups of similar methods in the original data set. A further clustering
on this data would provide a basis for relating the apparent clusters to the
presence of combinations of nano-patterns in the original data set.

We note in passing that there has been previous work using clustering to
analyse Java methods [18]. However our set of static method features appears
to be richer than in earlier work. The application area for this analysis is
mostly program comprehension.

7 Conclusions

In this paper, we have shown that fundamental nano-patterns can provide
succinct characterizations of Java methods. We have demonstrated the ca-
pabilities of nano-patterns to provide a framework for quantitative analysis
of large Java applications, and to enable learning-based techniques like data
mining and clustering.

13

Singer

Our future work includes extending the provisional catalogue of nano-
patterns. We hope to improve its object-oriented features with support for
method overloading, overriding and super() calls. We also want to enrich
our Exceptions nano-pattern to distinguish between methods that throw ex-
ceptions directly, catch exceptions, and propagate uncaught exceptions. Ad-
ditional higher-level method characteristics include threading activity and use
of standard Java APIs like the collections framework.

Finally, we hope to employ state-of-the-art clustering algorithms to group
related methods together and analyse these results. Eventually we aim to use
fundamental nano-patterns in a supervised learning context.

References

[1] Agrawal, R., T. Imielinski and A. Swami, Mining association rules between sets
of items in large databases, in: Proceedings of the International Conference on
Management of Data, 1993, pp. 207–216.

[2] Agrawal, R. and R. Srikant, Fast algorithms for mining association rules, in:
Proceedings of the 20th International Conference on Very Large Databases,
1994, pp. 487–499.

[3] Bajracharya, S., T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi and C. Lopes,
Sourcerer: a search engine for open source code supporting structure-based
search, in: Companion to the 21st ACM SIGPLAN Symposium on Object-
Oriented Programming, Systems, Languages, and Applications, 2006, pp. 681–
682.

[4] Blackburn, S. M. et al., The DaCapo benchmarks: Java benchmarking
development and analysis, in: Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, 2006, pp. 169–190.

[5] Brin, S., R. Motwani, J. Ullman and S. Tsur, Dynamic itemset counting and
implication rules for market basket data, in: Proceedings of the 1997 ACM
SIGMOD International Conference on Management of Data, 1997, pp. 255–
264.

[6] Bruneton, E., R. Lenglet and T. Coupaye, ASM: a code manipulation tool to
implement adaptable systems, in: Adaptable and Extensible Component Systems,
2002.

[7] Chidamber, S. and C. Kemerer, A metrics suite for object oriented design, IEEE
Transactions on Software Engineering 20 (1994), pp. 476–493.

[8] Cohen, T., J. Y. Gil and I. Maman, Jtl: the Java tools language, in:
Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2006, pp. 89–108.

14

Singer

[9] Dong, J. and Y. Zhao, Experiments on design pattern discovery, in: Proceedings
of the Third International Workshop on Predictor Models in Software
Engineering, 2007, p. 12.

[10] Frawley, W., G. Piatetsky-Shapiro and C. Matheus, Knowledge discovery in
databases: An overview, AI Magazine (1992), pp. 213–228.

[11] Gamma, E., R. Helm, R. Johnson and J. M. Vlissides, “Design Patterns:
Elements of Reusable Object-Oriented Software,” Addison Wesley, 1994.

[12] Gil, Y. and I. Maman, Micro patterns in Java code, in: Proceedings of the
20th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 2005, pp. 97–116.

[13] Gueheneuc, Y., H. Sahraoui and F. Zaidi, Fingerprinting design patterns, in:
Proceedings of the 11th Working Conference on Reverse Engineering, pp. 172–
181.

[14] Heuzeroth, D., T. Holl, G. Högström and W. Löwe, Automatic design pattern
detection, in: Proceedings of the 11th IEEE International Workshop on Program
Comprehension, 2003, pp. 94–103.

[15] Høst, E. W. and B. M. Østvold, The programmer’s lexicon, volume I: The
verbs, in: Proceedings of the Seventh IEEE International Working Conference
on Source Code Analysis and Manipulation, 2007, pp. 193–202.

[16] Kim, S., K. Pan and E. Whitehead Jr, Micro pattern evolution, in: Proceedings
of the International Workshop on Mining Software Repositories, 2006, pp. 40–
46.

[17] Marion, S., R. Jones and C. Ryder, Decrypting the Java gene pool: Predicting
objects’ lifetimes with micro-patterns, in: Proceedings of the International
Symposium on Memory Management, 2007, pp. 67–78.

[18] Rousidis, D. and C. Tjortjis, Clustering data retrieved from Java source code
to support software maintenance: A case study, in: 9th European Conference on
Software Maintenance and Reengineering, 2005, pp. 276–279.

[19] Singer, J. and C. Kirkham, Exploiting the correspondence between micro
patterns and class names, in: Proceedings of the Eighth IEEE International
Working Conference on Source Code Analysis and Manipulation, 2008, pp. 67–
76.

[20] Sridharan, M. and R. Bod́ık, Refinement-based context-sensitive points-to
analysis for Java, in: Proceedings of the 2006 ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2006, pp. 387–400.

15

	Introduction
	Patterns
	Contributions

	Nano-Pattern Catalogue
	Detection Tool
	Statistics

	Information Theoretic Characterization
	Data Mining Characterization
	Background
	Nano-Pattern Analysis
	Applications

	Case Study A: SPECjvm98 vs DaCapo
	Object Orientation
	Diversity
	Caveats

	Case Study B: Method Clustering based on Nano-Patterns
	Conclusions
	References

