ata| University

=, of Glasgow

n-body using Java fork/join

Jeremy.Singer@glasgow.ac.uk



Source code

Adapted from ProglLangs shootout Java
implementation

Added input file reader to set up system

Modified equations (softening, time interval)
as specified on SICSA webpage

360 SLoC, 5 class files



Adding Parallelism

* Concentrated on the advance() code
* Double loop over bodies

public void advance(double dt) {
double dx, dy, dz, distance, mag;

for(int i=0; i < bodies.length; ++i) {
for(int j=i+l; j < bodies.length; ++j) {

dx = bodies[i].x - bodies[j].X;
dy = bodies[i].y - bodies[j].YVy:
dz = bodies[i].z - bodies[j].2Z;

distance = Math.sgrt(dx*dx + dy*d
mag = dt / (distance * distance *

bodieslil.vX == dx * bodiesl]1.ma



Parallelize Outer Loop

* Coarser granularity — reduces relative
overhead of threading

* Unevenly sized work units (cf triangular matrix
calculation)

* |deal for the Java fork/join framework
— lightweight threading
— load-balancing through work-stealing



JSR 166 — Fork/Join Parallelism

orkJoinPool
orkerThreads

iy ——




Conflicting Writes

* When loop iterations are all in parallel,
multiple bodies may have their v vectors

updated in parallel

e Several strategies to avoid this
— java.util.concurrent.atomic
—atomic blocks (transactional memory)
— synchronized blocks (standard Java)



Synchronized Solution

synchronized (bodies]j]) §
bodies[j].vx += dx * iBody.mass * mag;

bodies[jl.vy += dy * iBody.mass * mag;
bodies[jl.vz += dz * iBody.mass * mag;

}




Avoid Over-Allocation

e Re-use ForklJoin tasks at each iteration
* (simply require reinitialization)

* More parallelism could be extracted

— single for loops, not double. Maybe not enough
computation in each iteration?



Results

* for 20 iterations of 1024-body system

* Time reported in seconds, measured using

System.nanoTime (), for the 20 iterations
of the loop only.

* Means of 10 runs, low variance in general



time/s

1.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Actual Results

8x2 Xeclm —_——
4x2 Corei7
2x1 Core2 «++:m:::

15 20
num threads

25

30

35



Possible Explanations

* for lack of scaling?
— GC effects? (unlikely)

— thread affinity problems (all threads staying on
same core?)

— compute intensive benchmarks — not good for
hyperthreading

— spinlocking for synchronized access?
— memory issues with non-local allocation



Conclusions

* nBody is easy to implement in Java fork/join
— 1 night’s hacking

* require performance / profiling tools to assist
in diagnosing scalability problems

— MSc project



