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Abstract5

Concept assignment identifies units of source code that are functionally related,6

even if this is not apparent from a syntactic point of view. Until now, the results7

of concept assignment have only been used for static analysis, mostly of program8

source code. This paper investigates the possibility of using concept information9

within a framework for dynamic analysis of programs. The paper presents two case10

studies involving a small Java program used in a previous research exercise, and a11

large Java virtual machine (the popular Jikes RVM system). These studies investi-12

gate two applications of dynamic concept information: visualization and profiling.13

The paper demonstrates two different styles of concept visualization, which show14

the proportion of overall time spent in each concept and the sequence of concept15

execution, respectively. The profiling study concerns the interaction between run-16

time compilation and garbage collection in Jikes RVM. For some benchmark cases,17

we are able to obtain a significant reduction in garbage collection time. We discuss18

how this phenomenon might be harnessed to optimize the scheduling of garbage19

collection in Jikes RVM.20
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1 Introduction22

This paper fuses together ideas from program comprehension (concepts and23

visualization) with program compilation (dynamic analysis). The aim is to pro-24

vide techniques to visualize Java program execution traces in a user-friendly25

manner, at a higher level of abstraction than current tools support. These26
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techniques should enable more effective program comprehension, profiling and27

debugging. The overall objective is an improvement in software engineering28

practice.29

1.1 Concepts30

Program concepts are a means of high-level program comprehension. Bigger-31

staff et al. [1] define a concept as ‘an expression of computational intent in32

human-oriented terms, involving a rich context of knowledge about the world.’33

They argue that a programmer must have some knowledge of program con-34

cepts (some informal intuition about the program’s operation) in order to35

manipulate that program in any meaningful fashion. Concepts attempt to36

encapsulate original design intention, which may be obscured by the syntax37

of the programming language in which the system is implemented. Concept38

selection identifies how many orthogonal intentions the programmer has ex-39

pressed in the program. Concept assignment infers the programmer’s inten-40

tions from the program source code. As a simple example, concept assignment41

would relate the human-oriented concept buyATrainTicket with the low-level42

implementation-oriented artefacts:43

{ queue();

requestTicket(destination);

pay(fare);

takeTicket();

sayThankYou();

}

44

Often, human-oriented concepts are expressed using UML diagrams or other45

high-level specification schemes, which are far removed from the typical pro-46

gramming language sphere of discourse. In contrast, implementation-oriented47

artefacts are expressed directly in terms of source code features, such as vari-48

ables and method calls.49

Concept assignment is a form of reverse engineering. In effect, it attempts to50

work backward from source code to recover the ‘concepts’ that the original51

programmers were thinking about as they wrote each part of the program.52

This conceptual pattern matching assists maintainers to search existing source53

code for program fragments that implement a concept from the application.54

This is useful for program comprehension, refactoring, and post-deployment55

extension.56
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Every source code entity is part of the implementation of some concept. The57

granularity of concepts may be as small as per-token or per-line; or as large as58

per-block, per-method or per-class. Often, concepts are visualized by colouring59

each source code entity with the colour associated with that particular concept.60

Concept assignment can be expressed mathematically. Given a set U of source61

code units u0, u1, . . . , un and a set C of concepts c0, c1, . . . , cm then concept62

assignment is the construction of a mapping from U to C. Often the mapping63

itself is known as the concept assignment.64

Note that there is some overlap between concepts and aspects. Both attempt to65

represent high-level information coupled with low-level program descriptions.66

The principal difference is that concepts are universal. Every source code entity67

belongs to some concept. In contrast, only some of the source code implements68

aspects. Aspects encapsulate implementation-oriented cross-cutting concerns,69

whereas concepts encapsulate human-oriented concerns which may or may not70

be cross-cutting. Section 2.4 develops this relationship.71

Throughout this paper, we make no assumptions about how concept selection72

or assignment takes place. In fact, all the concepts are selected and assigned73

manually in our two case studies. This paper concentrates on how the concept74

information is applied, which is entirely independent of how it is constructed.75

However we note that automatic concept selection and assignment is a non-76

trivial artificial intelligence problem. For instance, Biggerstaff et al. describe77

a semi-automated design recovery system called DESIRE [1]. This uses a pre-78

computed domain model and a connectionist inference engine to perform the79

assignment. Gold and Bennett describe a hypothesis-based system [2]. This80

applies information from a human-generated knowledge base to source code81

using self-organizing maps to assign concepts.82

1.2 Dynamic Analysis with Concepts83

To date, concept information has only been used for static analysis of program84

source code or higher-level program descriptions [1,3,4]. This work focuses on85

dynamic analysis of Java programs using concept information. Such dynamic86

analysis relies on embedded concept information within source code and dy-87

namic execution traces of programs. This paper discusses various techniques88

for encoding, extracting and applying this concept information.89

1.3 Contributions90

This paper makes four major contributions:91
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(1) Section 2 discusses how to represent concepts practically in Java source92

code and dynamic execution traces.93

(2) Sections 3.2 and 3.3 outline two different ways of visualizing dynamic94

concept information.95

(3) Sections 3 and 4 report on two case studies of systems investigated by96

dynamic analysis of concepts.97

(4) Section 5 describes how concepts are used to profile garbage collection98

behaviour within a virtual machine.99

2 Concepts in Java100

This section considers several possible approaches for embedding concept in-101

formation into Java programs. The information needs to be apparent at the102

source code level (for static analysis of concepts) and also in the execution103

trace of the bytecode program (for dynamic analysis of concepts).104

There are obvious advantages and disadvantages with each approach. The105

main concerns are:106

• Ease of marking up concepts, presumably in source code. We hope to be107

able to do this manually, at least for small test cases. Nonetheless it has to108

be simple enough for straightforward automation.109

• Granularity of concept annotations. Ideally we would like to place concept110

boundaries at arbitrary syntactic positions in the source code.111

• Ease of gathering dynamic information about concept execution at or after112

runtime. We hope to be able to use simple dump files of traces of concepts.113

These should be easy to postprocess with perl scripts or similar.114

• Ease of analysis of information. We would like to use visual tools to aid com-115

prehension. We hope to be able to interface to the popular Linux profiling116

tool Kcachegrind [5], part of the Valgrind toolset [6].117

The rest of this section considers different possibilities for embedded concept118

information and discusses how each approach copes with the above concerns.119

2.1 Annotations120

Custom annotations have only been supported in Java since version 1.5. This121

restricts their applicability to the most recent JVMs, excluding many research122

tools such as Jikes RVM 1 [7].123

1 The latest versions of Jikes RVM (post 2.4.5) have added support for custom
annotations. We plan to look into how this allows us to extend our approach.
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public @interface Concept1 { }

public @interface Concept2 { }

...

@Concept1 public class Test {

@Concept2 public void f() { ... }

...

}

Fig. 1. Example Java source code that uses annotations to represent concepts

Annotations are declared as special interface types. They can appear in124

Java wherever a modifier can appear. Hence annotations can be associated125

with classes and members within classes. They cannot be used for more fine-126

grained (statement-level) markup.127

Figure 1 shows a program fragment that uses annotations to represent concepts128

in source code. It would be straightforward to construct and mark up concepts129

using this mechanism, whether by hand or with an automated source code130

processing tool.131

Many systems use annotations to pass information from the static compiler132

to the runtime system. An early example is the AJIT system from Azevedo et133

al. [8]. Brown and Horspool present a more recent set of techniques [9].134

One potential difficulty with an annotation-based concept system is that it135

would be necessary to modify the JVM, so that it would dump concept in-136

formation out to a trace file whenever it encounters a concept annotation at137

runtime.138

2.2 Syntax Abuse139

Since the annotations are only markers, and do not convey any information140

other than the particular concept name (which may be embedded in the an-141

notation name) then it is not actually necessary to use the full power of an-142

notations. Instead, we can use marker interfaces and exceptions, which are143

supported by all versions of Java. The Jikes RVM system [7] employs this144

technique to convey information to the JIT compiler, such as inlining infor-145

mation and specific calling conventions.146

This information can only be attached to classes (which reference marker147

interfaces in their implements clauses) and methods (which reference marker148

exceptions in their throws clauses). No finer level of granularity is possible in149

this model. Again, these syntactic annotations are easy to insert into source150

code. Figure 2 shows a program fragment that uses syntax abuse to represent151

concepts in source code. However a major disadvantage is the need to modify152

5



public class Concept1 extends Exception {

}

public class Test {

public void f() throws Concept1 { ... }

...

}

Fig. 2. Example Java source code that uses syntax abuse to represent concepts

public class Test {

public static final int CONCEPT1 = ...;

public void f(int concept) { ... }

...

}

Fig. 3. Example Java source code that uses metadata to represent concepts

the JVM to dump concept information when it encounters a marker during153

program execution.154

2.3 Custom Metadata155

Concept information can be embedded directly into class and method names.156

Alternatively each class can have a special concept field, which would allow157

us to take advantage of the class inheritance mechanism. Each method can158

have a special concept parameter. However this system is thoroughly intrusive.159

Consider inserting concept information after the Java source code has been160

written. The concept information will cause wide-ranging changes to the source161

code, even affecting the actual API. Figure 3 shows a program fragment that162

uses metadata to represent concepts in source code. This is an unacceptably163

invasive transformation. Now consider using such custom metadata at runtime.164

Again, the metadata will only be useful on a specially instrumented JVM that165

can dump appropriate concept information as it encounters the metadata.166

2.4 Aspects167

Aspect-oriented programming (AOP) [10] provides new constructs to han-168

dle cross-cutting concerns in programs. Such concerns cannot be localized169

within single entities in conventional programming languages. In AOP, cross-170

cutting concerns are encapsulated using aspects. Aspects are encoded in sepa-171
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aspect Concept1 {

OutputStream conceptStream = System.out;

pointcut boundary():

call (void f())

/* may have other methods here */

;

before(): boundary() {

conceptStream.println(‘‘concept1 entry’’);

}

after(): boundary() {

conceptStream.println(‘‘concept1 exit’’);

}

}

Fig. 4. Example AspectJ source code that uses aspects to represent concepts

rate source code units, distinct from the rest of the program source code. The172

code contained in an aspect is known as aspect advice. A point in the program173

source code where a cross-cutting concern occurs is known as a join point. At174

some stage during the compilation process, the appropriate aspect advice is175

woven into the main program source code at the relevant join points. The set176

of all join points for a particular aspect is known as a point cut. Event logging177

is the canonical aspect. Note that this is similar to generating a dynamic ex-178

ecution trace of concepts. The rest of this section uses AspectJ [11], which is179

the standard aspect-oriented extension of Java.180

Each individual concept can be represented by a single aspect. Point cuts181

specify appropriate method entry and exit events for concept boundaries. As-182

pect advice outputs concept logging information to a dynamic execution trace183

stream. Figure 4 shows a program fragment that uses aspects to represent184

concepts in source code.185

One problem with aspects is that the join points (program points at which186

concept boundaries may be located) are restricted. They are more general than187

simply method entry and exit points, but there are still some constraints. The188

AspectJ documentation [11] gives full details. Another disadvantage is that189

aspects are not integrated into the program until compilation (or possibly190

even execution [12]) time. Thus when a programmer inspects the original191

source code, it is not apparent where concept boundaries lie. It is necessary to192

consider both aspect advice and program code in parallel to explore concepts193

at the source code level.194
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2.5 Custom Comments195

A key disadvantage of the above approaches is that concepts can only be196

embedded at certain points in the program, for specific granularities (classes197

and methods). In contrast, comments can occur at arbitrary program points.198

It would be possible to insert concept information in special comments, that199

could be recognised by some kind of preprocessor and transformed into some-200

thing more useful. For instance, the Javadoc system supports custom tags in201

comments. This approach enables the insertion of concept information at ar-202

bitrary program points. A Javadoc style preprocessor (properly called a doclet203

system in Java) can perform appropriate source-to-source transformation.204

We eventually adopted this method for supporting concepts in our Java source205

code, due to its simplicity of concept creation, markup and compilation. Figure206

5 shows a program fragment that uses custom comments to represent concepts207

in source code.208

The custom comments can be transformed to suitable statements that will209

be executed at runtime as the flow of execution crosses the marked concept210

boundaries. Such a statement would need to record the name of the concept,211

the boundary type (entry or exit) and some form of timestamp.212

In our first system (see Section 3) the custom comments are replaced by simple213

println statements and timestamps are computed using the System.nanoTime()214

Java 1.5 API routine, thus there is no need for a specially instrumented JVM.215

In our second system (see Section 4) the custom comments are replaced by216

Jikes RVM specific logging statements, which are more efficient than println217

statements, but entirely nonportable. Timestamps are computed using the218

IA32 TSC register, via a new ‘magic’ method. Again this should be more effi-219

cient than using the System.nanoTime() routine.220

In order to change the runtime logging behaviour at concept boundaries, all221

that is required is to change the few lines in the concept doclet that spec-222

ify the code to be executed at the boundaries. One could imagine that more223

complicated code is possible, such as data transfer via a network socket in a224

distributed system. However note the following efficiency concern: One aim of225

this logging is that it should be unobtrusive. The execution overhead of concept226

logging should be no more than noise, otherwise any profiling will be inaccu-227

rate. In the studies described in this paper, the mean execution time overhead228

for running concept-annotated code is 35% for the small Java program (Sec-229

tion 3) but only 2% for the large Java program (Section 4). This disparity is230

due to the relative differences in concept granularity in the two studies. All231

the experiments in this paper are based on exhaustive tracing of concept infor-232

mation. Note that a statistical sampling approach would require less overhead233
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// @concept_begin Concept1

public class Test {

public void f() {

....

while (...)

// @concept_end Concept1

// @concept_begin Concept2

}

...

}

// @concept_end Concept2

Fig. 5. Example Java source code that uses comments to represent concepts

than exhaustive tracing. A concept sampler could be incorporated with the234

timer-based method profiler used in most adaptive JVM systems to identify235

frequently executed regions of code.236

There are certainly other approaches for supporting concepts, but the five237

presented above seemed the most intuitive and the final one seemed the most238

effective.239

3 Dynamic Analysis for Small Java Program240

The first case study involves a small Java program called BasicPredictors241

which is around 500 lines in total. This program analyses streams of ASCII242

characters encoding method return values. It computes how well these values243

could be predicted using standard hardware mechanisms such as last value244

prediction [13] and finite context method [14]. The program also computes245

information theoretic quantities such as the entropy of the value stream. We246

used this program to generate the results for an earlier study on method return247

value predictability for Java programs [15].248

3.1 Concept Assignment249

The BasicPredictors code is an interesting subject for concept assignment250

since it calculates values for different purposes in the same control flow struc-251

tures (for instance, it is possible to re-use information for prediction mecha-252

nisms to compute entropy).253

We have identified four concepts in the source code.254
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system: the default concept. Prints output to stdout, reads in input file, reads255

arguments, allocates memory.256

predictor compute: performs accuracy calculation for several computational257

value prediction mechanisms.258

predictor context: performs accuracy calculation for context-based value259

prediction mechanism (table lookup).260

entropy: performs calculation to determine information theoretic entropy of261

entire stream of values.262

The concepts are marked up manually using custom Javadoc tags, as de-263

scribed in Section 2.5. This code is transformed using the custom doclet, so264

the comments have been replaced by println statements that dump out con-265

cept information at execution time. After we have executed the instrumented266

program and obtained the dynamic execution trace which includes concept267

information, we are now in a position to perform some dynamic analysis.268

3.2 Dynamic Analysis for Concept Proportions269

The first analysis simply processes the dynamic concept trace and calculates270

the overall amount of time spent in each concept. (At this stage we do not271

permit nesting of concepts, so code can only belong to a single concept at any272

point in execution time.) This analysis is similar to standard function profiling,273

except that it is now based on specification-level features of programs, rather274

than low-level syntactic features such as function calls.275

The tool outputs its data in a format suitable for use with the Kcachegrind276

profiling and visualization toolkit [5]. Figure 6 shows a screenshot of the277

Kcachegrind system, with data from the BasicPredictors program. It is278

clear to see that most of the time (62%) is spent in the system concept. It is279

also interesting to note that predictor context (25%) is more expensive than280

predictor compute (12%). This is a well-known fact in the value prediction281

literature [14].282

3.3 Dynamic Analysis for Concept Phases283

While this analysis is useful for determining the overall time spent in each284

concept, it gives no indication of the temporal relationship between concepts.285

It is commonly acknowledged that programs go through different phases of286

execution which may be visible at the microarchitectural [16] and method287

[17,18] levels of detail. It should be possible to visualize phases at the higher288

level of concepts also.289
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Fig. 6. Screenshot of Kcachegrind tool visualizing percentage of total program run-
time spent in each concept

Fig. 7. Simple webpage visualizing phased behaviour of concept execution trace

So the visualization in Figure 7 attempts to plot concepts against execution290

time. The different concepts are highlighted in different colours, with time291

running horizontally from left-to-right. Again, this information is extracted292

from the dynamic concept trace using a simple perl script, this time visualized293

as HTML within any standard web browser.294

There are many algorithms to perform phase detection but even just by obser-295

vation, it is possible to see three phases in this program. The startup phase has296

long periods of system (opening and reading files) and predictor context297

(setting up initial table) concept execution. This is followed by a periodic phase298

of prediction concepts, alternately predictor context and predictor compute.299

Finally there is a result report and shutdown phase.300
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3.4 Applying this Information301

How can these visualizations be used? They are ideal for program comprehen-302

sion. They may also be useful tools for debugging (since concept anomalies303

often indicate bugs [19]) and profiling (since they show where most of the304

execution time is spent).305

This simple one-dimensional visualization of dynamic concept execution se-306

quences can be extended easily. It would be necessary to move to something307

resembling a Gantt chart if we allow nested concepts (so a source code entity308

can belong to more than one concept at once) or if we have multiple threads309

of execution (so more than one concept is being executed at once).310

4 Dynamic Analysis for Large Java Program311

The second case study uses Jikes RVM [7] which is a reasonably large Java312

system, around 300,000 lines of code. It is a production-quality adaptive JVM313

written in Java. It has become a significant vehicle for virtual machine (VM)314

research, particularly into adaptive compilation mechanisms and garbage col-315

lection. All the tests reported in this section use Jikes RVM version 2.4.4,316

development configuration, Linux/IA-32 build and single pthread VM run-317

time.318

Like all high-performance VMs, Jikes RVM comprises a number of adaptive319

runtime subsystems, which are invoked on-demand as user code executes.320

These include just-in-time compilation, garbage collection and thread schedul-321

ing. A common complaint from new users of Jikes RVM is that it is hard to322

understand how the different subsystems operate and interact. The program-323

mer is not aware of how and when they will occur, unless he explicitly requests324

their services by sending messages like System.GC(), but this is rare. Similarly,325

the user is not aware of when these subsystems are operating, as the code ex-326

ecutes. They are effectively invisible, from both a static and a dynamic point327

of view. So this case study selects some high-level concepts from the adaptive328

infrastructure, thus enabling visualization of runtime behaviour.329
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4.1 Visualized Subsystems330

After some navigation of the Jikes RVM source code, we inserted concept331

tags around a few key points that encapsulate the adaptive mechanisms of332

(i) garbage collection and (ii) method compilation. These are the dominant333

VM subsystems in terms of execution time. Other VM subsystems, such as334

the thread scheduler, have negligible execution times so we do not profile335

them. Note that all code not in an explicit concept (both Jikes RVM code and336

user application code) is in the default unmarked concept. Figure 8 gives the337

different concepts and their colours. Figures 9–11 show different runs of the338

_201_compress benchmark from the SPECjvm98 suite, and how the executed339

concepts vary over time.340

Fig. 8. Key for concept visualizations

The garbage collection VM subsystem (GC) manages memory. It is invoked341

when the heap is becoming full, and it detects unreachable (dead) objects and342

deletes them, thus freeing up heap space for new objects. All our experiments343

use the default Jikes RVM generational mark-sweep garbage collection algo-344

rithm. This algorithm’s distinct behaviour is clear to see from the concept345

visualizations. There are two generations: nursery and mature. The nursery346

generation is cheap to collect, so generally a small amount of GC time is spent347

here. On the other hand, the mature generation is more expensive to collect348

but collections are less frequent, so occasionally a longer GC time occurs. This349

is most apparent in Figure 9. Most GCs are short but there is one much longer350

GC around 45% of the way through the execution.351

The compilation VM subsystem is divided between two concepts. The base-352

line compiler is a simple bytecode macro-expansion scheme. It runs quickly353

but generates inefficient code. On the other hand the optimizing compiler (opt-354

comp) is a sophisticated program analysis system. It runs slowly but generates355

highly optimized code. Generally all methods are initially compiled with the356

baseline compiler, but then frequently executed (hot) methods are recompiled357

with the optimizing compiler. The time difference is clear in the visualiza-358

tions. For instance, the bottom trace in Figure 10 has many short baseline359

compilations and a few much longer optimizing compilations.360
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4.2 Subsystem Properties361

This section presents five VM subsystem properties that our concept visual-362

izations clearly demonstrate. This enables us to gain a better understanding363

of VM behaviour in general.364

4.2.1 Pervasive365

VM subsystems are active throughout the entire program lifetime. Figure 9366

illustrates this point. It is noticeable that the density of VM code in relation367

to user code changes over time. It appears that VM code is more frequent368

near the beginning of execution. This is because the compiler compiles every369

method immediately before it is executed for the first time. Later compilation370

activity generally involves selective optimizing recompilation of hot methods.371

4.2.2 Significant runtime372

Visualizations like Figure 9 show that VM code occupies a significant pro-373

portion of total execution time. The total execution time is shared between374

application code and VM code. For the long-running benchmark program used375

in this study, around 90% of time is spent in user code and 10% in VM code.376

The VM time should be more significant for shorter programs. It is also inter-377

esting to discover how the VM execution time is divided between the various378

subsystems. For the benchmark used in this study, the VM spends at least379

twice as long in compilation as in garbage collection.380

4.2.3 Dependence on VM configuration381

Modern adaptive runtimes are highly configurable. It is possible to specify382

policies and parameters for all subsystems. These have a major impact on383

system performance. Previously it was not possible to see exactly how vary-384

ing configurations changed overall behaviour. Now our concept visualizations385

make this task straightforward. Figure 10 shows two runs of the same program,386

but with different VM configurations. The top trace uses the default VM com-387

pilation policy, which at first compiles all methods using the baseline compiler388

then recompiles hot methods with the more expensive optimizing compiler.389

The bottom trace uses a modified compilation policy, which initially uses the390

optimizing compiler rather than the baseline compiler, as much as possible.391

Note that Jikes RVM requires that some methods must be compiled at baseline392

level.393
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Fig. 9. Pervasive nature of VM subsystem execution

Fig. 10. Varying nature of VM subsystem execution, illustrated by two runs of the
same benchmark program

Fig. 11. Periodic nature of VM subsystem execution

4.2.4 Interactivity394

VM subsystems are not entirely independent. They affect one another in subtle395

ways. For instance in Figure 10, it is clear to see that greater use of the opti-396

mizing compiler causes increased garbage collection activity. This is because397

the optimizing compiler generates many intermediate program representations398

and temporary data structures as it compiles methods, thus filling up heap399

space. Note that there is a single heap shared between VM code and user code.400

Section 5 explores this interaction in more detail.401

4.2.5 Periodicity402

Programs go through different phases and exhibit periodic patterns, as Section403

3.3 mentions. Figure 11 demonstrates that VM code may be periodic too. In404

this execution trace, the program is memory-intensive and the heap has been405

restricted to a small size. Thus the garbage collector has to run frequently,406

and if the memory load is constant over time, then the garbage collector will407

run periodically.408

5 Profiling Garbage Collection409

Section 4.2 noted that optimizing compilation (optcomp) frequently triggers410

GC. We assume this is because optcomp creates many intermediate data struc-411

tures such as static single assignment form when it analyses a method. This412

takes up space in the heap. (VM and user code share the same heap in Jikes413

RVM system.) However most of these intermediate compilation objects die as414
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Fig. 12. Percentage of optcomp concepts that are followed by GC, for each bench-
mark program

soon as the compilation completes. A recent study [20] shows that it is most415

efficient to do GC when the proportion of dead to live data on the heap is max-416

imal, even if the heap is not entirely full. Processing live data wastes GC time.417

Live data must be scanned and perhaps copied. On the other hand, dead data418

may be immediately discarded. This insight leads to our idea that it may be419

good to perform GC immediately after optcomp. Thus we consider modifying420

the VM to force GC automatically after every optimizing compilation.421

We query a set of dynamic execution traces to determine how often GC follows422

optcomp, in a standard Jikes RVM system setup. We use the default GC strat-423

egy (generational mark-sweep) with standard heap sizes (50MB start, 100MB424

maximum). We gather concept data from the entire SPECjvm98 benchmark425

suite. For each benchmark, we measure the percentage of optcomp concepts426

that are followed by GC (i.e. GC is the next VM concept after optcomp,427

possibly with some intervening unmarked concept code). Figure 12 shows the428

results. For some programs, around 25% of optcomp concepts are followed429

by GC. However the proportion is much lower for others. This suggests that430

any optimization should be program-specific. Presumably since some methods431

have larger and more complex methods, optcomp has to do more work and432

uses more memory.433

Now we modify the optimizing compiler so that it forces a GC immediately434

after it has completed an optcomp concept (eager GC-after-optcomp). We435

hope to target the heap when a large proportion of objects have just become436

dead. We use the Jikes RVM memory management toolkit harness code to437

measure the amount of time spent in GC throughout the entire execution438

of each benchmark. In order to stress the GC subsystem, we decide to use439

relatively small heap sizes for each benchmark. We determine the minimum440
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Fig. 13. Minimum possible Jikes RVM heap sizes for each benchmark program

fixed heap size (specified using the -Xms -Xmx options for Jikes RVM) in which441

each benchmark will run without throwing any out-of-memory exceptions.442

Note that within the fixed heap, the nursery generation may expand to fill443

the available free space. Figure 13 shows these minimum heap sizes for each444

benchmark. We conducted three sets of experiments, using 1, 1.5 and 2 times445

the minimum heap size for each benchmark. All timing figures are taken as446

the median score of up to five runs.447

In our preliminary experiments, we modified the Jikes RVM GC policy to448

force a collection immediately after each optcomp. However, we noticed that449

this actually causes a performance degradation. We changed the GC policy so450

that the VM checks to see if the heap usage has exceeded a certain thresh-451

old, immediately after each optcomp. If the threshold is exceeded, we force a452

collection. All the experiments below use this threshold-based eager GC-after-453

optcomp policy on modifed VMs. We arbitrarily chose to set the threshold to454

0.9. A more detailed profiling study would assess various threshold values to455

determine an optimal heuristic.456

Figure 14 shows the GC times for each benchmark. These initial experiments457

are run on the unmodified VM, so garbage collection only occurs when the458

standard VM heap usage monitoring code detects that the heap is nearly459

full. Then Figure 15 shows the relative difference in GC times between the460

unmodified and modified VMs. A negative score indicates a speedup in the461

modified VM, whereas a positive score indicates a slow-down. There is a clear462

variation in performance, with the most obvious improvements occuring for463

the minimum heap size, in general.464

Finally we investigate how this eager GC-after-optcomp strategy affects the465

overall runtime of the programs. Reduction in GC time has a direct impact on466

17



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

_2
28

_j
ac

k

_2
27

_m
tr

t

_2
22

_m
pe

ga
ud

io

_2
13

_j
av

ac

_2
09

_d
b

_2
05

_r
ay

tr
ac

e

_2
02

_j
es

s

_2
01

_c
om

pr
es

s

tim
e 

in
 G

C
 (

m
s)

benchmark

1x minheap
1.5x minheap

2x minheap

Fig. 14. GC times for different benchmarks before VM modification
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Fig. 15. Relative difference in GC times after VM modification, to force GC after
optcomp

overall execution time, since GC time is included in the overall time. However,467

there is also an indirect impact caused by improved GC. The execution time468

of the benchmark code itself may be reduced due to secondary GC effects like469

improved cache locality.470

Figure 16 shows the overall execution times for each benchmark. These exper-471

iments are run on the unmodified VM. From a comparison between Figures472

14 and 16, it is clear to see that GC time is a small proportion of overall time.473

Figure 17 shows the relative difference in overall times between the unmodified474

and modified VMs. A negative score indicates a speedup in the modified VM,475

whereas a positive score indicates a slow-down. There is a clear variation in476

performance, with four significant improvements at the minimum heap size.477
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Fig. 16. Overall execution times for different benchmarks before VM modification
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Fig. 17. Relative difference in overall execution times after VM modification, to
force GC after optcomp

From this small study, we can see that it is sometimes advantageous to employ478

the eager GC-after-optcomp policy, although sometimes it does not improve479

performance. Perhaps this strategy should be an adaptive VM option rather480

than a hardwired choice, since it seems to depend on particular program char-481

acteristics. It should also depend on heap size configuration, growth policy482

and GC algorithm.483
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6 Related Work484

This paper is an extended version of previous research [21]. The current paper485

improves on our earlier work in two ways:486

(1) It provides a fuller treatment of the relationship between concepts and487

aspects (Sections 1.1 and 2.4).488

(2) It uses concept-based profiling to investigate scheduling policies for garbage489

collection and optimizing compilation in Jikes RVM (Section 5).490

6.1 Visualization Systems491

Hauswirth et al. [22] introduce the discipline of vertical profiling which involves492

monitoring events at all levels of abstraction (from hardware counters through493

virtual machine state to user-defined application-specific debugging statistics).494

Their system is built around Jikes RVM. It is able to correlate events at differ-495

ent abstraction levels in dynamic execution traces. They present some interest-496

ing case studies to explain performance anomalies in standard benchmarks.497

Our work focuses on user-defined high-level concepts, and how source code498

and dynamic execution traces are partitioned by concepts. Their work relies499

more on event-based counters at all levels of abstraction in dynamic execution500

traces.501

GCspy [23] is an elegant visualization tool also incorporated with Jikes RVM.502

It is an extremely flexible tool for visualizing heaps and garbage collection503

behaviour. Our work examines processor utilization by source code concepts,504

rather than heap utilization by source code mutators.505

Sefika et al. [24] introduce architecture-oriented visualization. They recognise506

that classes and methods are the base units of instrumentation and visualiza-507

tion, but they state that higher-level aggregates (which we term concepts) are508

more likely to be useful. They instrument methods in the memory management509

system of an experimental operating system. The methods are grouped into510

architectural units (concepts) and instrumentation is enabled or disabled for511

each concept. This allows efficient partial instrumentation on a per-concept512

basis, with a corresponding reduction in the dynamic trace data size. Our513

instrumentation is better in that it can operate at a finer granularity than514

method-level. However our instrumentation cannot be selectively disabled,515

other than by re-assigning concepts to reduce the number of concept bound-516

aries.517

Sevitsky et al. [25] describe a tool for analysing performance of Java programs518

using execution slices. An execution slice is a set of program elements that519
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a user specifies to belong to the same category—again, this is a disguised520

concept. Their tool builds on the work of Jinsight [26] which creates a database521

for a Java program execution trace. Whereas Jinsight only operates on typical522

object-oriented structures like classes and methods, the tool by Sevitsky et al.523

handles compound execution slices composed of multiple classes and methods.524

They allow these execution slices to be selected manually or automatically.525

The automatic selection process is based on ranges of attribute values—for526

instance, method invocations may be characterized as slow, medium or fast527

based on their execution times.528

Eng [27] presents a system for representing static and dynamic analysis in-529

formation in an XML document framework. All Java source code entities are530

represented, and may be tagged with analysis results. This could be used531

for static representation of concept information, but it is not clear how the532

information could be extracted at runtime for the dynamic execution trace.533

There are some Java visualization systems (for example, [28,29]) that instru-534

ment user code at each method entry and exit point to provide extremely535

detailed views of dynamic application behaviour. However these systems gen-536

erate too much information to be useful for high-level comprehension purposes.537

In addition, they do not capture JVM activity.538

Other Java visualization research projects (for example, [30,31]) instrument539

JVMs to dump out low-level dynamic execution information. However they540

have no facility for dealing with higher-level concept information. In principle541

it would be possible to reconstruct concept information from the lower-level542

traces in a postprocessing stage, but this would cause unnecessarily complica-543

tion, inefficiency and potential inaccuracy.544

6.2 Eager Garbage Collection Strategies545

Buytaert et al. [20] give a good overview of forced GC at potentially optimal546

points. They have profiling runs to determine optimal GC points based on547

heap usage statistics. They use the results of profiling to generate hints for the548

GC subsystem regarding when to initiate a collection. Wilson and Moher [32]549

append GC onto long computational program phases, to minimise GC pause550

time in interactive programs. This is similar in our eager GC-after-optcomp551

approach. Both optcomp and GC reduce interactivity, so it is beneficial to552

combine these pauses whenever possible. Ding et al. [33] also exploit phase553

behaviour. They force GC at the beginning of certain program phases, gain-554

ing 40% execution time improvement. Their high-level phases are similar to555

our notion of concepts. They assume that most heap-allocated data is dead at556

phase transitions, and this assumption seems to be true for the single bench-557
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mark program they investigate. The behaviour of Jikes RVM is more variable558

and merits further investigation.559

7 Concluding Remarks560

This paper has explored the dynamic analysis of concept information. This561

is a promising research area that has received little previous attention. We562

have outlined different techniques for embedding concept information in Java563

source code and dynamic execution traces. We have presented case studies of564

concept visualization and profiling. This high-level presentation of concept in-565

formation seems to be appealingly intuitive. We have demonstrated the utility566

of this approach by harnessing the interaction between runtime compilation567

and garbage collection in the Jikes RVM adaptive runtime environment.568

Until now, concepts have been a compile-time feature. They have been used for569

static analysis and program comprehension. The current work drives concept570

information through the compilation process from source code to dynamic571

execution trace, and makes use of the concept information in dynamic analy-572

ses. This follows the recent trend of retaining compile-time information until573

execution time. Consider typed assembly language, for instance [34].574

During the course of this research project, we conceived a novel process which575

we term feedback-directed concept assignment. This involves: (1) selecting con-576

cepts; (2) assigning concepts to source code; (3) running the program; (4)577

checking results from dynamic analysis of concepts; and (5) using this informa-578

tion to repeat step (1). This is similar to feedback-directed (or profile-guided)579

compilation. In fact, this is how we reached the decision to examine both base-580

line and optimizing compilers separately in Section 4.1 rather than having a581

single compilation concept. We noticed that the single compilation concept582

(incorporating the activities of both baseline and optimizing compilers) was583

large, and did not correlate as well with the garbage collection concept. Once584

we split this concept into two, we observed that garbage collection follows585

optimizing compilation rather than baseline.586

The process of feedback-directed compilation could be partially automated,587

given sufficient tool support. We envisage a system that allows users to specify588

the granularity of concepts in terms of source code (average number of lines589

per concept) or execution profile (average execution time percentage per con-590

cept) or both. The tool would process an initial concept assignment, execute591

the concept-annotated program and determine whether the user-specified re-592

quirements are met. If so, the tool indicates success. If not, the tool suggests593

a possible splitting of concepts, which the user has to approve or modify, then594

the tool reassesses the concept assignment.595
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With regard to future work, we should incorporate the analyses and visualiza-596

tions presented in this paper into an integrated development environment such597

as Eclipse. Further experience reports would be helpful, as we conduct more598

investigations with these tools. The addition of timestamps information to599

the phases visualization (Section 3.3) would make the comparison of different600

runs easier. We need to formulate other dynamic analyses in addition to con-601

cept proportions and phases. One possibility is concept hotness, which would602

record how the execution profile changes over time, with more or less time603

being spent executing different concepts. This kind of information is readily604

available for method-level analysis in Jikes RVM, but no-one has extended it605

to higher-level abstractions.606
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