Software Engineering M3 /2012

Software Engineering

In a 21st century knowledge-based economy, computer software is of vital
importance. For instance, the UK software industry is worth around £30 billion!
per annum, which equates to 3% of the total UK economy. Furthermore,
software infrastructure of some kind underpins almost everything we do in
modern society.

What is Software?

Software is the combination of instructions and data that controls electronic
computer hardware. Almost all electronic devices are programmable, which
means they rely on software to direct their behavior. Software is excitingly and
dangerously unconstrained. Brooks? states: ‘Few media of creation are so
flexible, so easy to polish and rework, so readily capable of realizing grand
conceptual structures.’

What is Software Engineering?

We can instinctively recognize bad software engineering. We all experience
frustration when computer program are unreliable and crash, losing our work.
Again, we detest computer systems that refuse to allow us to carry out the
supposedly simple tasks we require to do, such as unhelpful self-service
checkouts? at supermarkets.

So, how can we encapsulate good software engineering? Which principles are at
work to produce high-quality software, and what does quality really mean in this
context?

Small programs can be produced by individuals, who have a sufficient grasp of
their work that it can be self-consistent, useful and reliable. However the Linux
operating system kernel has over 13 million lines of code?, far more than even
Linus Torvalds can manage single-handedly. Good software engineering practice
gives Linux, and other large software projects, the following key properties:

1. Utility - it performs a useful task, as expected by its users

2. Efficiency - it works quickly on current hardware platforms

3. Reliability - it fails infrequently

1 http://www.bis.gov.uk/policies/business-sectors/electronics-and-it-
services/software-and-it-services, fetched on 20t Dec 2010

2 THE MYTHICAL MAN MONTH, by Fred Brooks. Any edition will do. I have the
1995 Addison Wesley version.

3 http://bit.ly/bnlvSN, fetched on 20th Dec 2010

4 http://www.h-online.com/open/features/What-s-new-in-Linux-2-6-36-
1103009.html?page=6, fetched on 20t Dec 2010

Software Engineering M3 /2012

4. Maintainability - it can be repaired and extended as and when deemed
necessary by its developers
5. Elegance - it has an architectural coherence
The discipline of software engineering concerns creating software products with
the above qualities. One further issue is the managerial aspect of production:
Well-engineered software must be delivered on-time and in-budget.

In summary, Sommerville> defines software engineering as:

The production of high-quality software with a finite amount of resources
and to a predicted schedule,
with the following four attributes that relate to quality:

Maintainable, reliable, efficient, and with an appropriate user interface.

Software Disasters

High-quality software is the kind of entity that should never be noticed by its
users. [t empowers end-users to accomplish their tasks swiftly and smoothly.
However all too often, we hear of software disasters, where the software
engineering process has malfunctioned to some extent. Fred Brooks® gives a
historical account of a 1960’s software disaster. The NHS IT project” appears to
be a modern-day parallel.

5 SOFTWARE ENGINEERING, by lan Sommerville. Any edition will be helpful, the
most recent is the 9t edition, published by Addison Wesley in 2010.

6 THE MYTHICAL MAN MONTH, by Fred Brooks

7 http://www.connectingforhealth.nhs.uk/, fetched on 20t Dec 2010. See also
http://nhs-it.info/, fetched on 11th Jan 2010.

Software Engineering M3 /2012

Software Scaling

A teenager working in his bedroom? can develop a small software project such as
an iPhone app. However larger scale software such as an office application suite
takes many person-years of development effort®. So how does Microsoft manage
to release a new version of its Office product every 3 years? In this section, we
consider the differing roles played by various members of the software team,
and how they combine to produce high-quality, significant size software
products.

Software Deliverables

Until now, we may have considered software to be merely an executable
program, supplied on a DVD or via internet download. However a software

project has many more deliverables. These include:
1. A high-level specification of the software

An architectural overview of the software modules

Source code

Documentation for the source code

Revision history of the source code

Bugs database

Test sets

Documentation for software users

Post-release maintenance updates or extensions

WO W

Each of these deliverable units is important in its own right, and requires effort
on the part of the development team.

Modularity

To manage a large and complex piece of software, it must be divided into
manageable components, often referred to as modules. Each module is developed
by a small, closely-knit team. The interfaces between modules are clearly
specified to allow work on multiple components to proceed in parallel. An
interface is a form of contract between the inter-dependent modules, and their
corresponding development teams. It specifies the behaviour that can be
expected from a module.

For example, the Firefox web browser has around 30 modules!® ranging from
AccountManager to Toolbars.

8 http://www.fastcompany.com/1621539/teen-iphone-app-developers, fetched
on 21st Dec 2010

9 http://www.ohloh.net/p/openoffice , fetched on 21st Dec 2010. OpenOffice is a
free clone of MS Office.

10 https://bugzilla.mozilla.org/describecomponents.cgi?product=Firefox,
fetched on 7t Jan 2011. Note that Firefox also includes many of the Mozilla core
modules.

Software Engineering M3 /2012

Teams

Large teams have high communication overhead. Hence Brooks proposes that a
software team should consist of ten or fewer members. Communication remains
manageable at this size. While some of Brooks’ original writing may sound
hopelessly outdated in terms of filing assistants for punch cards, etc, many of his
observations about software teams remain relevant today.

The team will be led by a software architect, who is responsible for the overall
structure and integrity of the team’s module. He will have responsibility for
communicating with other teams who are developing other modules that
interface with his module. The architect may double up as team manager.

A small number of individuals within the team will undertake the actual
software development. These will be experienced software engineers, although
novices may gain experience by pair-programming with a more experienced
colleague. All software developers will peer-review each other’s coding efforts,
since they will use a shared online code repository.

Software documentation is essential. This may be written directly by the
developers, as they produce their code. The literate programming philosophy
advocates this approach. Alternatively, documentation may be added by a
documentation specialist who works alongside the developers. Code
documentation allows other people to understand how the program works,
which may be necessary if it has to be modified or extended at a later stage.

A small number of individuals within the team will devise and create tests for
the software module. These are known as unit tests. Some of these will be black
box tests (simply ensuring that the module behaves according to its interface, so
that other modules can interact with it correctly). Other tests will be white box
tests, when the tester assumes certain knowledge of the inner workings of the
module and writes tests accordingly. An automated test suite, with regression
tests running regularly, will be assembled and maintained by the testers.

A tools specialist or technician may provide further support for the team.

This person ensures that the developers and testers have appropriate machines
and development software to accomplish their tasks. Non-technical support is
provided by a secretary. These support roles may be shared between multiple
teams.

a Project manager t& Documentation writer
? B Software developer \;’a Support technician
£) Software tester 4“5 Software architect

LY o
€ Secretary

° 1

Software Engineering M3 /2012

Software Development Lifecycle

The software crisis hit in the 1960s. In this second decade of computerization,
processors had become sufficiently advanced and memory sufficiently large that
ad-hoc informal software development techniques failed. Royce!! suggested the
Waterfall model of software development, in which a software project proceeds
through various sequential phases. Phase n must be completed and approved
before Phase n+1 commences.

requirements

specification

implementation
and unit tests

integration
and system test

maintenance

Advantages of Waterfall

1. Early capture of requirements sets the level of expectations for users
and developers. The aim is to avoid feature-creep entirely, since the
lifecycle does not admit changed requirements once this stage has been
approved.

2. An explicit specification stage maps out the architecture of the software
product. This enables modularization, and early assessment of technical
challenges and performance issues.

3. Clear provision of testing of individual modules and the full system,
which must be completed before the software is deployed.

4. An ongoing maintenance phase deals with software bugs, performance
tuning and requested extensions.

Disadvantage of Waterfall

The lack of flexibility is a problem. Once a particular phase has been completed,
there is no facility to revisit it and revise its deliverables. Waterfall is not able to
handle a changing problem. Often system requirements do not become apparent

11 http: //www.cs.umd.edu/class/spring2003 /cmsc838p/Process/waterfall.pdf,
fetched on 23rd Dec 2010

Software Engineering M3 /2012

until the implementation phase. Sometimes customers revise requirements after
early prototyping.

Flexibility can be patched into the process with the use of feedback paths from
stage n to stage n-1, or by multiple iterations through the entire process.

Modern thinking on software development lifecycle

A more recent approach is the Unified Software Development Process. This
overcomes the brittle nature of the Waterfall model, since it is both iterative (i.e.
feedback and refinement within and between stages) and incremental (taking
small steps that build on work of previous iterations within and between stages).

The Unified Process divides into four phases:
1. Inception
2. Elaboration
3. Construction
4. Transition

The inception is the starting point of the software project. It should be the
shortest phase in the project. It generates a business case for the project, with
initial estimates of cost, benefits and timescale.

In the elaboration phase, the team captures the majority of system requirements.
Generated documentation includes use cases, high-level data structures and
module specifications. This documentation may be presented in a standard
format such as the Unified Modelling Language (UML).

Actual software implementation takes place in the construction phase. This is
generally the longest phase of the project. System features are implemented in
short development iterations. At the end of this phase, an initial operational
system is ready for prototyping.

In the transition phase, the working system is delivered to end-users. These may
provide feedback for another cycle of the development process.

A comparison between Waterfall and Unified Process may prove helpful. We can
identify phases of each development model that correspond with the other. We
can consider potential advantages that the Unified Process has over Waterfall,
given the benefit of thirty years of hindsight!2.

12 http://xkcd.com /844 / sums it all up really, fetched on 7t Jan 2011

Software Engineering M3 /2012

Requirements Gathering

A high proportion of software failure!? stems from building the wrong system,
rather than building the system wrongly. This failure begins when the software
engineers and their clients fail to co-operate in capturing the system
requirements at the outset of the project.

Functional requirements specify the services that the system is expected to
provide. Non-functional requirements specify the constraints under which the
system is expected to operate (e.g. response time, reliability). As a general guide,
Sommerville!4 states that, ‘System requirements should set out what the system
should do rather than how this is done.’

A software project might involve the computerization of a business process, or
the upgrading of an existing system. All stakeholders should be identified early
and involved in eliciting the requirements. These might include users and
managers for the client company, and software developers and architects for the
software company.

There are many different methods for gathering requirements. These include:
1. Field study - observation of existing practice
2. Interviews and questionnaires
3. Walkthrough scenarios

Again, there are various formats for expressing requirements. The most popular
approach involves use cases. These fit well with modular and incremental
development. We consider use cases fully later.

There are several desirable properties for a set of software project requirements.
1. Correct (what the user wants)
2. Complete (cover whole of system operation)
3. Unambiguous (clear, and means the same to bother client and developer).
4. Testable (enable later verification that the implemented system meets the
requirement).

Requirements must be clearly documented and archived. They form the basis of
the contract between the client and the software development company. The
software engineers will need to refer to the requirements throughout the
software development process. The client will need to refer to the requirements
when prototyping the system, and deciding whether it is satisfactory for final
roll-out.

13 http://www.projectsmart.co.uk/docs/chaos-report.pdf, fetched on 25th Jan
2012

14 http: //www.cs.st-andrews.ac.uk/~ifs/Books/SE8/Syllabuses /INTRO-
SLIDES/Requirements-2.ppt, fetched on 24th Dec 2010. Note that there are a full
set of lecture slides on Sommerville’s website, with material to support his
textbook.

Software Engineering M3 /2012

Use Cases

Use cases encapsulate specific scenarios in which a user interacts with the
software system in a specific way. For a bare minimum, an individual use case
requires:

XN AW

Title (verb-noun)

Identifier (numeric?)

Goal (what is accomplished by successful completion)
Actor (who engages with system)

Preconditions (system state immediately before scenario)
Trigger (event that causes the scenario to begin)

Course of events (basic, normal flow through the scenario)
Postconditions (system state immediately after scenario)

In today’s lecture, we will consider use cases from a supermarket self-service
checkout. These might include: SCAN-ITEM, BUY-LOOSEFRUIT, PAY-BILL,
AUTHORIZE-ITEM.

Use Case 007: PAY-BILL

Goal: correctly provide payment for items in shopping

Actor: supermarket customer
Preconditions: all items have been scanned or weighed,

Trigger: user clicks “Finish and Pay”

Course of events:
s,
24.
3.
4.
5.
6.

Postcondition: shopping in bagging area, waiting for

basket

and placed in bagging area

User selects payment type (cash/card/voucher)
System displays total bill

User pays in appropriate way

System indicates payment accepted

System returns change and prints receipt
System reminds user to collect shopping

user to remove them before system can
return to start screen.

Software Engineering M3 /2012

Object-Oriented Software Development

Think about a real-world system or process. Every concrete part of it can be
modeled as an object (cf noun), with associated attributes (cf adjective) and
capabilities (cf verb). Objects have relations (cf case) with other objects. An
example of a university lecture is presented below. The object-oriented approach
appeals to our intuition. It is useful to organize software systems around clearly
defined data structures that have real-world counterparts, maintaining
controlled access to owned data via particular operations invoked on the owner.

For an example, consider this lecture. As a timetabled university event, it has
attributes such as:
Starting time
Finishing time
Location
Subject
Lecturer
Class of students
Operations on the lecture may include:
1. Attending the lecture
2. Downloading a copy of the notes
3. Rescheduling the lecture time
Furthermore, this individual lecture instance is related to other lectures in the
same series, or degree programme, etc.

oUW

All lectures will follow a similar template, i.e. they all have common types of
attributes and operations. This template is referred to as the lecture class.
However each individual lecture will have different data for each attribute -
since no two lectures can be in the same place at the same time. Each individual
lecture is referred to as a lecture object, which is an instantiation of the lecture
class.

Unified Modeling Language

The unified modeling language (UML) is an industry-standard notation for
object-oriented software development. It provides a graphical framework for
describing objects and their interactions, in the context of a software system.
UML is the standard language for modeling in the unified software development
process, which was explained in a previous lecture.

There are more than 10 different kinds of UML diagram?>. These can be divided
into structural diagrams, which show how the software is constructed from
various components, and behavioural diagrams, which show the dynamic
interactions between the components as the software is executing.

15 http: //en.wikipedia.org/wiki/File:UML_Diagrams.jpg, fetched on 30t Dec
2010, gives a lovely montage of different UML diagrams

Software Engineering M3 /2012

UML Class Diagrams

The simplest structural diagram is the class diagram. This describes the data
fields and manipulation operations associated with each class (object template)
in the system, and how the various classes relate to one another. Below is an
example involving people in a university. For full details about the intricacies of
UML diagrams, the UML cheat sheet!® may be helpful.

Person

+Name: String
+Date0fBirth: Date|
+Gender: M/F
+Contact: Number

A Scholar

—————————— 1>>+University: String
+Subject: String

|

]

1

! I

' |

: Graduate
| | +Award: Degree
]

1

1

1

]

|

| £

|
Student Lecturer | :
*
StudentLoan u<>+r/|atricu1ation: Date} = = = = [+Salary: Int - 1
- +Level: Degree +0ffice: Addressfp — — — — — — 4
+balance: int {

+borrow()
+repay ()

In the above diagram, each box denotes a single class. The top section gives the
class name, the middle section gives the data fields, and the lower section gives
the operations on that class. Lines between boxes represent object-oriented
relationships. Lines ending in triangle arrow-heads indicate the “is-a” relation,
which is known as inheritance in object-oriented programming. Lines ending in
diamond heads indicate the “has-a” relation, which is known as association. For
instance, a Student has a StudentLoan. The permissible frequency of loans per
student is represented by the numbers on the line. Each loan is related to a single
student. However each student may have zero or more loans.

16 http://loufranco.com/blog/assets/cheatsheet.pdf, fetched on 26t Jan 2012

10

Software Engineering M3 /2012

UML Behavioural Diagrams

We have already considered structural diagrams, which describe the data
structures and modules of the software system. Now we move onto behavioural
diagrams, which describe the dynamic interaction between software
components, as the software system executes.

The UML use case diagram is used during the early stages of development, to
identify and encapsulate required system functionality. The diagram
distinguishes between actors (people, represented as match-stick people) and
use cases (goals to accomplish, represented as labeled ovals). Actors can trigger
use cases by particular actions. The example below gives a use case diagram for a

restaurant.

Diner

order meal

cook meal i
Chef

serve meal

eat meal

Waiter

The UML activity diagram shows what has to happen to accomplish a task
(typically an individual use case) and generally is implemented as a single
procedure or method at the coding stage. The example below gives an activity
diagram for making a cup of tea.

Each individual action is enclosed in a box. An edge between actions indicates
control flow. A diamond is a conditional test, with labeled outcomes. Multiple
independent activities can proceed in parallel with a fork horizontal bar. The end
of the independent parallel activities is denoted by a join parallel bar.

11

e Engineering M3 /2012

check kettle

[needs more water]
fill kettle

[ok]

fetch tea bag fetch cup

boil kettle fetch milk ’

add tea bag to cup

add boiling water to cup

add milk

Qeturn milk to fridge) Gemove teabag from cuD

The UML sequence diagram describes how several objects co-operate with each
other to accomplish a task (typically a single use case). It shows the interacting
objects and the sequence of messages that passes between them. The diagram
below shows a web-based ordering system.

web front end warehouse inventory bank payment dispatch
T T T T
| | | 1
| 1 1 |
| 1 |
check-item | |
1 |
1 |
@—Trcm-available : | |
purchase-item :
|

| |
- Payment-accepted : I
| |
| : !
L | |

| request-delivery 1

' |
- - - T
| delivery-arranged | :
T I : I
I I ! I
I I : I
I I ! I

X X X X

12

Software Engineering M3 /2012

Object-Oriented Programming

Object-oriented programming languages have been around since the 1970s.
Object-oriented programming (OOP) is currently the dominant programming
paradigm. Major OOP languages include C++, C# and Java.

Although UML / object-oriented software engineering is more recent than OOP,
it has been retro-fitted into the process. So all structural and behavioural
concepts in UML should have corresponding implementations in OOP. Some UML
tools have the ability to auto-generate OOP skeleton code, allowing the software
developers to fill in the implementation-specific low-level details.

A program called a compiler translates the program into executable machine code
for the system to run.

* generate

skeleton compiler
optimizes and computer
code executes
transforms
s code program
adds details
—— — ~—

Principles of OOP

Here are the main principles of OOP, which are demonstrated below in Java / C#
syntax:

1. Abstraction

2. Encapsulation

3. Inheritance

4. Polymorphism

Abstraction is the ability to create complex, compound data types (classes),
which group together related properties or behaviours.

class Rectangle {
double width;
double height;

}

Encapsulation is the ability to hide underlying implementation details from
clients. If an object a of class A invokes a certain behaviour area () on an object
of class B (calls the area () method), then a does not need to be aware of how
area () is implemented.

class Rectangle {

13

Software Engineering M3 /2012

double area () {
return width*height;
}
}

Inheritance is the generalization/specialization relationship between classes that
we considered in UML class diagrams. A subclass inherits the attributes and
behaviour of its parent class. However it may add new properties, or modify
existing ones.

class Square extends Rectangle {
public Square (double sidelLength) {
super (sideLength, sideLength);
}

Polymorphism is a powerful concept. Literally it means many forms. A class is
polymorphic because it can be treated as if it belonged to any of its superclasses
(i.e. although it is a specialized class, it can be used in the general case too).

class Person {
void sayHello () {
System.out.println (“hello”);
}
}

class FrenchPerson {
void sayHello () {
System.out.println (“bonjour”) ;

}

14

Software Engineering M3 /2012

Design Patterns

Design re-use is a standard engineering principle. Re-using existing designs is
efficient since it can result in:

(a) reduction in planning/design time, i.e. lower development costs.

(b) better understanding of system behaviour, i.e. reduced risk.

Software re-use is common practice. Sometimes program modules may be re-
used directly. At other times, the high-level architectural design may be re-used,
and customized for a particular implementation scenario. This field is known as
software architecture design patterns.

Christopher Alexander introduced design patterns for the architecture of
buildings, in the context of town planning, in the late 1970s. Alexander explains
the motivation for design patterns as follows:

‘Each pattern describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice.’

Now design patterns are popular in many disciplines. They have been applied to
software engineering since the 1980s. Software architecture design patterns are
intended to capture common structure and behaviour of systems. Many libraries
and catalogues of design patterns are available, in textbooks and online
repositories?’.

An entry for a single pattern in a catalogue might have the following information:
1. Pattern name

Intent - what is the goal of the pattern

Applicability - in which contexts might this pattern be used

Structure - software components to implement pattern, in UML.

Collaboration - interaction between components, in UML.

Implementation - textual description of how the pattern works.

Sample code - if appropriate, snippets of source code.

Deployed instances - actual examples of this pattern in use.

XN AW

In this lecture, we consider a very common architectural pattern known as

model-view-controller'® (name). This pattern is relevant for graphical displays
where a human user must interact with the system (applicability). The goal is
for the user to easily understand the current state of the system, and be able to

17 See http://c2.com/cgi-bin/wiki?DesignPatterns (fetched 15 Feb 2011) for an
overview. See also

http://en.wikipedia.org/wiki/Architectural pattern_(computer science)
(fetched 15 Feb 2011) for some example patterns.

18 More details at http://c2.com/cgi-bin/wiki?ModelViewController and
http://www.dkrypt.com/home/mvc (both fetched 15 Feb 2011).

15

Software Engineering M3 /2012

quickly and easily modify this state (intent). The system involves three distinct
components, the model, the view and the controller (structure). Intuitively, the
computer understands the model and the user understands the view. These are
both different representations of the same underlying system state. The user is
able to change the system state (updating both the model and the view) by
interacting via the controller (implementation). Generally, the controller will
invoke the model to update, and the view will either query the model for updates
or be refreshed automatically when the model changes. An example model-view-
controller system is a digital music player (deployed instance). The model is the
underlying data for an MP3 music file, together with your current playing
position. The view is a pretty picture showing the album artwork together with a
progress bar for the current track. The controller comprises all the buttons
(back, pause, ...) that you can use to change the current music being played.

The key point about the model-view-controller architecture is that the model
does not have to be aware of who is controlling it, or who is viewing it. This data
abstraction, or separation of concerns, is ideally implemented in an object-
oriented programming model. Consider the UML class diagram:

DataUpdatelListener

+dataUpdated()
| .
View Model
+addModel () *modelData ﬁl
+updateView() +registerDataUpdatelListener(.
Controller
+updateModelData()

The model can register an abstract DataUpdateListener. Every time the model’s
data changes, it simply calls any DataUpdateListeners’ updatedData methods.
The view implements this Listener class, and provides suitable methods that re-
render the view after a data update. The controller hooks into the model to
update the data based on its inputs.

This design pattern is well understood and widely used. The components can be
developed and tested separately (recall the modular development and unit
testing stages of the software development process). Then the components can
be integrated using this clearly defined architectural pattern.

16

Software Engineering M3 /2012

History of Design Patterns

In the early years of software development, every problem was new - there were
no ‘standard’ approaches to solving problems. As time progressed, software
developers gained experience to re-use successful patterns. They also wanted to
communicate their pattern-based designs to novice software engineers.

The appropriate descriptive technique for documenting and implementing these
patterns relies on object-orientation. Object-oriented programming languages
(like C++) became common in the 1980s. Furthermore, object-oriented software
development models (like UML) reached maturity in the 1990s.

The so-called ‘gang of four’ software engineering researchers (Gamma et al)
collected a catalogue of design patterns into a textbook resource!®. They give an
analogy to help understand their philosophy of design patterns:

Novelists and playwrights rarely design their plots from

scratch. Instead, they follow patterns like “Tragically Flawed

Hero” (Macbeth, Hamlet, etc.) or “The Romantic Novel”

(countless romance novels).

A design pattern is essentially a solution to a problem in a particular context. In
the previous lecture, we considered the Model/View/Controller pattern, which is
a software architectural design pattern. In this lecture, we focus on
implementation patterns, which might be appropriate for functionality of specific
modules within an overall software system.

We have a running example application throughout this lecture, which is a text-
adventure game based on navigating through a maze. We will employ three
design patterns:
1. Abstract Factory: provides an interface for creating families of related or
dependent objects without specifying their concrete classes.
2. Singleton: ensures a class has one instance, and provides a global point of
access to it.
3. Command: encapsulate a request as an object, thereby letting you
parameterize clients with different requests, queue or log requests, and
support undoable operations.

Abstract Factory®

The maze will consist of Room objects, with Door objects connecting one Room
to another. The Room and Door objects all ‘belong’ to the maze (in the sense of
the UML ‘has-a’ relation). An Abstract Factory simplifies the creation of Maze

19 Design Patterns: Elements of Reusable Object-Oriented Software by Gamma,
Helm, Johnson and Vlissides. Addison-Wesley. 1994.

20 http://en.wikipedia.org/wiki/Abstract_factory_pattern, fetched on 17 Feb
2011.

17

Software Engineering M3 /2012

instances and Maze elements like Room and Door objects. The class diagram for
a MazeFactory is given below:

Maze Rctory

+makeMaze(): Maze
+makeRoom(): Room
+makeDoor (rooml:Room, room2:Room): Doo

Now, the createMaze procedure can use the methods provided by the
MazeFactory to instantiate a maze with rooms and doors as appropriate. The
createMaze routine does not need to know the specific implementation details
of the Room and Door objects. Indeed, there could be a specialized version of
MazeFactory that created specialized Room and Door objects.

Singleton®!

Recall the difference between class (cookie-cutter) and objects (cookies). A
singleton class is a class that only ever has one instance - a cookie-cutter that
only ever cuts a single cookie. This is applicable in our text-adventure game - we
only ever want a single maze to be created in a game. We can use the Singleton
pattern to accomplish this. It allows the system to instantiate a single Maze
object, and causes an error if the system attempts to make more Mazes.

22
Command

In the text-adventure game, it is possible to navigate through the maze by issuing
commands like north, south, east, west. Other commands might be possible,
for interacting with objects, etc. The text-interface allows the user to type
commands and press enter. The command text will be parsed, and a Command
object will be created. This command will be invoked, which involves executing it
and storing its action in a history of commands. The execution may involve
navigating to a different room, so the command will have to be modify the user’s
current position in the maze. A sequence diagram showing the messages passing
between objects might look like:

textinput command commandinvoker log

| maze

T T
L

T
I |
I |
I |
|
|

parseComma

I
|
I
|
I
I
|
recordCom !
|
I
I
I
I

21 http://en.wikipedia.org/wiki/Singleton_pattern, fetched on 17 Feb 2011.
22 http://en.wikipedia.org/wiki/Command_pattern, fetched on 17 Feb 2011.

18

Software Engineering M3 /2012

Program Verification Techniques

According to Sommerville, ‘Verification involves checking that the program
conforms to its specification.” In this course we focus on post-implementation
verification techniques, although ideally verification ought to take place at all
stages of the software development process.

Once the program source code has been produced, but before it has been
compiled into executable code, static program verification is applied. This can be
either manual (performed by human experts) or automatic (performed by
computer software).

. 23
Manual Program Inspection

Once a developer has completed writing a unit of source code, he or she may
submit it to others for review. This process of manual program inspection is a
requirement in many companies (e.g. IBM) and open-source projects (e.g. Linux).
The inspector’s role is to find errors, omissions and inconsistencies in the
program source code. These can then be queried with the original developer, and
fixed if necessary. Sommerville cites a study that suggests 60% of program
errors can be discovered by informal program inspections.

Automated Verification Techniques

Static analysis refers to software tools that automatically inspect program source
code for errors. Whereas manual inspection is expensive, slow and occasionally
unreliable, static analysis tools can be cheap, fast, and precise.

The simplest tools operate using:
* control-flow analysis: to detect unreachable sections of the program, and
query these with the programmer.
* data-flow analysis: to detect unused variables, and query these with the
programmer.
These anomalies indicate that the programmer has either incorporated
unnecessary code into the program, or else misunderstood the conditions
governing execution of certain parts of the program. Either way, the software
tool is able to highlight the problem in such a way that the programmer can fix it.

An example program is shown below:

int f£(int x) {

23 More information at http://en.wikipedia.org/wiki/Code review, fetched on 1
Mar 2011.

19

Software Engineering M3 /2012

int y, z;
z = x+1;
return z;

}

int g(int x) {
int y;
return x+y;

}

with the corresponding output from the analysis tool:

$ gcc -0 -c -Wunused -Wuninitialized undef.c

undef.c: In function ‘'f’:

undef.c:3: warning: unused variable ‘y’

undef.c: In function ‘g’:

undef.c:12: warning: ‘y’ is used uninitialized in
this function

More complex static analysis techniques include mathematical reasoning about
program behaviour. For instance, given a recursive factorial program:

int factorial (int x) {

if (x==0)
return 1;
else

return x * factorial (x-1);

}

A mathematical tool might be able to reason that, if x is a non-negative integer,
then the program will eventually terminate. On the other hand, if x is negative,
then the program will loop forever.?

As computer hardware has become ever more powerful, so automated software
analysis tools have become more capable to detect errors in programs, with
increasingly complex mathematical and algorithmic techniques. In 2002, one
researcher reported that he could carry out a fairly sophisticated analysis of a
million lines of code in less than one second.2> Airbus use formal static analysis
tools to verify all their flight control software.26

24 Alan Turing showed that computer software cannot prove that programs will
terminate, in the general case - see http://www.bbc.co.uk/dna/h2g2/A1304939
for details. However our example is sufficiently trivial.

25 Nevin Heintze. 2002. Aliasing analysis for a million lines of C. In Proceedings of
the ASIAN symposium on Partial evaluation and semantics-based program
manipulation

26 http://www.di.ens.fr/~cousot/COUSOTtalks/AIRBUS-2010-06-24.shtml,
fetched on 1 Mar 2011.

20

Software Engineering M3 /2012

Recent trends in Software Development

In this lecture, we consider two recent changes in the computing landscape.
These developments have been made possible by the ubiquitous availability of
the internet. Below is an overview of Web Services and Software as a Service
(SaaS).27

Web Services

When it was originally created in the 1990s, the world wide web was intended to
be a medium for humans to access information from computers. The web
provides standard data transfer protocols for text-based information to be
transmitted across internet links. However, more recently, the web is
increasingly being used for computer software to communicate with other
software. Distributed systems have software components running on different
physical machines, which communicate with each other over the network. Web
services are an example of such software components that may be composed to
make a distributed system running over the internet.

Nowadays, web services underpin all kinds of business transactions, and user
interaction with computers. A simple example of a web service is a weather app.
Suppose a weather forecast provider supplies weather information via a web
service. We can have an app installed on our machine, connected to the internet,
that queries the weather info web service, then displays the appropriate weather
symbol on our desktop screen.

Software as a Service

The recent hardware trend has been towards thin clients. These are relatively
inexpensive computing devices with low-power processors and small memory
capacities. (Think TV set-top boxes or smart phones.) The power of thin clients
comes from their connectivity. They can fetch programs and data that the user
requires from networked servers on-demand. This model is referred to as utility
computing. In the same way that your gas or electric supply is metered, and you
pay a monthly fee to maintain the connection, utility computing requires a

27 Further details, as ever, can be found on wikipedia at
http://en.wikipedia.org/wiki/Web_service and
http://en.wikipedia.org/wiki/Software_as_a_service, both fetched on 9 Mar
2011.

21

Software Engineering M3 /2012

subscription to support the ongoing service. The subscription may be a flat fee,
or you may pay for data transferred, and compute cycles used. This utility-based
approach has both benefits and drawbacks.

Benefits of utility computing
1. No software installation overhead
2. No need to maintain, upgrade or repair software
3. More efficient provisioning reduces energy consumption
4. Accessible from anywhere

Drawbacks of utility computing
1. No control over software customization
2. Ongoing expense of subscription
3. Security and reliability is not under your control

Many large software companies provide software-as-a-service. These include
Amazon, Google and Microsoft. For individual, private users, the software may be
provided for free. (Examples include Windows Live and Google Docs, which are
funded by adverts, etc.) For businesses, who require more intense usage and
guarantees about service reliability, there are per-user charges for the services.
However for all but the largest companies, it may be more economical to adopt
the utility computing model and outsource the software to a larger, expert
company.

22

Software Engineering M3 /2012

Open Source Software Development

An operating system (0S) is the underlying software that runs on a computer. It
manages the various hardware resources available, and provides a set of
standard services for applications. Example OSs are Windows and Mac OS.

Linux is a member of the Unix family of operating systems. Unix was originally
devised by the Computer Science research community in the 1970s, and adopted
by major US universities. At first, it was developed by enthusiasts, who had little
or no monetary interests. However as Unix became more influential, it was
rapidly turned into a commercial asset. This disenfranchised many people in the
programming community, and sparked off the open-source revolution.

GNU Software

The key design philosophy of Unix is that everything should be done as simply as
possible. Small, re-usable, modules can be chained together to effect complex
behaviour. So when Richard Stallman decided to reimplement a free version of
Unix in the 1980s, he could pick off individual modules one by one, and create his
own versions?8, Stallman named his project GNU (Gnu’s Not Unix), which quickly
gathered impetus in the software development community. Stallman was (and
is) a genius programmer. He single-handedly worked on GNU software
development for a decade or more. However his most important innovation was
a legal one - the GNU Public Licence (GPL). Since Stallman had seen how the
commercialization of Unix had stifled its development, he wanted to avoid the
same fate for his GNU project. The GPL is the legal licence for his software?°. The
source code of GPL software must be freely available. Anyone can copy it and
modify it, however the derivative software must remain under the GPL. (Its
detractors refer to GPL as a viral licence.)

By the early 1990’s, the only major component missing from a free GNU version
of UNIX was the kernel. This is the core of the operating system, which manages
the underlying machine’s physical resources and allocates them fairly to user
applications. When Linux arrived, it was the ideal missing piece to slot into the
GNU system.

The Linux OS

Linus Torvalds was a Computer Science undergraduate student at Helsinki
University in the early 1990s. He began developing an operating system kernel
as a hobby, to help him understand how such software works, and to improve his
working knowledge of the new Intel 386 architecture. Originally, Torvalds based
his design on the Minix kernel, which was an academic prototype operating
system.

28 A full list of the GNU software modules is available at
http://www.gnu.org/software/software.html, checked on 16 Mar 2011.

29 Full legal document at http://www.gnu.org/licenses/gpl.html, fetched on 16
Mar 2011.

23

Software Engineering M3 /2012

In a few months, Linux was working as a basic OS kernel. Although it was lacking
some key features, such as internet communication, it was sufficient to be a
suitable GNU kernel. Around the time that Torvalds was developing Linux, the
internet was becoming an increasingly popular distribution medium for new
software. Torvalds stored source code versions of his experimental Linux code
on a Helsinki ftp server, and encouraged people to download his code and try it
out. The response was overwhelming. Many other enthusiastic amateur
developers began to use, and contribute to, the nascent Linux project.

Now, 20 years later, Linux is a major force in computer systems3°. Most internet
servers run Linux. Many mobile phones use a variant of Linux (Android).
Although it has not yet achieved widespread popularity on the desktop, it has a
growing market share (currently around 2%).

Reasons for Open Source Success

Eric Raymond has conducted an analysis of the popularity of Linux, and the
reasons for its success3!. He gives the following major points:

1. Release early, release often. This is the way to build up a community of
engaged users.

2. To solve an interesting problem, start by finding a problem that is
interesting to you. This is the motivation for developing without
financial remuneration.

3. Provided the development coordinator has a communications
medium at least as good as the Internet, and knows how to lead
without coercion, many heads are inevitably better than one. This is
the opposite of Brooks’ received wisdom on software development, but
Linux is a shining example of how parallel, distributed, global, open
source software development can work with outstanding results.

This philosophy of software development is entirely different to the one
practised by major software companies over the last 50 years. However, it has a
growing influence. When companies recognised the success of Linux and similar
open source projects, they began to harness to power of the open source
development model. For example, Sun (now Oracle) have released the Java
system under an open source licence. Also Apple have the core components of
their Mac OS X system as open source.

30 Market share data available from

http://en.wikipedia.org/wiki/Usage share_of operating systems, checked on 16
Mar 2011.

31 http: //www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/, this
is an open-source book, fetched on 16 Mar 2011.

24

