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Key Question

To be economical, can we over-subscribe resources?

i.e. particularly dynamic memory consumption



Key Question

To be economical, can we over-subscribe resources?

i.e. particularly dynamic memory consumption



Current Jikes Policy: Resize Matrix

Heap Occupancy
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0.00 0.10 0.30 0.60 0.80 1.00

0.00 0.90 0.90 0.95 1.00 1.00 1.00
0.01 0.90 0.90 0.95 1.00 1.00 1.00
0.02 0.95 0.95 1.00 1.00 1.00 1.00
0.07 1.00 1.00 1.10 1.15 1.20 1.20
0.15 1.00 1.00 1.20 1.25 1.35 1.30
0.40 1.00 1.00 1.25 1.30 1.50 1.50
1.00 1.00 1.00 1.25 1.30 1.50 1.50

Look-up table for heap-resize coefficient.



Design Decisions

(Private Communication)

“. . . back in 2003 [anon] and I did some experimental tuning
and came up with the numbers by eyeballing things.
At the time, it seemed to be somewhat stable and making
reasonable decisions but that was also about 4 major versions
ago and I don’t think anyone has really looked at it seriously
since then. I think there was some amount of sensitivity to the
values. . . ”
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Demand Curve
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Allocation Curve
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Empirical Data
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Demand Elasticity

• E measures sensitivity of the quantity q demanded to changes in
price p.

E =
% change in quantity

% change in price
=

dq

dp

p

q
(1)



Allocation Elasticity

• E measures sensitivity of number of GCs g demanded to changes
in heap size h.

E =
% change in num GCs

% change in heap size
=

dg

dh

h

g
(2)



Control heap size with elasticity parameter
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Problems with elasticity-based heap growth

• unintuitive parameter for users

• difficult to bound heap growth

• . . . problems with paging!
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Relative costs of memory accesses

We must avoid paging at all costs!
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Scalable High Performance Main Memory System Using
Phase-Change Memory Technology.
Qureshi et al.



Finding the Sweet Spot

If Goldilocks did heap sizes. . .
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Experiment

• Linux

• Single-user mode.

• 300MB System RAM (via Kernel Parameter)

Used the Jikes RVM and the Da Capo Benchmarks.

Plot Heap Size versus Execution Time.



Results: Heap Size versus Execution Time
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Results 2: Heap Size versus Execution Time

20 40 60 80 100 120 140 160 180 200

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

pmd Execution Time

Heap Size (MB)

E
xe

cu
tio

n 
Ti

m
e 

(m
s)



Results 3: Heap Size versus Execution Time
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Key Question

How large should an application heap be?



Proposal?

Yet

Another

Heuristic



Why Not? Strong Foundations

Although the problem can be regarded as one of ’best effort’, there
are some properties we want our system to have:

• Guarantees about convergence.

• No pathological behaviours.

Therefore: tractability is important.



Problem Summary

Create a device that constantly pushes the virtual machine
towards the optimal heap size, in the presence of variation in
software behaviour and disturbances from external factors such
as other applications and the operating system.
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A Control System

11/11/2011 13:48

Page 1 of 1http://upload.wikimedia.org/wikipedia/commons/2/24/Feedback_loop_with_descriptions.svg



Example Control Systems
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Viewing Heap Sizing as a Control Problem

Memory 
Allocated

Heap Size Response
Time

Overshoot

Old Optimal 
Heap Size

New Optimal 
Heap Size



Issues with Applying Control Theory to Heap Sizing

1. Time is variable.

→ Use memory allocated as a proxy.

2. Control and Process Variables.
→ Control variable is heap size (absolute, relative/ratio?)
→ Process: GC Overhead (long/short-term), Occupancy,
Mark-Cons ratio . . .

3. Specific to our system
e.g. exactly when do we allow heap-resizing to happen.

4. Characterising our system.
→ Using existing models.
→ Applying empirical analysis.
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Using Existing Analytical Work

n =

{
n∗ for M ≥ M∗

1
2(K +

√
K 2 − 4)(n∗ + n0)− n0 for M < M∗

where K = 1 + M∗+M0

M+M0

n∗, M∗, M0, n0 are parameters dependent on the software and
platform.

A Page Fault Equation for Dynamic Heap Sizing. Tay and Zong.



Implementation so far: PID Controller

Control signal u(t) governed by the following equation:

u(t) = KPe(t) + Ki

∫
e(t)dt + KD

d

dt
e(t) (3)



Model Tuning

For example, how do we decide upon the coefficients KP , Ki , KD?

Still an optimisation problem: but built upon a well-formulated
control problem.
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Quick Summary

• Heap sizing is an important factor in determining performance.

• Determining optimal heap size is a difficult, dynamic problem.

• Control theory gives us a way to approach it systematically.



Future Work

Revisiting analysis and determining the correct controller.

Optimisation schemes.

Empirical Evaluation.
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