
Java Heap Resizing
From Hacked-up Heuristics to Mathematical Models

Jeremy Singer and David R. White

Fri 11 Nov 2011

Outline

Background

Microeconomic Theory

Heap Sizing as a Control Problem

Summary

Outline

Background

Microeconomic Theory

Heap Sizing as a Control Problem

Summary

Cloud

Datacentres

Key Question

To be economical, can we over-subscribe resources?

i.e. particularly dynamic memory consumption

Key Question

To be economical, can we over-subscribe resources?

i.e. particularly dynamic memory consumption

Current Jikes Policy: Resize Matrix

Heap Occupancy

G
C

O
ve

rh
ea

d

0.00 0.10 0.30 0.60 0.80 1.00

0.00 0.90 0.90 0.95 1.00 1.00 1.00
0.01 0.90 0.90 0.95 1.00 1.00 1.00
0.02 0.95 0.95 1.00 1.00 1.00 1.00
0.07 1.00 1.00 1.10 1.15 1.20 1.20
0.15 1.00 1.00 1.20 1.25 1.35 1.30
0.40 1.00 1.00 1.25 1.30 1.50 1.50
1.00 1.00 1.00 1.25 1.30 1.50 1.50

Look-up table for heap-resize coefficient.

Design Decisions

(Private Communication)

“. . . back in 2003 [anon] and I did some experimental tuning
and came up with the numbers by eyeballing things.
At the time, it seemed to be somewhat stable and making
reasonable decisions but that was also about 4 major versions
ago and I don’t think anyone has really looked at it seriously
since then. I think there was some amount of sensitivity to the
values. . . ”

Outline

Background

Microeconomic Theory

Heap Sizing as a Control Problem

Summary

Demand Curve

Price

(p)

Quantity demanded (q)

Allocation Curve

Heap

size

Number of GCs

max livesize

total

allocation

Empirical Data

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12 14 16 18
-4

-3

-2

-1

 0

 1

 2

 3

 4

he
ap

 s
iz

e
(M

B
)

el
as

tic
ity

number of GCs

allocation curve
elasticity

Demand Elasticity

• E measures sensitivity of the quantity q demanded to changes in
price p.

E =
% change in quantity

% change in price
=

dq

dp

p

q
(1)

Allocation Elasticity

• E measures sensitivity of number of GCs g demanded to changes
in heap size h.

E =
% change in num GCs

% change in heap size
=

dg

dh

h

g
(2)

Control heap size with elasticity parameter

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 0.1 1 10

ex
ec

ut
io

n
tim

e
(m

s)

elasticity

growth ratio 1.1
growth ratio 1.3
growth ratio 1.5

default policy

Control heap size with elasticity parameter

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.1 1 10

fin
al

 h
ea

p
si

ze
 (

M
B

)

elasticity

growth ratio 1.1
growth ratio 1.3
growth ratio 1.5

default policy

Problems with elasticity-based heap growth

• unintuitive parameter for users

• difficult to bound heap growth

• . . . problems with paging!

Problems with elasticity-based heap growth

• unintuitive parameter for users

• difficult to bound heap growth

• . . . problems with paging!

Relative costs of memory accesses

We must avoid paging at all costs!

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

2
1

2 2 2 2 2
5 9 13 17 21

L1 CACHE
SRAM

LAST LEVEL CACHE
EDRAM DRAM FLASHPCM HARD DRIVE

MAIN MEMORY SYSTEM

Typical Access Latency (in terms of processor cycles for a 4 GHz processor)

HIGH PERFORMANCE DISK SYSTEM

2 2 2 2
3 7 11 15

2
19

2
23

Scalable High Performance Main Memory System Using
Phase-Change Memory Technology.
Qureshi et al.

Finding the Sweet Spot

If Goldilocks did heap sizes. . .

Heap Size

Execution
Time

"Sweet
Spot"

U
n

a
b

le
 t

o
 c

o
m

p
le

te

Excessive
Paging

High
GC

Experiment

• Linux

• Single-user mode.

• 300MB System RAM (via Kernel Parameter)

Used the Jikes RVM and the Da Capo Benchmarks.

Plot Heap Size versus Execution Time.

Results: Heap Size versus Execution Time

20 40 60 80 100 120 140 160 180 200

70
00

80
00

90
00

10
00

0
11

00
0

12
00

0

lusearch Execution Time

Heap Size (MB)

E
xe

cu
tio

n
Ti

m
e

(m
s)

Results 2: Heap Size versus Execution Time

20 40 60 80 100 120 140 160 180 200

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

pmd Execution Time

Heap Size (MB)

E
xe

cu
tio

n
Ti

m
e

(m
s)

Results 3: Heap Size versus Execution Time

20 40 60 80 100 120 140 160 180 200

20
00

25
00

30
00

35
00

40
00

antlr Execution Time

Heap Size (MB)

E
xe

cu
tio

n
Ti

m
e

(m
s)

Key Question

How large should an application heap be?

Proposal?

Yet

Another

Heuristic

Why Not? Strong Foundations

Although the problem can be regarded as one of ’best effort’, there
are some properties we want our system to have:

• Guarantees about convergence.

• No pathological behaviours.

Therefore: tractability is important.

Problem Summary

Create a device that constantly pushes the virtual machine
towards the optimal heap size, in the presence of variation in
software behaviour and disturbances from external factors such
as other applications and the operating system.

Outline

Background

Microeconomic Theory

Heap Sizing as a Control Problem

Summary

A Control System

11/11/2011 13:48

Page 1 of 1http://upload.wikimedia.org/wikipedia/commons/2/24/Feedback_loop_with_descriptions.svg

Example Control Systems

Example Control Systems

Viewing Heap Sizing as a Control Problem

Memory
Allocated

Heap Size Response
Time

Overshoot

Old Optimal
Heap Size

New Optimal
Heap Size

Issues with Applying Control Theory to Heap Sizing

1. Time is variable.

→ Use memory allocated as a proxy.

2. Control and Process Variables.
→ Control variable is heap size (absolute, relative/ratio?)
→ Process: GC Overhead (long/short-term), Occupancy,
Mark-Cons ratio . . .

3. Specific to our system
e.g. exactly when do we allow heap-resizing to happen.

4. Characterising our system.
→ Using existing models.
→ Applying empirical analysis.

Issues with Applying Control Theory to Heap Sizing

1. Time is variable.
→ Use memory allocated as a proxy.

2. Control and Process Variables.
→ Control variable is heap size (absolute, relative/ratio?)
→ Process: GC Overhead (long/short-term), Occupancy,
Mark-Cons ratio . . .

3. Specific to our system
e.g. exactly when do we allow heap-resizing to happen.

4. Characterising our system.
→ Using existing models.
→ Applying empirical analysis.

Issues with Applying Control Theory to Heap Sizing

1. Time is variable.
→ Use memory allocated as a proxy.

2. Control and Process Variables.

→ Control variable is heap size (absolute, relative/ratio?)
→ Process: GC Overhead (long/short-term), Occupancy,
Mark-Cons ratio . . .

3. Specific to our system
e.g. exactly when do we allow heap-resizing to happen.

4. Characterising our system.
→ Using existing models.
→ Applying empirical analysis.

Issues with Applying Control Theory to Heap Sizing

1. Time is variable.
→ Use memory allocated as a proxy.

2. Control and Process Variables.
→ Control variable is heap size (absolute, relative/ratio?)
→ Process: GC Overhead (long/short-term), Occupancy,
Mark-Cons ratio . . .

3. Specific to our system
e.g. exactly when do we allow heap-resizing to happen.

4. Characterising our system.
→ Using existing models.
→ Applying empirical analysis.

Issues with Applying Control Theory to Heap Sizing

1. Time is variable.
→ Use memory allocated as a proxy.

2. Control and Process Variables.
→ Control variable is heap size (absolute, relative/ratio?)
→ Process: GC Overhead (long/short-term), Occupancy,
Mark-Cons ratio . . .

3. Specific to our system
e.g. exactly when do we allow heap-resizing to happen.

4. Characterising our system.
→ Using existing models.
→ Applying empirical analysis.

Issues with Applying Control Theory to Heap Sizing

1. Time is variable.
→ Use memory allocated as a proxy.

2. Control and Process Variables.
→ Control variable is heap size (absolute, relative/ratio?)
→ Process: GC Overhead (long/short-term), Occupancy,
Mark-Cons ratio . . .

3. Specific to our system
e.g. exactly when do we allow heap-resizing to happen.

4. Characterising our system.

→ Using existing models.
→ Applying empirical analysis.

Issues with Applying Control Theory to Heap Sizing

1. Time is variable.
→ Use memory allocated as a proxy.

2. Control and Process Variables.
→ Control variable is heap size (absolute, relative/ratio?)
→ Process: GC Overhead (long/short-term), Occupancy,
Mark-Cons ratio . . .

3. Specific to our system
e.g. exactly when do we allow heap-resizing to happen.

4. Characterising our system.
→ Using existing models.
→ Applying empirical analysis.

Using Existing Analytical Work

n =

{
n∗ for M ≥ M∗

1
2(K +

√
K 2 − 4)(n∗ + n0)− n0 for M < M∗

where K = 1 + M∗+M0

M+M0

n∗, M∗, M0, n0 are parameters dependent on the software and
platform.

A Page Fault Equation for Dynamic Heap Sizing. Tay and Zong.

Implementation so far: PID Controller

Control signal u(t) governed by the following equation:

u(t) = KPe(t) + Ki

∫
e(t)dt + KD

d

dt
e(t) (3)

Model Tuning

For example, how do we decide upon the coefficients KP , Ki , KD?

Still an optimisation problem: but built upon a well-formulated
control problem.

Outline

Background

Microeconomic Theory

Heap Sizing as a Control Problem

Summary

Quick Summary

• Heap sizing is an important factor in determining performance.

• Determining optimal heap size is a difficult, dynamic problem.

• Control theory gives us a way to approach it systematically.

Future Work

Revisiting analysis and determining the correct controller.

Optimisation schemes.

Empirical Evaluation.

	Background
	Microeconomic Theory
	Heap Sizing as a Control Problem
	Summary

