

Five
SEARCH STRATEGIES

Introduction

So far very little has been said about the actual process by which the required information is
located. In the case of document retrieval the information is the subset of documents which
are deemed to be relevant to the query. In Chapter 4, occasional reference was made to
search efficiency, and the appropriateness of a file structure for searching. The kind of
search that is of interest, is not the usual kind where the result of the search is clear cut,
either yes, the item is present, or no, the item is absent. Good discussions of these may be
found in Knuth1 and Salton2. They are of considerable importance when dictionaries need
to be set-up or consulted during text processing. However, we are more interested in search
strategies in which the documents retrieved may be more or less relevant to the request.

All search strategies are based on comparison between the query and the stored
documents. Sometimes this comparison is only achieved indirectly when the query is
compared with clusters (or more precisely with the profiles representing the clusters).

The distinctions made between different kinds of search strategies can sometimes be
understood by looking at the query language, that is the language in which the information
need is expressed. The nature of the query language often dictates the nature of the search
strategy. For example, a query language which allows search statements to be expressed in
terms of logical combinations of keywords normally dictates a Boolean search. This is a
search which achieves its results by logical (rather than numerical) comparisons of the query
with the documents. However, I shall not examine query languages but instead capture the
differences by talking about the search mechanisms.

Boolean search

A Boolean search strategy retrieves those documents which are 'true' for the query. This
formulation only makes sense if the queries are expressed in terms of index terms (or
keywords) and combined by the usual logical connectives AND, OR, and NOT. For
example, if the query Q = (K1 AND K2) OR (K3 AND (NOT K4)) then the Boolean search
will retrieve all documents indexed by K1 and K2, as well as all documents indexed by K3
which are not indexed by K4.

Some systems, which operate by means of Boolean search, allow the user to narrow or
broaden the search by giving the user access to a structured dictionary which, for any given
keyword, stores related keywords which may be more general or more precise. For example,

in the tree structure in Figure 5.1 the keyword K1
1 is contained in the more general keyword

K1
0 , but it can also be split up into the 4 more precise keywords K1

2 , K 2
2 , K 3

2 ,and K 4
2 .

Therefore, if one has an interactive system the search can easily be reformulated using some
of these related terms.

Search strategies 75

0K 1

K 1
1

K 2
4K 2

3K 2
2

K 1
2

Figure 5.1. A set of hierarchically related keywords

An obvious way to implement the Boolean search is through the inverted file. We store a
list for each keyword in the vocabulary, and in each list put the addresses (or numbers) of
the documents containing that particular word. To satisfy a query we now perform the set
operations, corresponding to the logical connectives, on the Ki-lists. For example, if

K1 -list : D1, D2, D3, D4

K2 -list : D1, D2

K3 -list : D1, D2, D3

K4 -list : D1

and Q = (K1 AND K2) OR (K3 AND (NOT K4))

then to satisfy the (K1 AND K2) part we intersect the K1 and K2 lists, to satisfy the (K3
AND (NOT K4)) part we subtract the K4 list from the K3 list. The OR is satisfied by now
taking the union of the two sets of documents obtained for the parts. The result is the set
{D1, D2, D3} which satisfies the query and each document in it is 'true' for the query.

A slight modification of the full Boolean search is one which only allows AND logic but
takes account of the actual number of terms the query has in common with a document.
This number has become known as the co-ordination level. The search strategy is often called
simple matching. Because at any level we can have more than one document, the documents
are said to be partially ranked by the co-ordination levels.

For the same example as before with the query Q = K1 AND K2 AND K3 we obtain the
following ranking:

Co-ordination level

3 D1, D2

2 D3

1 D4

In fact, simple matching may be viewed as using a primitive matching function. For each
document D we calculate |D ∩ Q|, that is the size of the overlap between D and Q, each
represented as a set of keywords. This is the simple matching coefficient mentioned in
Chapter 3.

Matching functions

Many of the more sophisticated search strategies are implemented by means of a
matching function. This is a function similar to an association measure, but differing in that

76 Information retrieval

a matching function measures the association between a query and a document or cluster
profile, whereas an association measure is applied to objects of the same king.
Mathematically the two functions have the same properties; they only differ in their
interpretations.

There are many examples of matching functions in the literature. Perhaps the simplest is
the one associated with the simple matching search strategy.

If M is the matching function, D the set of keywords representing the document, and Q
the set representing the query, then:

2|D ∩ Q|

|D| + |Q|
M =

is another example of a matching function. It is of course the same as Dice's coefficient
of Chapter 3.

A popular one used by the SMART project, which they call cosine correlation, assumes
that the document and query are represented as numerical vectors in t-space, that is Q = (q1,
q2, . . , qt) and D = (d1, d2, . . ., dt) where qi and di are numerical weights associated with the
keyword i. The cosine correlation is now simply

Σ i iq d

t

i = 1

Σ
t

i = 1

q Σ
t

i = 1

r =
2

i()
2

i()d

1
2

or, in the notation for a vector space with a Euclidean norm,

r =
(Q, D)

||Q|| ||D|| = cosine

where is the angle between vectors Q and D.

Serial search

Although serial searches are acknowledge to be slow, they are frequently still used as parts
of larger systems. They also provide a convenient demonstration of the use of matching
functions.

Suppose there are N documents Di in the system, then the serial search proceeds by
calculating N values M(Q, Di) the set of documents to be retrieved is determined. There are
two ways of doing this:

(1) the matching function is given a suitable threshold, retrieving the documents
above the threshold and discarding the ones below. If T is the threshold, then
the retrieved set B is the set {Di |M(Q, Di) > T}.

(2) the documents are ranked in increasing order of matching function value. A rank
position R is chosen as cut-off and all documents below the rank are retrieved so
that B = {Di |r(i) < R} where r(i) is the rank position assigned to Di. The hope in
each case is that the relevant documents are contained in the retrieved set.

The main difficulty with this kind of search strategy is the specification of the threshold
or cut-off. It will always be arbitrary since there is no way of telling in advance what value
for each query will produce the best retrieval.

Search strategies 77

Cluster representatives

Before we can sensibly talk about search strategies applied to clustered document
collections, we need to say a little about the methods used to represent clusters. Whereas in
a serial search we need to be able to match queries with each document in the file, in a
search of a clustered file we need to be able to match queries with clusters. For this purpose
clusters are represented by some kind of profile (a much overworked word), which here will
be called a cluster representative. It attempts to summarise and characterise the cluster of
documents.

A cluster representative should be such that an incoming query will be diagnosed into the
cluster containing the documents relevant to the query. In other words we expect the cluster
representative to discriminate the relevant from the non-relevant documents when matched
against any query. This is a tall order, and unfortunately there is no theory enabling one to
select the right kind of cluster representative. One can only proceed experimentally. There
are a number of 'reasonable' ways of characterising clusters; it then remains a matter for
experimental test to decide which of these is the most effective.

Let me first give an example of a very primitive cluster representative. If we assume that
the clusters are derived from a cluster method based on a dissimilarity measure, then we can
represent each cluster at some level of dissimilarity by a graph (see Figure 5.2). Here A and
B are two clusters. The nodes represent documents and the line between any two nodes
indicates

A B

Figure 5.2. Examples of maximally linked documents as cluster representatives

that their corresponding documents are less dissimilar than some specified level of
dissimilarity. Now, one way of representing a cluster is to select a typical member from the
cluster. A simple way of doing this is to find that document which is linked to the
maximum number of other documents in the cluster. A suitable name for this kind of cluster
representative is the maximally linked document. In the clusters A and B illustrated, there are
pointers to the candidates. As one would expect in some cases the representative is not
unique. For example, in cluster B we have two candidates. To deal with this, one either
makes an arbitrary choice or one maintains a list of cluster representatives for that cluster.
The motivation leading to this particular choice of cluster representative is given in some
detail in van Rijsbergen3 but need not concern us here.

Let us now look at other ways of representing clusters. We seek a method of
representation which in some way 'averages' the descriptions of the members of the clusters.
The method that immediately springs to mind is one in which one calculates the centroid (or
centre of gravity) of the cluster. If {D1, D2, . . ., Dn} are the documents in the cluster and
each Di is represented by a numerical vector (d1, d2, . . ., dt) then the centroid C of the cluster
is given by

78 Information retrieval

1
nC = Σ

i = 1

n D

D
i

|| ||
i

where ||Di|| is usually the Euclidean norm, i.e.

d d d+ +2
2

2
t. . . +D||

i
= √ 2

1||

More often than not the documents are not represented by numerical vectors but by
binary vectors (or equivalently, sets of keywords). In that case we can still use a centroid
type of cluster representative but the normalisation is replaced with a process which
thresholds the components of the sum ΣDi. To be more precise, let Di now be a binary
vector, such that a 1 in the jth position indicates the presence of the jth keyword in the
document and a 0 indicates the contrary. The cluster representative is now derived from
the sum vector

Σ
i = 1

n

S = Di

(remember n is the number of documents in the cluster) by the following procedure. Let
C = (c1, c2, . . . ct) be the cluster representative and [Di]j the jth component of the binary
vector Di, then two methods are:

Σ
i = 1

n

c ={1 if

0 otherwise

Di[j > 1]
(1)

Σ
i = 1

n

c ={1 if

0 otherwise

>Di j[]

j(2)
log n2

j

or

So, finally we obtain as a cluster representative a binary vector C. In both cases the
intuition is that keywords occurring only once in the cluster should be ignored. In the
second case we also normalise out the size n of the cluster.

There is some evidence to show that both these methods of representation are effective
when used in conjunction with appropriate search strategies (see, for example, van
Rijsbergen4 and Murray5). Obviously there are further variations on obtaining cluster
representatives but as in the case of association measures it seems unlikely that retrieval
effectiveness will change very much by varying the cluster representatives. It is more likely
that the way the data in the cluster representative is used by the search strategy will have a
larger effect.

There is another theoretical way of looking at the construction of cluster representatives
and that is through the notion of a maximal predictor for a cluster6. Given that, as before,
the documents Di in a cluster are binary vectors then a binary cluster representative for this
cluster is a predictor in the sense that each component (ci) predicts that the most likely value
of that attribute in the member documents. It is maximal if its correct predictions are as
numerous as possible. If one assumes that each member of a cluster of documents D1, . . .,
Dn is equally likely then the expected total number of incorrect predicted properties (or
simply the expected total number of mismatches between cluster representative and member
documents since everything in binary) is,

Search strategies 79

Σ
i = 1

n

Σ Di j[] _
j

2c
t

j = 1
()

This can be rewritten as

Σ
i = 1

n

Σ Di j[] _
j

2
(D. + n Σ

j = 1

t

D i j[] _(c) (*)

where

Σ
i = 1

n

Di j[]jD. =
1__
n

t

j = 1
) j

The expression (*) will be minimised, thus maximising the number of correct predictions,
when C = (c1, . . . , ct) is chosen in such a way that

Σ
j = 1

t

Di j[] _(c)j
2

is a minimum. This is achieved by

21 if

0 otherwise

D.j > 1

(3) c
j = {

So in other words a keyword will be assigned to a cluster representative if it occurs in
more than half the member documents. This treats errors of prediction caused by absence
or presence of keywords on an equal basis. Croft7 has shown that it is more reasonable to
differentiate the two types of error in IR applications. He showed that to predict
falsely 0 (cj = 0) is more costly than to predict falsely a 1 (cj = 1). Under this assumption
the value of 1/2 appearing is (3) is replaced by a constant less than 1/2, its exact value
being related to the relative importance attached to the two types of prediction error.

Although the main reason for constructing these cluster representatives is to lead a
search strategy to relevant documents, it should be clear that they can also be used to guide a
search to documents meeting some condition on the matching function. For example, we
may want to retrieve all documents Di which match Q better than T, i.e.

{Di |M (Q, Di) > T}

For more details about the evaluation of cluster representative (3) for this purpose the
reader should consult the work of Yu et al. 8,9.

One major objection to most work on cluster representatives is that it treats the
distribution of keywords in clusters as independent. This is not very realistic.
Unfortunately, there does not appear to be any work to remedy the situation except that of
Ardnaudov and Govorun10 .

Finally, it should be noted that cluster methods which proceed directly from document
descriptions to the classification without first computing the intermediate dissimilarity
coefficient, will need to make a choice of cluster representative ab initio. These cluster
representatives are then 'improved' as the algorithm, adjusting the classification according to
some objective function, steps through its iterations.

80 Information retrieval

Cluster-based retrieval

Cluster-based retrieval has as its foundation the cluster hypothesis, which states that
closely associated documents tend to be relevant to the same requests. Clustering picks out
closely associated documents and groups them together into one cluster. In Chapter 3, I
discussed many ways of doing this, here I shall ignore the actual mechanism of generating
the classification and concentrate on how it may be searched with the aim of retrieving
relevant documents.

Suppose we have a hierarchic classification of documents then a simple search strategy
goes as follows (refer to Figure 5.3 for details). The search starts at the root of the tree,
node 0 in the example. It proceeds by evaluating a matching function at the nodes
immediately descendant from node 0, in the example the nodes 1 and 2. This pattern
repeats itself down the tree. The search is directed by a decision rule, which on the basis of
comparing the values of a matching function at each stage decides which node to expand
further. Also, it is necessary to have a stopping rule which terminates the search and forces
a retrieval. In Figure 5.3 the decision rule is: expand the node corresponding to the
maximum value of the matching function achieved within a filial set. The stopping rule is:
stop if the current maximum is less than the previous maximum. A few remarks about this
strategy are in order:

(1) we assume that effective retrieval can be achieved by finding just one cluster;

(2) we assume that each cluster can be adequately represented by a cluster
representative for the purpose of locating the cluster containing the relevant
documents;

(3) if the maximum of the matching function is not unique some special action, such
as a look-ahead, will need to be taken;

(4) the search always terminates and will retrieve at least one document.

M (Q, 2) > M (Q, 1)

M (Q, 2) > M (Q, 0)0

1

2

3

4

5 6 7

Continue
Q

M (Q, 4) > M (Q 3)

M (Q, 4) > M (Q, 2)

Continue

Q

Q
M (Q, 5), M (Q, 6), M (Q, 7) < M (Q, 4)

Stop. Retrieve cluster 4

Figure 5.3. A search tree and the appropriate values of a matching function illustrating the action
of a decision rule and a stopping rule.

Search strategies 81

An immediate generalisation of this search is to allow the search to proceed down more
than one branch of the tree so as to allow retrieval of more than one cluster. By necessity
the decision rule and stopping rule will be slightly more complicated. The main difference
being that provision must be made for back-tracking. This will occur when the search
strategy estimates (based on the current value of the matching function) that further progress
down a branch is a waste of time, at which point it may or may not retrieve the current
cluster. The search then returns (back-tracks) to a previous branching point and takes an
alternative branch down the tree.

The above strategies may be described as top-down searches. A bottom-up search is one
which enters the tree at one of its terminal nodes, and proceeds in an upward direction
towards the root of the tree. In this way it will pass through a sequence of nested clusters
of increasing size. A decision rule is not required; we only need a stopping rule which
could be simply a cut-off. A typical search would seek the largest cluster containing the
document represented by the starting node and not exceeding the cut-off in size. Once this
cluster is found, the set of documents in it is retrieved. To initiate the search in response to
a request it is necessary to know in advance one terminal node appropriate for that request.
It is not unusual to find that a user will already known of a document relevant to his request
and is seeking other documents similar to it. This 'source' document can thus be used to
initiate a bottom-up search. For a systematic evaluation of bottom-up searches in terms of
efficiency and effectiveness see Croft7.

If we now abandon the idea of having a multi-level clustering and accept a single-level
clustering, we end up with the approach to document clustering which Salton and his co-
workers have worked on extensively. The appropriate cluster method is typified by
Rocchio's algorithm described in Chapter 3. The search strategy is in part a serial search.
It proceeds by first finding the best (or nearest) cluster(s) and then looking within these.
The second stage is achieved by doing a serial search of the documents in the selected
cluster(s). The output is frequently a ranking of the documents so retrieved.

Interactive search formulation

A user confronted with an automatic retrieval system is unlikely to be able to express his
information need in one go. He is more likely to want to indulge in a trial-and-error process
in which he formulates his query in the light of what the system can tell him about his query.
The kind of information that he is likely to want to use for the reformulation of his query is:

(1) the frequency of occurrence in the data base of his search terms;

(2) the number of documents likely to be retrieved by his query;

(3) alternative and related terms to be the ones used in his search;

(4) a small sample of the citations likely to be retrieved; and

(5) the terms used to index the citations in (4).

All this can be conveniently provided to a user during his search session by an interactive
retrieval system. If he discovers that one of his search terms occurs very frequently he may
wish to make it more specific by consulting a hierarchic dictionary which will tell him what
his options are. Similarly, if his query is likely to retrieve too many documents he can make
it more specific.

The sample of citations and their indexing will give him some idea of what kind of
documents are likely to be retrieved and thus some idea of how effective his search terms
have been in expressing his information need. He may modify his query in the light of this
sample retrieval. This process in which the user modifies his query based on actual search
results could be described as a form of feedback.

82 Information retrieval

Examples, both operational and experimental, of systems providing mechanisms of this
kind are MEDLINE11 and MEDUSA12 both based on the MEDLARS system. Another
interesting sophisticated experimental system is that described by Oddy13 .

We now look at a mathematical approach to the use of feedback where the system
automatically modifies the query.

Feedback

The word feedback is normally used to describe the mechanism by which a system can
improve its performance on a task by taking account of past performance. In other words a
simple input-output system feeds back the information from the output so that this may be
used to improve the performance on the next input. The notion of feedback is well
established in biological and automatic control systems. It has been popularised by Norbert
Wiener in his book Cybernetics. In information retrieval it has been used with considerable
effect.

Consider now a retrieval strategy that has been implemented by means of a matching
function M. Furthermore, let us suppose that both the query Q and document
representatives D are t-dimensional vectors with real components where t is the number of
index terms. Because it is my purpose to explain feedback I will consider its applications
to a serial search only.

It is the aim of every retrieval strategy to retrieve the relevant documents A and withhold
the non-relevant documents A. Unfortunately relevance is defined with respect to the
user's semantic interpretation of his query. From the point of view of the retrieval system his
formulation of it may not be ideal. An ideal formulation would be one which retrieved only
the relevant documents. In the case of a serial search the system will retrieve all D for
which M(Q,D) > T and not retrieve any D for which M(Q,D) ≤ T, where T is a specified
threshold. It so happens that in the case where M is the cosine correlation function, i.e.

M (Q, D) =
(Q,D)

||Q|| ||D||
=

1

||Q|| ||D||
x (q d + q d . . . q d),

1 1 2 2 t t

the decision procedure

M(Q,D) - T > 0

corresponds to a linear discriminant function used to linearly separate two sets A and A
in Rt. Nilsson14 has discussed in great detail how functions such as this may be 'trained' by
modifying the weights qi to discriminate correctly between two categories. Let us suppose
for the moment that A and A are known in advance, then the correct query formulation Q0
would be one for which

M(Q0,D) > T whenever D A

and

M(Q0,D) ≤ T whenever D

The interesting thing is that starting with any Q we can adjust it iteratively using
feedback information so that it will converge to Q0. There is a theorem (Nilsson14 , page 81)
which states that providing Q0 exists there is an iterative procedure which will ensure that Q
will converge to Q0 in a finite number of steps.

The iterative procedure is called the fixed-increment error correction procedure.

It goes as follows:

Qi = Qi-1 + cD if M(Qi-1, D) - T ≤ 0

and D A

Search strategies 83

Qi = Qi-1 - cD if M(Qi-1, D) - T > 0

and D A

and no change made to Qi-1 if it diagnoses correctly. c is the correction increment, its
value is arbitrary and is therefore usually set to unit. In practice it may be necessary to
cycle through the set of documents several times before the correct set of weights are
achieved, namely those which will separate A and A linearly (this is always providing a
solution exists).

The situation in actual retrieval is not as simple. We do not know the sets A and A in
advance, in fact A is the set we hope to retrieve. However, given a query formulation Q and
the documents retrieved by it we can ask the user to tell the system which of the documents
retrieved were relevant and which were not. The system can then automatically modify Q
so that at least it will be able to diagnose correctly those documents that the user has seen.
The assumption is that this will improve retrieval on the next run by virtue of the fact that
its performance is better on a sample.

Once again this is not the whole story. It is often difficult to fix the threshold T in
advance so that instead documents are ranked in decreasing matching value on output. It is
now more difficult to define what is meant by an ideal query formulation. Rocchio15 in his
thesis defined the optimal query Q0 as one which maximised:

D A
Φ =

1

|A |
∑ (Q, D) -

1

| | ∑ M (Q, D)
D A

If M is taken to be the cosine function (Q, D) /||Q || ||D || then it is easy to show
that Φ is maximised by

Q
0

= c (1
|A |

D A
∑ D

||D ||
1

|A | D A
∑ D

||D ||)
where c is an arbitrary proportionality constant.

If the summations instead of being over A and A are now made over A ∩ Bi and A ∩
Bi where Bi is the set of retrieved documents on the ith iteration, then we have a query
formulation which is optimal for Bi a subset of the document collection. By analogy to the
linear classifier used before, we now add this vector to the query formulation on the ith step
to get:

= w Q D
||D ||

Q
i + 1 1 i + w

2 D
∑

A ∩ B iA ∩ B || i

1

A ∩ B || i

1

D
∑

A ∩ B i

D
||D ||

where wi and w2 are weighting coefficients. Salton2 in fact used a slightly modified
version. The most important difference being that there is an option to generate Qi+1 from
Qi, or Q, the original query. The effect of all these adjustments may be summarised by
saying that the query is automatically modified so that index terms in relevant retrieved
documents are given more weight (promoted) and index terms in non-relevant documents
are given less weight (demoted).

Experiments have shown that relevance feedback can be very effective. Unfortunately
the extent of the effectiveness is rather difficult to gauge, since it is rather difficult to
separate the contribution to increased retrieval effectiveness produced when individual

84 Information retrieval

documents move up in rank from the contribution produced when new documents are
retrieved. The latter of course is what the user most cares about.

Finally, a few comments about the technique of relevance feedback in general. It appears
to me that its implementation on an operational basis may be more problematic. It is not
clear how users are to assess the relevance, or non-relevance of a document from such scanty
evidence as citations. In an operational system it is easy to arrange for abstracts to be
output but it is likely that a user will need to browse through the retrieved documents
themselves to determine their relevance after which he is probably in a much better position
to restate his query himself.

Bibliographic remarks

The book by Lancaster and Fayen16 contains details of many operational on-line systems.
Barraclough17 has written an interesting survey article about on-line searching. Discussions
on search strategies are usually found embedded in more general papers on information
retrieval. There are, however, a few specialist references worth mentioning.

Anew classic paper on the limitations of a Boolean search is Verhoeff et al.18 . Miller19

has tried to get away from a simple Boolean search by introducing a form of weighting
although maintaining essentially a Boolean search. Angione20 discusses the equivalence of
Boolean and weighted searching. Rickman21 has described a way of introducing automatic
feedback into a Boolean search. Goffman22 has investigated an interesting search strategy
based on the idea that the relevance of a document to a query is conditional on the relevance
of other documents to that query. In an early paper by Hyvarinen23 , one will find an
information-theoretic definition of the 'typical member' cluster representative. Negoita24

gives a theoretical discussion of a bottom-up search strategy in the context of cluster-based
retrieval. Much of the early work on relevance feedback done on the SMART project has
now been reprinted in Salton25 . Two other independence pieces of work on feedback are
Stanfel26 and Bono27 .

References

1. KNUTH, D.E., The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-
Wesley, Reading, Massachusetts (1973).

2. SALTON, G., Automatic Information Organisation and Retrieval, McGraw-Hill, New York
(1968).

3. van RIJSBERGEN, C.J., 'The best-match problem in document retrieval', Communications of
the ACM, 17, 648-649 (1974).

4. van RIJSBERGEN, C.J., 'Further experiments with hierarchic clustering in document
retrieval', Information Storage and Retrieval, 10, 1-14 (1974).

5. MURRAY, D.M., 'Document retrieval based on clustered files', Ph.D. Thesis, Cornell
University Report ISR-20 to National Science Foundation and to the National Library of
Medicine (1972).

6. GOWER, J.C., 'Maximal predictive classification', Biometrics, 30, 643-654 (1974).

7. CROFT, W.B., Organizing and Searching Large Files of Document Descriptions, Ph.D.
Thesis, University of Cambridge (1979).

8. YU, C.T., and LUK, W.S., 'Analysis of effectiveness of retrieval in clustered files', Journal of
the ACM, 24, 607-622 (1977).

9. YU, C.T., LUK, W.C. and SIU, M.K., 'On the estimation of the number of desired records
with respect to a given party' (in preparation).

Search strategies 85

10. ARNAUDOV, D.D.. and GOVORUN, N.N. Some Aspects of the File Organisation and
Retrieval Strategy in Large Databases, Joint Institute for Nuclear Research, Dubna (1977).

11. Medline Reference Manual, Medlars Management Section, Bibliographic Services Division,
National Library of Medicine.

12. BARRACLOUGH, E.D., MEDLARS on-line search formulation and indexing, Technical
Report Series, No. 34, Computing Laboratory, University of Newcastle upon Tyne.

13. ODDY, R.N., 'Information retrieval through man-machine dialogue', Journal of
Documentation, 33, 1-14 (1977).

14. NILSSON, N.J., Learning Machines - Foundations of Trainable Pattern Classifying Systems,
McGraw-Hill, New York (1965).

15. ROCCHIO, J.J., 'Document retrieval systems - Optimization and evaluation', Ph.D. Thesis,
Harvard University, Report ISR-10 to National Science Foundation, Harvard Computation
Laboratory (1966).

16. LANCASTER, F.W. and FAYEN, E.G., Information Retrieval On-line, Melville Publishing
Co., Los Angeles, California (1973).

17. BARRACLOUGH, E.D., "On-line searching in information retrieval', Journal of
Documentation, 33, 220-238 (1977).

18. VERHOEFF, J., GOFFMAN, W. and BELZER, J., 'Inefficiency of the use of boolean functions
for information retrieval systems', Communications of the ACM, 4, 557-558, 594 (1961).

19. MILLER, W.L., 'A probabilistic search strategy for MEDLARS', Journal of Documentation,
17, 254-266 (1971).

20. ANGIONE, P.V., 'On the equivalence of Boolean and weighted searching based on the
convertibility of query forms', Journal of the American Society for Information Science, 26,
112-124 (1975).

21. RICKMAN, J.T., 'Design consideration for a Boolean search system with automatic relevance
feedback processing', Proceedings of the ACM 1972 Annual Conference, 478-481 (1972).

22. GOFFMAN, W., 'An indirect method of information retrieval', Information Storage and
Retrieval , 4, 361-373 (1969).

23. HYVARINEN, L., 'Classification of qualitative data', BIT, Nordisk Tidskrift för
Informationsbehandling, 2, 83-89 (1962).

24. NEGOITA, C.V., 'On the decision process in information retrieval', Studii si cercetari de
documentare, 15, 269-281 (1973).

25. SALTON, G., The SMART Retrieval System - Experiment in Automatic Document Processing,
Prentice-Hall, Englewood Cliffs, New Jersey (1971).

26. STANFEL, L.E., 'Sequential adaptation of retrieval systems based on user inputs',
Information Storage and Retrieval, 7, 69-78 (1971).

27. BONO, P.R., 'Adaptive procedures for automatic document retrieval', Ph.D. Thesis,
University of Michigan (1972).

