
Augment SCTP Multi-Streaming with
Pluggable Scheduling

Yaogong Wang, Injong Rhee
Department of Computer Science
North Carolina State University

Raleigh, NC 27695-8206
Email: {ywang15, rhee}@ncsu.edu

Sangtae Ha
Department of Electrical Engineering

Princeton University
Princeton, NJ 08544

Email: sangtaeh@princeton.edu

Abstract—Stream Control Transmission Protocol (SCTP) in-
troduces the multi-streaming feature to avoid the head-of-line
(HOL) blocking problem of TCP and facilitate the transport
of signaling messages over the Internet. However, the current
protocol specification does not define how multiple streams
should be scheduled and implementations are different across
platforms. They typically choose either round-robin or first-come-
first-served. Such fixed choices may not satisfy the demands of
different applications and limit the flexibility of the protocol.
In this paper, we propose to augment the multi-streaming
feature of SCTP with pluggable scheduling so that users can
customize the multi-stream scheduling algorithm of SCTP to
satisfy their application-specific demands. We implement our
proposal in the Linux kernel and show that this extension greatly
increases the flexibility of SCTP and brings visible performance
enhancements. This is the first work that demonstrates the
effectiveness of pluggable SCTP multi-stream scheduling through
real implementations and testbed experiments. Our proposal
requires modifications only on the sender side and incurs no
interoperability or fairness problems. Hence, it is safe and
convenient to be deployed in the current Internet.

I. INTRODUCTION

SCTP [1] is a transport protocol originally designed to carry
telephony signaling messages over the Internet. It offers a
number of features not available in traditional TCP and UDP,
such as multi-streaming and multi-homing. Thanks to these
attractive features, SCTP gradually evolves to be a general-
purpose transport protocol capable of broad applications.

Multi-streaming, where one association can bundle multiple
independent streams, is one of the most important features
of SCTP. It avoids the head-of-line (HOL) blocking problem
of TCP and makes SCTP a proper transport for signaling
messages. In SCTP, a stream is a unidirectional logical channel
established from one to another associated SCTP endpoint. In-
order delivery of user messages is retained within each stream
(unless unordered delivery service is requested) but not across
multiple streams. However, reliable data transfer and conges-
tion control is applied to the entire association. To accomplish
these requirements, SCTP separates data transmission and data
delivery. Specifically, each DATA chunk has two independent
sequence numbers: a per-association Transmission Sequence
Number (TSN) and a per-stream Stream Sequence Number
(SSN). TSN is used for data transmission including loss re-
covery, flow control and congestion control while SSN (along

!"
#$
%&

'(
'

!"
#$
%&

')
'

!"
#$
%&

'*
'

!"
#$
%&

'+
'

,-
./
/%
0-
$'

'!
12
$3

.-
$#
'

45
6/
$7
85

6'
45

6"
#5
-'

9::-;1%856'

!"
#$
%&

'(
'

!"
#$
%&

')
'

!"
#$
%&

'*
'

!"
#$
%&

'+
'

45
6/
$7
85

6'
45

6"
#5
-'

9::-;1%856'

+$"<5#='

!63#' >1;?$#'

Fig. 1. SCTP multi-streaming and our pluggable scheduler: SCTP supports
multiple streams within an association. It ensures independently sequenced
delivery among different streams while maintaining appropriate congestion
control behavior over the entire association. The pluggable scheduler may,
for example, assign higher priority to Stream K.

with Stream ID) is used for data delivery. Fig. 1 illustrates this
procedure.

Although SCTP supports multi-streaming, the current stan-
dard [1] does not specify how to schedule them, or more
specifically, how to assign sequential TSNs to DATA chunks
from different streams. The errata to the standard [2] briefly
touches upon this topic and suggests a simple round-robin
scheduling algorithm over all streams with pending data.
This approach is adopted by FreeBSD. Linux and Solaris
instead use first-come-first-served (FCFS) as the multi-stream
scheduling algorithm in their protocol stack. In spite of the
specific choices made by different implementations, they all
share the “one size fits all” philosophy. This approach does
not fully exploit the benefits provided by multi-streaming.
In this paper, we propose to augment it by providing an
infrastructure on which 1) scheduling algorithms can be de-
veloped in a systematic way, 2) a scheduling algorithm can
be loaded/unloaded at run time, and 3) applications can easily
configure the algorithms through a standard socket interface.

This paper was presented as part of the 14th IEEE Global Internet Symposium (GI) 2011 at IEEE INFOCOM 2011

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 821

BobAlice

Instant message on one stream

bulk data on the other stream

Fig. 2. A sample application: Alice is chatting with Bob via an instant
messenger. She also wants to share some photos with Bob. SCTP fits into this
application scenario since it can open two streams under one association and
use separate stream to transfer separate data. However, prioritized treatment
is desirable in this case since Alice does not want her messages to be delayed
by the photo transmission.

The motivation behind this proposal is that, as the application
has created multiple streams, it’s very likely that the data in
each stream have different characteristics and need separate
treatment. Imposing a round-robin scheduling algorithm to let
all streams equally share the available resources may not meet
the demands of an application. A better way is to let the
applications choose and configure the multi-stream scheduling
algorithm by themselves so as to best fit their requirements.

For example (Fig. 2), two users are chatting with each other
via an instant messenger. Meantime, a user is sending a photo
to the other user. This is a realistic scenario since most instant
messengers today provide the functionality to transfer files
between two users when both are online. In this scenario,
there are two simultaneous connections between the users: one
for instant messages and the other for file transfer. SCTP fits
into this application scenario well since it eliminates the need
to maintain two separate connections. Instead, the users need
only one SCTP association with two streams. The problem is
that, with a fixed scheduling algorithm such as FCFS, it is
very likely that the file data will constantly occupy the output
queue and thus chat messages have to be queued after them,
since file transfer is typically continuous bulk data while chat
messages are typically short and intermittent. As a result, the
latency experienced by the instant messages is unpredictable.
Assigning higher priority to the instant messenger over the
file transfer is strongly desired, but this is not viable with the
current SCTP implementation.

The previous example is a relatively simple use case. As
applications with more complicated requirements emerge, the
flexibility in multi-stream scheduling will be more important.
Our proposal is to augment SCTP with pluggable multi-stream
scheduling to fulfill application-specific requirements. This
extension substantially improves the utility of SCTP and brings
visible performance improvement with little cost. Note that
our proposal does not change the protocol on the wire. It
only changes the internal scheduling algorithm of the SCTP
sender. Therefore, it won’t cause any interoperability problem
with existing implementations. The only thing it may affect
is bundling, an optional feature that carries multiple small
user messages in one SCTP packet, since how messages are
bundled depends on their sequence. [3] discusses this issue and
proposes per packet scheduling. As will be shown later, our
pluggable scheduling framework is general enough for the user
to implement such scheduling algorithms or their equivalents.

Also note that this proposal does not change the congestion
control algorithm of SCTP. It only changes the order in which
new DATA chunks are sent, under the constraints of the given
congestion window. Therefore, it is safe to be deployed in the
Internet.

The rest of the paper is organized as follows. Section II
details the design and implementation of our proposal. In
Section III, we demonstrate the effectiveness of the proposed
extension via real implementation in the Linux kernel and
quantify its performance through testbed experiments. We
then discuss the related work in Section IV and conclude in
Section V.

II. DESIGN AND IMPLEMENTATION

A. Design Considerations

To allow SCTP applications to customize the multi-stream
scheduling algorithm, we can implement several common
scheduling algorithms in the SCTP protocol stack and pro-
vide an API for the applications to choose and configure
the scheduling algorithm they want. The advantage of this
approach is its ease of use since the applications only need
to add a few lines of code to call the API. But it is less
flexible because the applications can only choose from the
given set of scheduling algorithms. If the application wants a
specific scheduling algorithm that is not provided in the set,
the demand of the application cannot be met.

Another approach is to provide a general interface within the
protocol stack to let application programmers implement the
scheduling algorithm by themselves. In fact, a SCTP multi-
stream scheduling algorithm is just a different manipulation
of the DATA chunks in the output queue. If we expose the
queue manipulation functions (enqueue, dequeue, etc.) to the
users, they can implement whatever special algorithm they
want. However, the disadvantage of this approach is that it
burdens every application programmer with the responsibility
to implement a scheduling algorithm for their application.

Our design is a combination of these two approaches. We
expose the manipulation functions for the DATA chunk output
queues so that users can fully customize the multi-stream
scheduling algorithm if necessary. In addition, we utilize this
kernel interface to implement several common algorithms
including FCFS, strict priority queue and weighted fair queue.
These algorithms serve two purposes: 1) they demonstrate the
usage of the kernel interface so that application programmers
can consult them while implementing their own scheduling
algorithm. 2) Application programmers can directly use them
if they already meet the requirements of the application.

By default, FCFS is used so that legacy SCTP applications
can operate on the new stack without any modification. If the
applications need to use some common scheduling algorithm
that is already provided, they can simply call the API to choose
that algorithm. If an application has some special requirements
and needs to adopt a customized scheduling algorithm, the
user can implement it via the provided kernel interface. Thus,
we maintain the balance between ease of use and maximum
flexibility.

822

!"#$!"#$%&'()*'

%&'()*$

!"#$+,-$!"#$+,-$!"#$+,-$

./#$ %"!#$
%"!#01#2$
34&(567,5$

%"!#$
166,87)9,5$

%"!#$
166,87)9,5$

%"!#$
166,87)9,5$

!"#$$
",5:(69,5$",5&',;$

+%,-%.'

2#$

%"!#$$
",5:(69,5$",5&',;$

#;<::)=;($%8>(?<;('$

@"
@%
$

#'
7,
'7
&A
$

B
@C

$

DD
$ /'

Fig. 3. Architecture of our implementation in the Linux kernel.

B. Implementation in the Linux Kernel

We have implemented our proposal in the Linux kernel.
The kernel patches can be found at [4] and the architecture is
shown in Fig 3. The implementation consists of three parts:
1) a pluggable scheduler, which is the infrastructure in the
kernel providing a general interface for users to implement
customized multi-stream scheduling algorithms as loadable
kernel modules; 2) a set of kernel modules implementing
several commonly used scheduling algorithms; 3) an extension
of SCTP socket API providing the interface for applications
to access and configure the scheduling algorithm.

More precisely, we define the sctp sched ops structure
(see Fig. 4) which includes a group of hooks to functions used
for queue manipulation operations on the DATA chunk output
queue. To implement a custom multi-stream scheduling algo-
rithm, a user needs to write a kernel module that defines those
queue manipulation functions. Then declare a sctp sched ops
structure and set its pointers to these functions. Finally, register
the structure in the kernel via sctp register sched function
so that applications can use this new scheduling algorithm.
We implemented three common scheduling algorithms: FCFS,
strict priority queue and weighted fair queue. Fig. 5 shows the
implementation of the default FCFS scheduling algorithm.

We also define a new socket option for SCTP so that appli-
cations can easily use our extension. It can be set or retrieved
via the standard setsockopt/getsockopt functions. The level
and optname arguments should be IPPROTO SCTP and
SCTP SCHED respectively. The optval argument should be
a sctp sched structure as defined in Fig. 6. ssched name is
a descriptive name of the scheduling algorithm (same as the
name member of sctp sched ops structure). This might be
enough for a simple scheduling algorithm like FCFS. But for
more complicated scheduling algorithms (e.g. priority queue),
the application needs to not only choose a scheduling algo-
rithm but also configure it (e.g. set the priority of each stream).
This is done via ssched config . Since different scheduling
algorithms may have different definitions/requirements for the
configuration and its length may vary (e.g. depending on the
number of outgoing streams), we provide ssched config as a
place holder (a zero-sized array) and use ssched config len

struct sctp sched ops {
struct list head list;
char name[SCTP SCHED NAME MAX];
struct module *owner;

int (*init)(struct sctp outq *q, gfp t gfp);
void (*release)(struct sctp outq *q);
void (*enqueue head data)(struct sctp outq *q, struct sctp chunk *ch);
void (*enqueue tail data)(struct sctp outq *q, struct sctp chunk *ch);
struct sctp chunk* (*dequeue data)(struct sctp outq *q);
int (*is empty)(struct sctp outq *q);

};
extern int sctp register sched(struct sctp sched ops *type);
extern void sctp unregister sched(struct sctp sched ops *type);

Fig. 4. sctp sched ops structure: the kernel interface to implement
customized scheduling algorithms

/* Initialize the DATA chunk output queue. One queue is enough for FCFS. */
/* More complex algorithms may need separate queues for different streams. */
static int fcfs init(struct sctp outq *q, gfp t gfp) {

q−>out chunk list = kmalloc(sizeof(struct list head), gfp);
if (!q−>out chunk list)

return −ENOMEM;
INIT LIST HEAD(q−>out chunk list);
return 0;

}

static void fcfs release(struct sctp outq *q) {
kfree(q−>out chunk list);

}

static void fcfs enqueue head data(struct sctp outq *q, struct sctp chunk *ch) {
list add(&ch−>list, q−>out chunk list);
q−>out qlen += ch−>skb−>len;

}
static void fcfs enqueue tail data(struct sctp outq *q, struct sctp chunk *ch) {

list add tail(&ch−>list, q−>out chunk list);
q−>out qlen += ch−>skb−>len;

}

/* Always dequeue from the head */
static struct sctp chunk *fcfs dequeue data(struct sctp outq *q) {

struct sctp chunk *ch = NULL;
if (!list empty(q−>out chunk list)) {

struct list head *entry = q−>out chunk list−>next;
ch = list entry(entry, struct sctp chunk, list);
list del init(entry);
q−>out qlen −= ch−>skb−>len;

}
return ch;

}

/* Emptiness test, necessary when having multiple queues */
static inline int fcfs is empty(struct sctp outq *q) {

return list empty(q−>out chunk list);
}

struct sctp sched ops sctp fcfs = {
.name = ''fcfs'',
.owner = THIS MODULE,
.init = fcfs init,
.release = fcfs release,
.enqueue head data = fcfs enqueue head data,
.enqueue tail data = fcfs enqueue tail data,
.dequeue data = fcfs dequeue data,
.is empty = fcfs is empty,

};

Fig. 5. Sample implementation of FCFS scheduling algorithm using our
kernel interface

to indicate the length of the custom configuration in bytes. Ba-
sically, the configuration of the scheduling algorithm is passed
as a opaque block of memory trailing the sctp sched structure
and the interpretation of this configuration is dependent on the
specific scheduling algorithm chosen by the user.

To customize the multi-stream scheduling algorithm, the ap-

823

struct sctp sched {
char ssched name[SCTP SCHED NAME MAX];

u16 ssched config len;
u16 ssched config[0];

};

Fig. 6. sctp sched structure: the socket API to configure the scheduling
algorithm

int sk, ss sz;
struct sctp initmsg si;
struct sctp sched *ss;

// create a one−to−many style SCTP socket
sk = socket(AF INET, SOCK SEQPACKET, IPPROTO SCTP);

// we need only two outgoing streams
bzero(&si, sizeof(si));
si.sinit num ostreams = 2;
setsockopt(sk, IPPROTO SCTP, SCTP INITMSG, &si, sizeof(si));

// configure priority scheduling
ss sz = sizeof(struct sctp sched) + 2 * sizeof(u16);
ss = (struct sctp sched *) malloc(ss sz);
strncpy(ss−>ssched name, ''prio'', SCTP SCHED NAME MAX);
ss−>ssched config len = 2 * sizeof(u16);
ss−>ssched config[0] = 1;
ss−>ssched config[1] = 2;
setsockopt(sk, IPPROTO SCTP, SCTP SCHED, ss, ss sz);
free(ss);

Fig. 7. Code snippet for the scenario depicted in Fig. 2. Priority scheduling is
used on two streams with Stream 0 assigned Priority 1 and Stream 1 assigned
Priority 2. All error checking codes are eliminated to save space.

plication first creates an SCTP socket. Then it calls setsockopt
on this socket to choose and configure the scheduling al-
gorithm before initiating or accepting any association (see
Fig. 7 for the sample code). Once the scheduling algorithm is
configured, the program proceeds as usual: it may call bind ,
listen , accept or sctp recvmsg if it acts as a server. Or it may
call connect or sctp sendmsg if it acts as a client.

A subtle implementation detail needs to be noted here.
SCTP supports two socket styles: one-to-one style and one-
to-many style [5]. The former controls only one association
and is very similar to TCP socket. It aims to allow existing
applications to be ported to SCTP easily but limits the use of
some advanced features of SCTP (e.g. piggybacking data dur-
ing association establishment). The latter may control multiple
associations within one socket and has full support for the new
features. With one-to-many style sockets, there is an important
design choice on whether multi-stream scheduling should be
set on a per socket basis or per association basis. The benefits
of association-based scheduling are finer granularity of control
and better knowledge of the association (e.g. the number
of outgoing streams is known only when the association is
actually established). But there are some technical challenges
with this design. To configure the scheduling algorithm of an
association, we must wait until the association is established.
But since associations are implicitly established under one-
to-many style socket and data transfer may get started on the
third or fourth packet of the four-way handshake during SCTP
association establishment, we inevitably need to change the
scheduling algorithm when data transfer is already underway.
This poses a number of problems and complications in the

Bottleneck Link Emulators

SCTP with two streams

TCP Long-lived Flow

Background Web Traffic

Fig. 8. Testbed Topology

implementation. Therefore, we choose the simpler approach
of socket-based scheduling. In this design, the multi-stream
scheduling algorithm is set on a socket before the establish-
ment of an association. Note that, at this point the user does
not know the number of outgoing streams that will be actually
negotiated. If it turns out to be smaller than the number
proposed by the user, the scheduling algorithm will be applied
in a truncated version. If the user changes the scheduling
algorithm of a socket after some associations are already
established, only associations established after the change are
affected.

III. EXPERIMENTAL EVALUATION

In this section, we show the proof-of-concept experimen-
tation by running the sample application depicted in Fig. 2
on top of our implementation in the Linux kernel. Note
that our extension provides the mechanism to customize the
multi-stream scheduling algorithm of an SCTP association. It
is the user or the application programmers who decide the
policy, i.e. which scheduling algorithm best fits their demands.
Our sender-side modification only provides quality of service
(QoS) within the multiple outgoing streams of an association.
The end-to-end QoS cannot be guaranteed unless network-
assisted QoS architectures such as Diffserv [6] are deployed.
But we will demonstrate through the following testbed ex-
periments that, even a simple sender-side modification as our
proposal is able to reduce the latency of the instant messages
by up to 78% while preserving the same throughput for file
transfer.

The topology of our testbed is shown in Fig. 8. It’s a
dumbbell topology with six sender/receiver pairs. One pair
is used to emulate the Alice-and-Bob scenario in Fig. 2: the
SCTP sender opens two streams to the SCTP receiver. On one
stream, the sender sends intermittent instant messages whose
sizes are uniformly distributed between 1 and 100 bytes. The
inter-arrival time of the instant messages are exponentially
distributed with a mean of 1 second. On the other stream, the
sender sends bulk data to the receiver continuously. The other
five sender/receiver pairs are used to generate background
traffic in forward and reverse directions. One pair generates
a long-lived TCP flow while the other four pairs generate
short-lived requests/responses to emulate Web traffic. The
two servers in the middle are used to emulate a symmetric

824

 0

 1

 2

 3

 4

 5

 6

FCFS Priority

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

TCP
SCTP

(a) TCP and SCTP Throughput Comparison

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

FCFS Priority

L
a
te

n
c
y
 (

s
e
c
)

SCTP

(b) Instant Message Latency Comparison

Fig. 9. Performance Comparison under 10Mbps Link

bottleneck link with configurable bandwidth, delay and buffer
size. Each test lasts for 600 seconds and is repeated 10 times
to calculate 95% confidence intervals of all metrics.

We first emulate the bottleneck link with a bandwidth of
10Mbps and an RTT of 300ms. The buffer size is set to
the bandwidth delay product (BDP). Under this scenario,
we measure 1) the average throughput of the SCTP flow
and the long-lived TCP flow, 2) the average latency of the
SCTP instant messages. We compare these metrics of two
scheduling algorithms: FCFS and strict priority queue where
instant messages are given higher priority than bulk data
transfer. Fig. 9 shows the results.

As can be seen from Fig. 9(b), adopting strict priority
queue as the multi-stream scheduling algorithm has improved
the average latency of the instant messages by nearly 30%.
Meanwhile, the average throughputs of the TCP flow and the
SCTP flow remain the same despite the different scheduling
algorithm being used (Fig. 9(a)). The reasons why TCP
achieves higher throughput than SCTP in this scenario include:
1) SCTP uses CRC32c checksum while TCP uses simple 16-
bit 1’s compliment sum. 2) NIC supports checksum offload
(CKO), segmentation offload (TSO) and large receive offload

 0

 5

 10

 15

 20

 25

 30

 35

FCFS Priority

T
h
ro

u
g
h
p
u
t
(K

b
p
s
)

TCP
SCTP

(a) TCP and SCTP Throughput Comparison

 0

 5

 10

 15

 20

 25

 30

FCFS Priority

L
a
te

n
c
y
 (

s
e
c
)

SCTP

(b) Instant Message Latency Comparison

Fig. 10. Performance Comparison under 56Kbps Link

(LRO) for TCP but not SCTP. 3) SCTP reserves message
boundaries while TCP is byte-stream-oriented. But this is
beyond the scope of this paper. What we want to emphasize
is that our extension does not change the congestion control
behavior of SCTP and is safe to be deployed in the current
Internet.

We run another similar test with different bottleneck link
parameters. In this test, we try to emulate slow residential
networks and set the bandwidth and RTT to 56Kbps and
300ms respectively. The buffer size is set to 40 packets,
much larger than the BDP of the network, which is typical
in broadband residential networks [7]. The results of this test
is shown in Fig. 10. Under this scenario, the latency of the
instant messages rockets up to around 23 seconds under FCFS.
This is due to the low bandwidth as well as the large buffer
size. With priority queue, the latency is decreased to about
5 seconds, which is a 78% improvement! Again, the average
throughputs don’t change much and SCTP achieves similar
performance to TCP under this low bandwidth scenario.

We leave more experiments with different scheduling algo-
rithms as our future work.

825

IV. RELATED WORK

There are numerous applications that simultaneously trans-
fer multiple types of data between the same source and
destination. It’s important for these applications to be able to
allocate resources among the different data types according to
their demands. Different solutions to this problem have been
proposed in the context of TCP and SCTP.

In TCP, it’s always possible to establish multiple connec-
tions between the same source and destination. But due to
the congestion control algorithm of TCP, these simultaneous
connections are most likely to converge to equal share of the
available resources, which may be undesirable for the applica-
tion. To provide service differentiation among these TCP con-
nections, pTCP [8] strips data to multiple micro-flows (which
exhibit the same behavior as normal TCP connections) and
reassembles them at the receiver. By controlling the number of
micro-flows, pTCP provides end-to-end service differentiation.
MulTCP [9] achieves similar effects in a different manner: it
manipulates the AIMD parameters of the TCP connection so
as to obtain a proportional share of multiple TCP connections.
The problems with these TCP-based approaches are two-fold:
1) Opening multiple connections and manipulating resource
allocation at the application layer is a cumbersome burden for
application programmers. 2) Modifying the congestion control
behavior of TCP incurs fairness problems.

SCTP solves these two problems via its unique multi-
streaming feature. Applications can have multiple streams
within in a single association and their aggregate behavior con-
forms to TCP-friendliness. However, the current SCTP stan-
dard did not specify the multi-stream scheduling algorithm,
making it difficult to provide service differentiation among
the streams. To address this issue, SF-SCTP [10] groups
SCTP streams into subflows and imposes independent flow
and congestion control on each subflow. Service differentiation
can then be implemented at subflow level. This approach may
cause both interoperability and fairness issues since it changes
the DATA chunk header of SCTP as well as its congestion
control mechanism. [11] discusses the multi-stream scheduling
issue of SCTP in the context of Concurrent Multipath Transfer
(CMT). Through simulations the authors show that mapping
each stream to a certain path achieves better performance than
simple round-robin scheme. However, since CMT is not yet
standardized in the current SCTP specification, this approach
is not immediately deployable. [3] discusses the benefits
of using different SCTP multi-stream scheduling algorithms
under different scenarios and proposes per packet scheduling.
But the idea is only validated by simulations. Our proposal is a
light-weight, yet effective solution to the problem. No changes
are made to the packet structure or congestion control behavior
of SCTP, hence it’s safe to be deployed in the current Internet.
The closest idea to our proposal may be [12]. However, it only
implements a single priority queue scheduling algorithm in the
ns-2 SCTP module whereas our extension provides a general
framework to implement any scheduling algorithm within the
SCTP protocol stack in the Linux kernel and is validated via

testbed experiments.
In addition to the above-mentioned end-to-end solutions,

there is another class of schemes (such as [13], [6], [14])
which implements service differentiation within the network.
Those schemes are able to provide performance guarantees
that are not possible with end-to-end schemes. However, they
fail to gain wide deployment in the Internet due to a number
of technical and economic reason. We view these schemes
to be complementary to our proposal. If present, they can
be integrated with our scheme to provide guaranteed QoS.
If not, our proposal can still bring significant performance
enhancement as demonstrated in Section III.

V. CONCLUSION

In this paper, we augment the multi-streaming feature of
SCTP with pluggable scheduling. With this extension, SCTP
multi-streaming is further exploited to achieve service differ-
entiation. We provide an interface for users to customize the
manipulation functions of the DATA chunk output queue of
an SCTP association so that different multi-stream scheduling
algorithms can be plugged into the protocol stack. We also
extend the SCTP socket API so that applications can make
use of this new feature by adding only a few lines of code.
This extension of SCTP is fully backward compatible and can
be safely deployed in the current Internet. We demonstrate its
effectiveness and flexibility through real implementations in
the Linux kernel and realistic testbed experiments.

REFERENCES

[1] R. Stewart, “Stream Control Transmission Protocol,” IETF RFC 4960,
Sep. 2007.

[2] R. Stewart, I. Arias-Rodriguez, K. Poon, A. Caro, and M. Tuexen,
“Stream Control Transmission Protocol (SCTP) Specification Errata and
Issues,” IETF RFC 4460, Apr. 2006.

[3] R. Seggelmann, M. Tuexen, and E. P. Rathgeb, “Stream Scheduling
Considerations for SCTP,” in Proceedings of the 18th International
Conference on Software, Telecommunications and Computer Networks
(SoftCOM), Sep. 2010.

[4] Y. Wang, “[PATCHv2 0/5] sctp: add multistream scheduling feature,”
https://lkml.org/lkml/2010/9/11/172, Sep. 2010.

[5] R. Stewart, K. Poon, M. Tuexen, V. Yasevich, and P. Lei, “Sockets API
Extensions for Stream Control Transmission Protocol (SCTP),” Internet
Draft draft-ietf-tsvwg-sctpsocket-24, Oct. 2010, work in progress.

[6] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
Architecture for Differentiated Services,” IETF RFC 2475, Dec. 1998.

[7] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu, “Charac-
terizing Residential Broadband Networks,” in ACM IMC, Oct. 2007.

[8] H.-Y. Hsieh and R. Sivakumar, “pTCP: An End-to-End Transport Layer
Protocol for Striped Connections,” in IEEE ICNP, Nov. 2002.

[9] J. Crowcroft and P. Oechslin, “Differentiated End-to-End Internet Ser-
vices Using a Weighted Proportional Fair Sharing TCP,” SIGCOMM
Computer Communication Review, vol. 28, no. 3, pp. 53–69, 1998.

[10] J. Zou, “Preferential Treatment of SCTP Streams in a Differentiated
Services Environment,” Ph.D. dissertation, City University of New York,
2007.

[11] T. Dreibholz, R. Seggelmann, M. Tuexen, and E. P. Rathgeb, “Trans-
mission Scheduling Optimizations for Concurrent Multipath Transfer,”
in PFLDNeT, Nov. 2010.

[12] G. Heinz, “Priorities in SCTP Multistreaming,” Master’s thesis, Univer-
sity of Delaware, 2003.

[13] R. Braden, D. Clark, and S. Shenker, “Integrated Services in the Internet
Architecture: an Overview,” IETF RFC 1633, Jun. 1994.

[14] M. Podlesny and S. Gorinsky, “RD Network Services: Differentiation
through Performance Incentives,” in ACM SIGCOMM, Aug. 2008.

826

