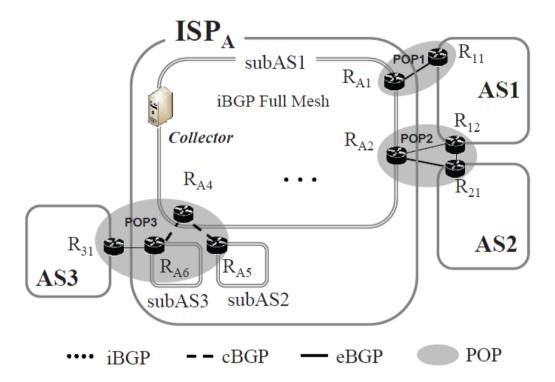
Understanding BGP Next-hop Diversity

Jaeyoung Choi¹, Jong Han Park², Pei-chun Cheng², Dorian Kim³, Lixia Zhang²

¹ Seoul National University, jychoi@mmlab.snu.ac.kr

² UCLA, {jpark,pccheng,lixia}@cs.ucla.edu

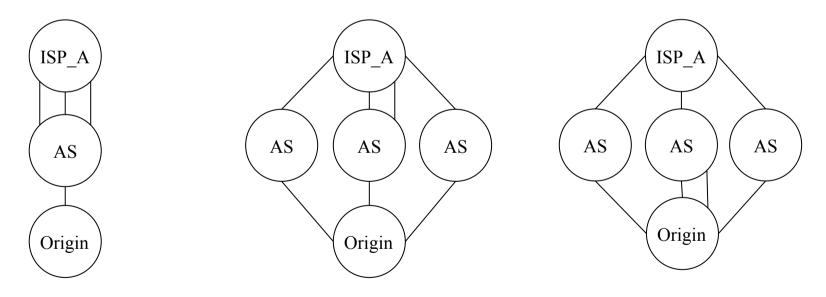

³ NTT Communications Inc., dorian@blackrose.org

Global Internet Symposium 2011

Why this work

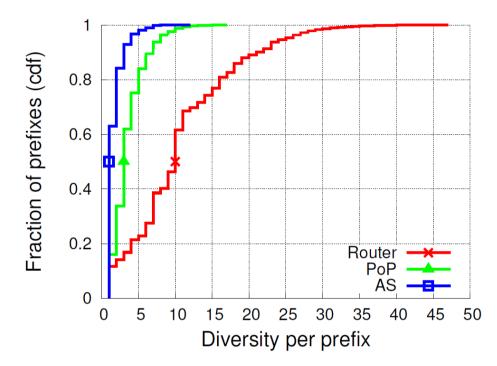
- High path diversity is important
 - Increase network robustness for failures
 - Increase flexibility in traffic engineering and load balancing
 - Decrease convergence time when topology changes
- IETF efforts to increase path diversity
 - WG Diverse-path, Add-Path, Best-External
 - Proposes several ways to modify BGP to support multiple paths
- What is the *existing path diversity* in the operation networks? How does it change over time?
 - Are the modifications necessary?
 - What is the effective way to modify BGP to support multiple paths?

High level description of measurement ISP

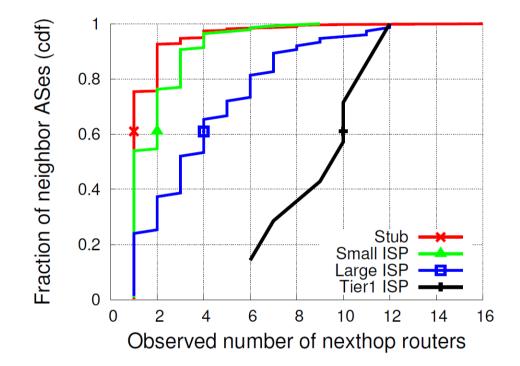

- ISP_A (Tier-1 ISP in the Internet) using AS confederations
 - Backbone sub-AS with more than one hundred i-BGP routers in a full-mesh
 - Spreads across 14 countries and 3 continents
 - Most prefixes are announced directly to one of the routers in the backbone sub-AS
- A collector is placed in the backbone sub-AS to passively collect i-BGP data

Quantifying next-hop diversity

- Why next-hop diversity?
 - ISP's concern on path diversity is confined to next-hop diversity within their network s
- Dataset
 - Routing table snapshots during one month of July 2009
 - Filter out internal prefixes and potential bogon prefixes
 - Filter out prefixes with their length smaller than 8 or greater than 24


Defining next-hop diversity

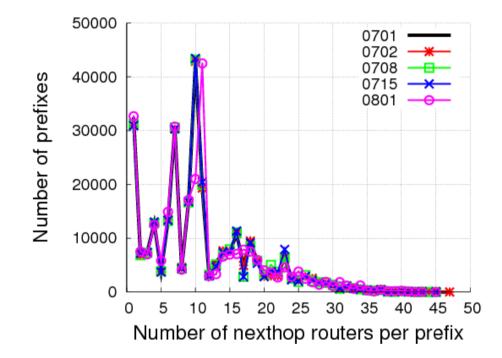
- Next-hop {AS,POP,router} diversity
 - The number of unique next-hop *routers* along with their *geographical locations (i.e. city)* and next-hop *ASes* for a prefix


- Next-hop router Div.: 3
- Next-hop AS diversity: 1
- Next-hop router Div.: 4
- Next-hop AS diversity : 3
- Next-hop router Div.: 3
- Next-hop AS diversity : **3**, not **4**

Existing next-hop diversity of ISP_A

- Based on RIB on July 1st 2009 (276,712 prefixes in total)
 - Majority of prefixes (more than 11% and 18%) can be reached via more than 2 next-hop r outers and POPs
 - More than 60% of prefixes can be reach via only one next-hop AS
 - A small number of prefixes have a very high degree of next-hop router

Neighbor AS type and diversity

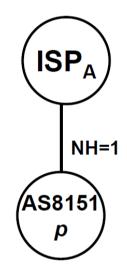


- 4 types of AS: (1) stub, (2) small ISP, (3) large ISP, and (4) Tier-1
- In general, ISPs with larger size tend to have more peering sessions across different routers and POPs

7/16

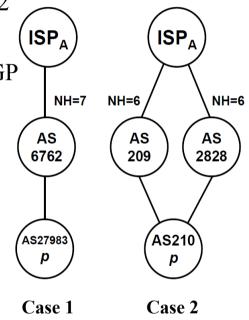
- ISP_A and other Tier1s have 6 to 12 next-hop routers
- ISP_A and large ISPs have 1 to 12 next-hop routers
- Stub AS with high connectivity (ex: UltraDNS, Amazon, Akamai)

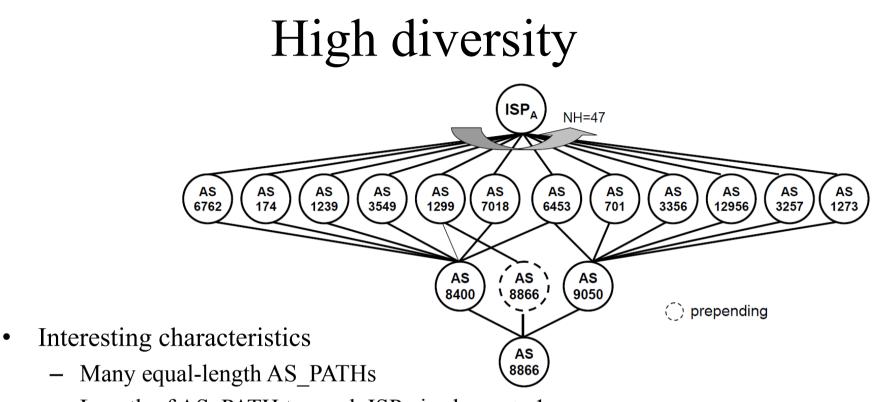
Is our observation representative?


- Additional measurements performed on RIBS from 4 different dates
 - The number of next-hop routers are very similar across all measurements
 - Additional analysis on other results confirm our previous observation

What are the impacting factors of next-hop diversity?

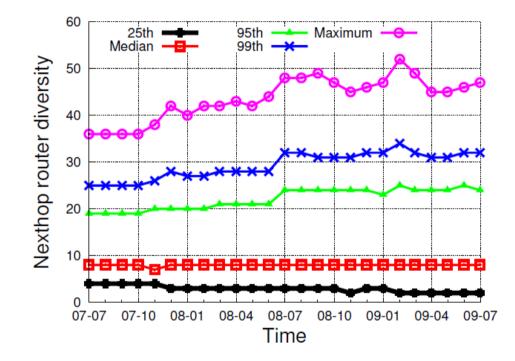
- Impacting factor analysis through case studies
- Major factors impacting next-hop diversity in ISP_A
 - ISP's path preference (policy)
 - Number of peering routers with its neighbor ASes
 - Lack of geographical presence


Low diversity


- Two explanations
 - (1) Only one path exists
 - (2) BGP selects and propagate only the best path and hides the rest
- Our further investigation confirms the latter
 - For most of prefixes, multiple paths do exist based on Cyclops (<u>http://cyclops.cs.ucla.edu/</u>)
 - Network operator may be able to increase their diversity by adjusti ng tunable parameters of BGP (ex: weight, local-pref)

Moderate diversity

- Prefixes whose next-hop router diversity is between 6 and 12
 - Applies to more than half of all prefixes
 - Prefixes are reached through an AS that maintains multiple BGP peering sessions with ISP_A
- This case shows us that
 - # of peering routers has an impact on the next-hop diversity



- Length of AS_PATH to reach ISP_A is always > 1
- Lack of geographical presence of ISP_A
 - For 89% of prefixes with high diversity, ISP_A do not have a presence at the prefix origination POP
 - Some prefixes can have a very high diversity regardless of the ISP's intention

Does diversity change in time?

- What is a general trend of next-hop diversity changes over time?
- Dataset
 - Sampled the routing table snapshot taken on 1st day of each month from July 20 07 to July 2009
 - Only consider common prefixes that exist in all RIBS
 - 220,432 prefixes in total

Next-hop diversity changes over 2 years

- Median values stay almost the same
 - The diversity of individual prefixes change in unpredictable manner, compensating the changes of other prefixes
 - As a result, no noticeable aggregate change in time
- 95th, 99th, Maximum values slightly increase
 - Number of backbone routers inside ISP_A have increased up to 19 additional routers during the 2 years

Summary

- Despite the promising efforts to increase path diversity, little understanding on path diversity in the *existing* system
- Our quantification and analysis on Tier-1 iBGP routing data show
 - Majority of prefixes can be reached through multiple next-hop routers
 - Some of the high diversity is unintended
 - ISP may be able to increase their diversity without any BGP modifications by a djusting path preference and number of peering routers
 - Overall diversity has not changed a lot in time

Any questions? Thank you.