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 Background & Motivation
◦ Network Virtualization (NV)

 Problem
◦ Minimum Disclosure Routing (MDR) 

 Related Problem
◦ Secure Multiparty Computation (SMC)

 Our solution for MDR
 Feasibility of our solution
 Conclusions & Future work
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SP’s virtual network

Competitors have (passive) access to SP’s virtual routers.
Confidentiality of operational information is a challenge.
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 Routers exchange routing information
◦ including link costs, path costs or even whole topology

 Underlying InPs can observe routing information
 Encrypting IGP messages does not help
◦ The InPs also have access to the keys on routers



 SP’s intra-domain routing, where each router
◦ Provides local topology information as input
◦ Learns next-hop information as output
◦ Learns nothing else

8

SP’s virtual network
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 An example of Secure 3-party Computation

 MDR is a kind of SMC
 Some generic SMC protocols are known
◦ Applicable to any function f
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SMC
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 Secret sharing scheme
◦ Encode a secret information into multiple fragments 

called shares
◦ Any single share cannot recover the secret
◦ All shares can be combined to recover the secret

10

x
share [x2]
share [x2]
share [x2]

x

Sharing Recovering
[x2]
[x2]
[x2]

secret



Party 2

Party 3

Party 1

11

x1

x2

x3

[x1]
[x1]
[x1]
[x2]
[x2]
[x2]
[x3]
[x3]
[x3]

[x1]
[x2]
[x3]
[x1]
[x2]
[x3]
[x1]
[x2]
[x3]

y1

y2

y3

[y1]
[y1]
[y1]
[y2]
[y2]
[y2]
[y3]
[y3]
[y3]

[y1]
[y2]
[y3]
[y1]
[y2]
[y3]
[y1]
[y2]
[y3]

Sub-
protocol 

for f
(requires
full-mesh

connectivity)

Sharing RecoveringComputing



 Generic SMC protocols are applicable only if all 
parties are fully connected

 MDR is a problem for partially connected routers 
to establish such a full-mesh IP connectivity
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 A clique virtually works as a big router
◦ Fully-connected routers collocated at a peering POP

 Cliques run a distance-vector routing algorithm
◦ In each clique
 Routing information is encoded into shares
 Computations are performed by a generic SMC protocol
◦ Shares are transferred between neighboring cliques
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 How each router obtains its next-hop for dst
 [d1] = SHARE(d1),  [d2] = SHARE(d2)
◦ Encode link cost into shares
◦ Distribute these shares in a clique 
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 TRANSFER([d1])
◦ Transfer shares of link cost from the left clique to 

the right clique
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 [d1+d2] = COMPUTE([d1]+[d2])
◦ The right clique run a generic SMC protocol for 

addition
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 Similarly, shares of the distance of the other 
path [d1+d3] is obtained
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 Suppose d2 < d3 (the upper path is shortest)
 [upper] = COMPUTE([d1+d2] < [d1+d3] ? [upper] : [lower])
◦ The right clique run a generic SMC protocol
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 upper = RECOVER ([upper]) 
◦ Recover the route in the right clique

 Each router in the clique directs its route 
towards the upper path
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 Generalized version of our solution 
◦ Arbitrary numbers of cliques and destinations 
◦ Scalability to the number of destinations

 Metric: latency of SMC protocol to update 
distances to destinations
◦ Most time-consuming part of our solution

 Analysis model and parameters
◦ Computation latency (in each router)
 GPGPU (1.35 GHz, 240 cores)
◦ Communication latency (between routers in a clique)
 One-way delay is 1 msec
 Bandwidth is 1Gbps or 10 Gbps
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 An invocation of SMC protocol requires less than 100 msec
 Total Convergence requires less than 1 second
◦ Number of invocations are upper-bounded by network diameter
◦ Diameter < 10 even in a large Tier-1 network.
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• K: number of neighboring cliques
• B: bandwidth of the links within a clique



 NV poses a new problem, MDR
◦ confidentiality of operational information

 None of existing protocols solves MDR
◦ Existing routing protocols do not preserve 

confidentiality
◦ Generic SMC protocols cannot be applied to routing

 We proposed a solution for MDR
◦ Extend SMC protocol to routing problem
◦ Feasible in a large network if it is run on state-of-

the-art hardware
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 Implementation
◦ Currently implementing our solution by extending 

Quagga on Linux
 Evaluation with implementation
◦ Preliminary experiment results show that our 

analysis results are reasonable
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