
CombiHeader: Minimizing the
Number of Shim Headers in
Redundancy Elimination
Systems

Sumanta Saha,
Andrey Lukyanenko and
Antti Ylä-Jääski
Aalto University School of Science, Finland
(Formerly, Helsinki University of Technology)

15.Apr.2011 Sumanta Saha 2

Outline

  Redundancy elimination systems
  Finer vs. coarser chunk size
  CombiHeader algorithm
  Proof-of-Concept implementation
  Evaluation
  Summary

15.Apr.2011 Sumanta Saha 3

Redundancy Elimination Systems

  Redundancy Elimination (RE) systems work on
packet payload level
  Chunks the payload using Rabin Fingerprinting
  Content based
  Application independent

  The idea is complementary to traditional caching
  Aims to remove redundant content from upstream nodes

to downstream

  Eliminates duplicate traffic when traditional
caching fails

15.Apr.2011 Sumanta Saha 4

Redundancy Elimination Systems

R1

R2

Rn

1 2

2

2

Chunk Store

15.Apr.2011 Sumanta Saha 5

Finer vs. Coarser Chunk Sizes

  With coarser chunk size there is always a
possibility of missing possible matching regions

  Finer chunk sizes have more protocol overhead
  The proposed algorithm, CombiHeader, uses an

adaptive method to dynamically choose the best
chunk size

  Please refer to the paper for a mathematical
interpretation

15.Apr.2011 Sumanta Saha 6

CombiHeader

  We need a dynamic system
to adapt to the content type,
and chunk popularity to get
the best out of it

  CombiHeader works on
chunk popularity to
generate bigger chunks out
of smaller ones

  Optimized to deliver least
memory access while
matching to the largest
chunk possible

CombiHeader

15.Apr.2011 Sumanta Saha 7

H1

 Chunk Trail:

H2 H3 H4

H1H2 H2H3

H1H2H3

123 123 1

1
1

111

12

1

H1 H2 H3 H4 H1 H2 H3 H1 H2 H3

15.Apr.2011 Sumanta Saha 8

CombiHeader

Inser&on	 of	 CombiHeaders	 to	 the	 outgoing	 stream	

Trail: h1h2h3h4h1h2h3h1h2h3h5

Last elementary: h1 h2 h3 h4 h1 h2 h3 h1 h2 h3 h5

Last CombiNode : - - - - - h1h2 - - h1h2 h1h2h3 -

Cache hit/miss : M M M M H H H H H H M

Insert in trans: F(h1) F(h2) F(h3) F(h4) - - h1h2 h3 - - h1h2h3
& F(h5)

F(hx) = Full payload for chunk x
hx = Elementary header for chunk x
hxhy = CombiHeader for combined chunks x and y

15.Apr.2011 Sumanta Saha 9

Proof-of-Concept

  Implementation done in pure C
  Chunking engine
  CombiHeader plug-in

  Rabin fingerprinting for RE
  SHA-1 hashing for fingerprinting
  Chunking can be done in both IP and TCP layer

  Experiments were done on TCP layer
  Directed graph to keep track of all the CombiHeaders generated
  A threshold parameter θ is used to control the CombiHeader

generation process

15.Apr.2011 Sumanta Saha 10

Evaluation

  Effect of CombiHeader over
header transmission
  X-axis represents initial

preliminary chunk size
  Traffic comprises of video files

with intermittent similarity

  CombiHeader allowing smaller
chunk size with the same
benefit as larger ones

15.Apr.2011 Sumanta Saha 11

Evaluation

  Effect of CombiHeader over
total bytes transmitted to wire
  X-axis represents the number

of files transferred through the
router

  Running CombiHeader on real
world HTTP traces

15.Apr.2011 Sumanta Saha 12

Summary

  CombiHeader addresses the question of what
should be the optimal chunk size for a particular
traffic

  Depending on the dynamic nature of the user traffic
and the underlying similarity, CombiHeader adapts
itself to deliver the best possible chunk size

  Helps to reduce protocol overhead to the wire
  Possible deployment challenges:

  Cache synchronization among routers
  Routing decision making

