
CombiHeader: Minimizing the
Number of Shim Headers in
Redundancy Elimination
Systems

Sumanta Saha,
Andrey Lukyanenko and
Antti Ylä-Jääski
Aalto University School of Science, Finland
(Formerly, Helsinki University of Technology)

15.Apr.2011 Sumanta Saha 2

Outline

  Redundancy elimination systems
  Finer vs. coarser chunk size
  CombiHeader algorithm
  Proof-of-Concept implementation
  Evaluation
  Summary

15.Apr.2011 Sumanta Saha 3

Redundancy Elimination Systems

  Redundancy Elimination (RE) systems work on
packet payload level
  Chunks the payload using Rabin Fingerprinting
  Content based
  Application independent

  The idea is complementary to traditional caching
  Aims to remove redundant content from upstream nodes

to downstream

  Eliminates duplicate traffic when traditional
caching fails

15.Apr.2011 Sumanta Saha 4

Redundancy Elimination Systems

R1

R2

Rn

1 2

2

2

Chunk Store

15.Apr.2011 Sumanta Saha 5

Finer vs. Coarser Chunk Sizes

  With coarser chunk size there is always a
possibility of missing possible matching regions

  Finer chunk sizes have more protocol overhead
  The proposed algorithm, CombiHeader, uses an

adaptive method to dynamically choose the best
chunk size

  Please refer to the paper for a mathematical
interpretation

15.Apr.2011 Sumanta Saha 6

CombiHeader

  We need a dynamic system
to adapt to the content type,
and chunk popularity to get
the best out of it

  CombiHeader works on
chunk popularity to
generate bigger chunks out
of smaller ones

  Optimized to deliver least
memory access while
matching to the largest
chunk possible

CombiHeader

15.Apr.2011 Sumanta Saha 7

H1

 Chunk Trail:

H2 H3 H4

H1H2 H2H3

H1H2H3

123 123 1

1
1

111

12

1

H1 H2 H3 H4 H1 H2 H3 H1 H2 H3

15.Apr.2011 Sumanta Saha 8

CombiHeader

Inser&on	
 of	
 CombiHeaders	
 to	
 the	
 outgoing	
 stream	

Trail: h1h2h3h4h1h2h3h1h2h3h5

Last elementary: h1 h2 h3 h4 h1 h2 h3 h1 h2 h3 h5

Last CombiNode : - - - - - h1h2 - - h1h2 h1h2h3 -

Cache hit/miss : M M M M H H H H H H M

Insert in trans: F(h1) F(h2) F(h3) F(h4) - - h1h2 h3 - - h1h2h3
& F(h5)

F(hx) = Full payload for chunk x
hx = Elementary header for chunk x
hxhy = CombiHeader for combined chunks x and y

15.Apr.2011 Sumanta Saha 9

Proof-of-Concept

  Implementation done in pure C
  Chunking engine
  CombiHeader plug-in

  Rabin fingerprinting for RE
  SHA-1 hashing for fingerprinting
  Chunking can be done in both IP and TCP layer

  Experiments were done on TCP layer
  Directed graph to keep track of all the CombiHeaders generated
  A threshold parameter θ is used to control the CombiHeader

generation process

15.Apr.2011 Sumanta Saha 10

Evaluation

  Effect of CombiHeader over
header transmission
  X-axis represents initial

preliminary chunk size
  Traffic comprises of video files

with intermittent similarity

  CombiHeader allowing smaller
chunk size with the same
benefit as larger ones

15.Apr.2011 Sumanta Saha 11

Evaluation

  Effect of CombiHeader over
total bytes transmitted to wire
  X-axis represents the number

of files transferred through the
router

  Running CombiHeader on real
world HTTP traces

15.Apr.2011 Sumanta Saha 12

Summary

  CombiHeader addresses the question of what
should be the optimal chunk size for a particular
traffic

  Depending on the dynamic nature of the user traffic
and the underlying similarity, CombiHeader adapts
itself to deliver the best possible chunk size

  Helps to reduce protocol overhead to the wire
  Possible deployment challenges:

  Cache synchronization among routers
  Routing decision making

