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Redundancy Elimination Systems

Redundancy Elimination (RE) systems work on
packet payload level

o Chunks the payload using Rabin Fingerprinting

o Content based

o Application independent

The idea is complementary to traditional caching

o Aims to remove redundant content from upstream nodes
to downstream

Eliminates duplicate traffic when traditional
caching fails
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Redundancy Elimination Systems
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Finer vs. Coarser Chunk Sizes
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With coarser chunk size there is always a
possibility of missing possible matching regions

Finer chunk sizes have more protocol overhead

The proposed algorithm, CombiHeader, uses an

adaptive method to dynamically choose the best
chunk size

Please refer to the paper for a mathematical
Interpretation
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CombiHeader

We need a dynamic system
to adapt to the content type,
and chunk popularity to get
the best out of it

CombiHeader works on
chunk popularity to
generate bigger chunks out
of smaller ones

Optimized to deliver least
memory access while
matching to the largest
chunk possible

Algorithm 1 Pseudocode of CombiHeader algorithm

if current chunk is cache miss then
if miss streak = | then
Update last seen Combi and Elementary node
Create new complex CombiNode if possible
else
Clear last CombiNode and transmit it
Update last seen elementary node
end if
Transmit full text of current chunk
else
if miss streak = | then
Start fresh, clear last seen CombiNode
Do not transmit anything
Buffer current chunk as last seen elementary
miss streak+— 0
else
Update last seen elementary node
Try to create new CombiNode with (Last CombiNode, current Node)
if Try failed then
Transmit and clear last CombiNode
else
Do not transmit anything
Complex CombiNode is accumulating chunks to transmit
end if
end if

end if
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‘ CombiHeader

Chunk Trail: H1H2H3H4H1H2H3H1H2H3

H1H2H3
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CombiHeader

Insertion of CombiHeaders to the outgoing stream

Trail: hlh2h3h4hlh2h3hl1h2h3h5

Last elementary: hl h2 h3 h4 hl h2 h3 hl h2 h3 hb

Last CombiNode : - - - - - hlh2 - - hlh2 hlh2h3 -

Cache hit/miss : M M M M H H H H H H M

Insert in trans: F(hl) F(h2) F(h3) F(h4) - - hlh2 h3 - - h1h2h3
& F (hb)

F(h,) = Full payload for chunk x

h, = Elementary header for chunk x

h,h, = CombilHeader for combined chunks x and y
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Proot-of-Concept

Implementation done in pure C

o Chunking engine

o CombiHeader plug-in

Rabin fingerprinting for RE

SHA-1 hashing for fingerprinting

Chunking can be done in both IP and TCP layer

o Experiments were done on TCP layer

Directed graph to keep track of all the CombiHeaders generated

A threshold parameter 8 is used to control the CombiHeader
generation process
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Evaluation
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Effect of CombiHeader over

header transmission

o X-axis represents initial
preliminary chunk size

o Traffic comprises of video files
with intermittent similarity
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CombiHeader allowing smaller

chunk size with the same
benefit as larger ones
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Evaluation
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Running CombiHeader on real

world HTTP traces

Effect of CombiHeader over
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of files transferred through the

o X-axis represents the number
router

total bytes transmitted to wire
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Summary

CombiHeader addresses the question of what
should be the optimal chunk size for a particular
traffic

Depending on the dynamic nature of the user traffic
and the underlying similarity, CombiHeader adapts
itself to deliver the best possible chunk size

Helps to reduce protocol overhead to the wire

Possible deployment challenges:
o Cache synchronization among routers
o Routing decision making
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