CombiHeader: Minimizing the
Number of Shim Headers in

Redundancy Elimination
Systems

Sumanta Saha,
Andrey Lukyanenko and
Antti Yla-Jaaski

Aalto University School of Science, Finland
(Formerly, Helsinki University of Technology)

Outline

Redundancy elimination systems
Finer vs. coarser chunk size
CombiHeader algorithm
Proof-of-Concept implementation
Evaluation

Summary

15.Apr.2011 Sumanta Saha

Redundancy Elimination Systems

Redundancy Elimination (RE) systems work on
packet payload level

o Chunks the payload using Rabin Fingerprinting

o Content based

o Application independent

The idea is complementary to traditional caching

o Aims to remove redundant content from upstream nodes
to downstream

Eliminates duplicate traffic when traditional
caching fails

15.Apr.2011 Sumanta Saha

Redundancy Elimination Systems

Chunk Store
!
|

w ==

15.Apr.2011 Sumanta Saha

Finer vs. Coarser Chunk Sizes

Undetected Detected
Similarity Similarity

\abed|efgh [ijkl [mnop
3

2
abcd|eabh |ijtt imnop

With coarser chunk size there is always a
possibility of missing possible matching regions

Finer chunk sizes have more protocol overhead

The proposed algorithm, CombiHeader, uses an

adaptive method to dynamically choose the best
chunk size

Please refer to the paper for a mathematical
Interpretation

15.Apr.2011 Sumanta Saha

CombiHeader

We need a dynamic system
to adapt to the content type,
and chunk popularity to get
the best out of it

CombiHeader works on
chunk popularity to
generate bigger chunks out
of smaller ones

Optimized to deliver least
memory access while
matching to the largest
chunk possible

Algorithm 1 Pseudocode of CombiHeader algorithm

if current chunk is cache miss then
if miss streak = | then
Update last seen Combi and Elementary node
Create new complex CombiNode if possible
else
Clear last CombiNode and transmit it
Update last seen elementary node
end if
Transmit full text of current chunk
else
if miss streak = | then
Start fresh, clear last seen CombiNode
Do not transmit anything
Buffer current chunk as last seen elementary
miss streak+— 0
else
Update last seen elementary node
Try to create new CombiNode with (Last CombiNode, current Node)
if Try failed then
Transmit and clear last CombiNode
else
Do not transmit anything
Complex CombiNode is accumulating chunks to transmit
end if
end if

end if

15.Apr.2011 Sumanta Saha

‘ CombiHeader

Chunk Trail: H1H2H3H4H1H2H3H1H2H3

H1H2H3

15.Apr.2011 Sumanta Saha

CombiHeader

Insertion of CombiHeaders to the outgoing stream

Trail: hlh2h3h4hlh2h3hl1h2h3h5

Last elementary: hl h2 h3 h4 hl h2 h3 hl h2 h3 hb

Last CombiNode : - - - - - hlh2 - - hlh2 hlh2h3 -

Cache hit/miss : M M M M H H H H H H M

Insert in trans: F(hl) F(h2) F(h3) F(h4) - - hlh2 h3 - - h1h2h3
& F (hb)

F(h,) = Full payload for chunk x

h, = Elementary header for chunk x

h,h, = CombilHeader for combined chunks x and y

15.Apr.2011 Sumanta Saha

Proot-of-Concept

Implementation done in pure C

o Chunking engine

o CombiHeader plug-in

Rabin fingerprinting for RE

SHA-1 hashing for fingerprinting

Chunking can be done in both IP and TCP layer

o Experiments were done on TCP layer

Directed graph to keep track of all the CombiHeaders generated

A threshold parameter 8 is used to control the CombiHeader
generation process

15.Apr.2011 Sumanta Saha

Evaluation

200000 f

150000 f

100000

Number of headers transmitted

50000

CombiHeader: OFF —t—
CombiHeader: ON =====-

Number of Headers Transmitted

64 128 256 512 1024
Chunk Size (bytes)

Effect of CombiHeader over

header transmission

o X-axis represents initial
preliminary chunk size

o Traffic comprises of video files
with intermittent similarity

15.Apr.2011

Sumanta Saha

40000

Chunk Size: 128. CombiHeader: ON —+—
Chunk Size: 256, CombiHeader: ON ——
35000 Chunk Size: 512, CombiHeader: OFF %
Chunk Size: 1024, CombiHeader: OFF «@-- . %
30000 | "
25000 | -
20000 f
15000 [
10000 |

5000

Number of Similar Files Transmitted

CombiHeader allowing smaller

chunk size with the same
benefit as larger ones

10

Evaluation

- x
H
:
b
H
H
w
|m [TH um =
e kY
s S
o0
@O
¥
ale
5 L
[=3s]
o E
O o
O
L
o o o o o o o o
o o o) o o o
=3 ~ o @ @© =3 ~
- - et
paliWsuel] SIepeay Jo Jaquinn
m m —
ww i
Lo o ° 5% 2%
- s
S5d o o000 K KA
oS T 70%0%0%0%0%0%%6%%%a% %% % %%
=05
= 2%
ncQ
Lo =0 |
53 c RRRRRARRLY
28% KRR
=Sy
838
2
>
ey
x
T

3.5e+07
3e+07

2.5e+07 |
2e+07

1.5e+07 |
1e+07
5e+06

alim 0] paniwsuel) salkq ejo]

300 400 500 600
Elapsed Time (Seconds)

200

100

Number of Similar Files Transmitted

Running CombiHeader on real

world HTTP traces

Effect of CombiHeader over

11

Sumanta Saha

of files transferred through the

o X-axis represents the number
router

total bytes transmitted to wire

15.Apr.2011

Summary

CombiHeader addresses the question of what
should be the optimal chunk size for a particular
traffic

Depending on the dynamic nature of the user traffic
and the underlying similarity, CombiHeader adapts
itself to deliver the best possible chunk size

Helps to reduce protocol overhead to the wire

Possible deployment challenges:
o Cache synchronization among routers
o Routing decision making

15.Apr.2011 Sumanta Saha 12

