KIT

Karlsruhe Institute of Technology

KSM++: Using I/O-based hints to make

memory-deduplication scanners more efficient
Konrad Miller
KIT - System Architecture Group | RESoLVE, March 2012

NRAD MILLER FABIAN FRANZ THORSTEN GRONINGER MARC RITTINGHAUS MARIUS HILLENBRAND FRANK BELLOSA

vma && ksm_scan.address = vma = vma-=vm_next) {
T (tivma- =vm_Tlags & VM MERGEABLE) }
(ksm_scan.address < vma-=vm_start)
ksm_scan.address = vma-=vm_start
( tvma->anon_vma)
ksm_scan.address = vma-=vm_end;

while (ksm_scan.address < vma->vm_end && KSM_SCan.address < hint-send ) {
(ksm_test exit(mm))

breaks

*page = follow page(vma, ksm_scan.address, FOLL GET);:

if (IS_ERR_OR_NULL(*page)) {
ksm_scan.address += PAGE_SIZE;
ksm_cond_resched();
continue;

}
if (PageAnon(*page) ||
page_trans_compound_anon(*page)) {
flush_anon_page(vma, *page, ksm_scan.address);
flush_dcache_page(*page);

rmap_item = get_next_rmap_item_hint{(slot,
ksm_scan.rmap_list, ksm_scan.address);

KIT - Universitét des Landes Baden-Wirttemberg und
nationales F in der Helmholl



http://www.kit.edu

Deduplication in VM Environments

a Main memory is the primary bottleneck when consolidating VMs

a Different VMs often contain pages with equal content

maX

libA.so

libA.so

libA.so

VM 1

VM 2

VM 3

K. Miller — KSM++: Using 1/O-based hints to make memory-deduplication scanners more efficient RESoLVE, March 2012

2110



Traditional Sharing vs. Semantic Gap ﬂ(“

® Memory footprint can be reduced: merge equal pages

a Finding well suited merge candidates is not trivial, VMs have different
name spaces, VMM has no semantic information about VMs’ memory

max=—me—1 VM 1 max VM 1
Ao VM 2 > VM 2
libA.so VM 3 libA.so VM 3

0 . 0 .

K. Miller — KSM++: Using 1/O-based hints to make memory-deduplication scanners more efficient RESoLVE, March 2012 3/10



Getting Around the Semantic Gap ﬂ(“

m Memory scanners directly address page contents
a Continuously catalog page contents
a In random order (VMware ESX, OSDI'02)
a Inlinear order (Linux Kernel Samepage Merging (KSM) Linux Symposium’09)
a Merge and COW equal pages
a Tame scan rate: Only effective for long-lived pages (> 5 min)
a Aggressive scan rate: High CPU/memory bandwidth overhead

sharing i
opportunity scan interval
H‘/\ M/\

N 2 —p time [M]
0 “5 7 107 15

m Initial benchmarks: more than 70% of mergable pages modified. . .
a ...late enough to amortize the merge cost
a ...too early to be caught by scanner

K. Miller — KSM++: Using 1/O-based hints to make memory-deduplication scanners more efficient RESoLVE, March 2012 4/10



Closing the Semantic Gap

® Many deduplication candidates stem from Virtual Disk Image (VDI)

m Libraries, programs, data
m Guests’ I/0 target pages are prime deduplication candidates

m Assumption: There is a correlation between 1/0 and memory
deduplication candidates

m Paravirtualization/Introspection closes the semantic gap
a Modify guests’ VDI driver (Satori, USENIX’09)
® Hook guests syscalls (Disco, SOSP’97)
a Efficiently catch duplicates that stem from VDI
a Need to process all /0 requests — I/O-intensive workloads?

K. Miller — KSM++: Using 1/O-based hints to make memory-deduplication scanners more efficient RESoLVE, March 2012 5/10



KSM++: Hints for Memory Scanners

a Observation

a Host/Hypervisor does I/O on behalf of guest VMs
m |/O-operations target guests’ buffer caches and mmap areas

read read read
file blocks VDI

a KSM++

a Extension of KSM

Generate hints for scanner in host, on I/O calls from guest
Visit I/O-pages earlier in memory scanner

Quick detection of I/O-based sharing opportunities

Only modified/added ~400 LOC (Linux kernel)

K. Miller — KSM++: Using 1/O-based hints to make memory-deduplication scanners more efficient RESoLVE, March 2012 6/10



Hint Generation, Storage, and Processing ﬂ(“

a Intercept VFS calls
m Host-VFS target memory area is used as hint
a Works for all processes, not limited to VMs
a Purely in the host, no paravirtualization

Guest's Virtual
Disk Driver

Hostl—» Hints Buffer|<€—KSM

VDI

m /O is bursty
a Buffer a fixed number of unprocessed hints
a Lossy buffer overwrites old hints

m Process hints interleaved to regular KSM scan process

a Don't starve non-I/O scan: catch duplicates from all sources
a Obey to scan-rate limits (can limit CPU/IO resource-consumption)

K. Miller — KSM++: Using 1/O-based hints to make memory-deduplication scanners more efficient RESoLVE, March 2012 7110



Evaluation Results - Hint Buffer Size ﬂ(“

m In our experiments 1/0O was so bursty, that we couldn’t store/process all
generated hints within rate limits

a Yet, small hint buffers were “large enough”

m Too large buffers are actually hurting performance (16k line)

30000
2
5 20000
[=™
el
Q
5
= 10000
0

Time [s] after starting kernel build

K. Miller — KSM++: Using 1/O-based hints to make memory-deduplication scanners more efficient RESoLVE, March 2012 8/10



Evaluation Results - Merge Performance AT
a KSM++ needs to visit less pages to find a sharing opportunity

m KSM datastructures are suboptimal — fixed for fair comparison

250000 T T
KSM++
Opportunities == = = =

200000

150000

100000

Merged Pages

50000 |+ .

O / L L L L L L L L L
0 60 120 180 240 300 360 420 480 540
Time [s] after starting kernel build

a Sharing opportunities peak at about 20% of total memory assigned to
VM in this benchmark (measured with memory snapshots)

K. Miller — KSM++: Using 1/O-based hints to make memory-deduplication scanners more efficient RESoLVE, March 2012 9/10



Conclusion ﬂ(“

@ Motivation:
a Main memory is scarce in virtualized environments — deduplication
a Finding sharing opportunities efficiently is not trivial
m Memory scanners can find long lived sharing opportunities

a KSM++ keeps properties of memory scanners:

a Not limited to I/O pages; catch duplicates from all sources
a Configurable, maximum overhead
a No Paravirtualization

® KSM++ hints help detecting 2-10x more sharing opportunities than pure
random or linear scanning in our benchmarks

K. Miller — KSM++: Using 1/O-based hints to make memory-deduplication scanners more efficient RESoLVE, March 2012 10/10



