
Light-Weighted Virtualization Layer
for Multicore Processor-Based Embedded Systems

Hitoshi Mitake, Hiromasa Shimada, Tsung-Han Lin, Ning Li, Yuki Kinebuchi,
Chen-Yi Lee, Daisuke Yamaguchi, Takumi Yajima, Tatsuo Nakajima

Department of Computer Science and Engineering
Waseda University

{mitake,h-shimada,johnny,lining,yukikine,victor,no-trick-in-go,takumi-
yajima,tatsuo}@dcl.info.waseda.ac.jp

Abstract
The real-time resource management in the Linux kernel is dra-
matically improving due to the effective contribution of the real-
time Linux community. However, reusing existing real-time appli-
cations in embedded systems is required to develop commercial
products without significantly increasing their cost because exist-
ing real-time applications run on real-time OSes whose OS API is
significantly different from the POSIX interface. A virtual machine
monitor that executes multiple operating systems simultaneously is
a promising solution, but existing virtual machine monitors such
as Xen and KVM are hard to be used for embedded systems due
to their complexities and throughput oriented designs. In this pa-
per, we introduce a lightweight processor abstraction layer named
vlk. vlk provides virtual CPUs (vCPUs) for respective guest OSes,
and schedules them according to their priorities. In a typical case,
vlk schedules Linux with a low priority and an RTOS with a high
priority. Two important features of vlk are an interrupt prioritiz-
ing mechanism and a vCPU migration mechanism that improves
real-time capabilities in order to make the virtualization layer more
suitable for embedded systems. We also discuss why the traditional
virtual machine monitor design is not appropriate for embedded
systems, and how the features of vlk allow us to design modern
complex embedded systems with less efforts.

1. Introduction
Modern real-time embedded systems like smart phones become
highly functional along with the enhancements of CPUs targeting
their market. But their functional features introduced significant
engineering cost. The main difficulty in the development of such
devices comes from the conflicting requirement of them: low la-
tency and high throughput must be established in one system. This
requirement is hard to satisfy with existing OSes, because all of
them are categorized as either Real-Time Operating System(RTOS)
or General Purpose Operating System(GPOS). RTOSes, like eCos
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or TOPPERS1, are designed and developed for executing real-time
tasks such as processing wireless communication protocols. In a
typical case, these tasks run periodically for short time. The feature
of executing such deadline sensitive tasks relies on the limitation
to RTOSes. For example, most RTOSes cannot change the number
of tasks dynamically. On the other hand, GPOSes, like Linux, are
designed and developed for executing tasks which consist of sig-
nificant amount of computation. Of course some of them in desk-
top computers are latency sensitive for offering the comfortable
experience to users, but missing deadlines is not fatal for them.
The contribution from the real-time Linux community has signif-
icantly improved the real-time resource management capability of
Linux [16]. However, there is always a tradeoff between satisfying
real-time constraints and achieving maximum throughput [9].

In order to develop such a modern real-time embedded sys-
tem which needs to satisfy conflicting requirements, combining
multiple OSes on a virtual machine monitor can be an effective
approach. Virtual machine monitors, e.g. KVM [7], Xen [4] and
VMware [18], are traditionally used in the area of data center
or desktop computing for executing multiple OS instances in one
physical machine. Their capability of executing multiple OSes is
also attractive for embedded systems because they make it possi-
ble to implement the system which has multiple OS personalities.
If there is a virtualization layer which has a capability of executing
GPOS and RTOS in one physical machine, development of real-
time embedded systems can be simpler.

In [2], Armand and Gien presented several requirements for a
virtualization layer to be suitable for embedded systems:

1. It should execute an existing operating system and its supported
applications in a virtualized environment, such that modifica-
tions required to the operating system are minimized (ideally
none), and performance overhead is as low as possible.

2. It should be straightforward to move from one version of an
operating system to another one; this is especially important to
keep up with frequent Linux evolutions.

3. It should reuse native device drivers from their existing execu-
tion environments with no modification.

4. It should support existing legacy often real-time operating sys-
tems and their applications while guaranteeing their determin-
istic real-time behavior.

1 TOPPERS is an open source RTOS that offers µITRON interface, and it
is used in many Japanese commercial products.



Unfortunately, there is no open source virtualization layer that
has a capability to satisfy above all requirements. VirtualLogix2

VLX [2] is a virtualization layer designed for combining RTOS and
GPOS, but it is proprietary software. OKL4 microvisor [17] is a mi-
crokernel based virtualization technology for embedded systems,
but performs poorly as the nature of microkernels [2]. In addition,
we found that there is fatal performance degradation of guest OSes
when RTOS and SMP GPOS share the same physical CPU. This
performance problem comes from the phenomenon called Lock
Holder Preemption(LHP) [13]. It is a general phenomenon of virtu-
alization layers, hence a solution for this problem was already pro-
posed. However these existing solutions only focus on the through-
put of guest OSes, therefore the virtualization layers that execute
RTOSes cannot adopt these solutions. To the best of our knowl-
edge, there is no virtualization layer that can execute RTOS and
GPOS on a multicore processor without performance degradation
caused by LHP, and is distributed as open source software.

Our laboratory is developing an open source virtualization layer
for combining RTOS and Linux on embedded systems that adopt
multicore processors, named vlk (vCPU Layer in Kernel), a forked
project from our original project named SPUMONE. During the
development of this virtualization layer, we faced many difficul-
ties specific to embedded systems. They come from the limita-
tion of hardware resources, the requirement of engineering cost, or
scheduling RTOS and SMP GPOS on the same CPU. Because of
these difficulties, we believe that virtualization layers for real-time
embedded systems should be developed as open source software for
incorporating various insights from a wide range of community.

This paper is structured as follows: in Section 2, the detailed
motivation of our project is described. Section 3 describes the
basic architecture of vlk. Section 4 describes the difficulties of
dealing with real-time virtualization layers which adopt multicore
processors. Finally Section 5 concludes this paper and mentions
about future directions of this project.

2. Why Virtualization
This section presents four advantages to use the virtualization layer
in embedded systems. The first advantage is that control processing
can be implemented as application software on RTOS. Embedded
systems usually include control processing like mechanical motor
control, wireless communication control or chemical control. Using
software-based control techniques enables us to adopt a more flexi-
ble control strategy, so recent advanced embedded systems contain
microprocessors instead of hardware implemented controllers for
implementing flexible control strategies. On the other hand, recent
embedded systems need to process various information. For exam-
ple, applications which require amount of computations like mul-
timedia players and full featured web browsers are crucial ones of
modern smart phones. Therefore, recent embedded systems have
to contain both control and information processing functionalities.
In traditional embedded systems, dedicated processors are assigned
for respective processing. A general purpose processor with suffi-
cient computational capability offers a possibility to combine these
multiple processing on a single processor. A virtualization layer can
host RTOS and GPOS on one system, therefore this approach re-
quires less hardware controllers and reduces the cost of embedded
systems hardware.

The second advantage is that a virtualization layer makes it pos-
sible to reuse existing software. Even if the virtualization layer is
based on the para-virtualization technique which requires the mod-
ification of guest OSes, application programs running on the guest
OSes do not need to be modified. In a typical case of developing
embedded systems, a vendors has their own OSes and the applica-

2 VirtualLogix, Inc. was acquired by Red Bend Software at Sep. 2010

tions runs on them. The virtualization layer can execute such in-
house software with standard OS platforms like Symbian or An-
droid. If the in-house software is developed as software that de-
pends on such a standard platform, it should be modified when a
standard platform is replaced. Actually, the standard platform is
frequently replaced according to various business reasons. On the
other hand, if the in-house software is developed as application pro-
grams that run on the vendor specific OSes, porting application pro-
grams is not required even if a standard platform is replaced.

The third advantage is the isolation of source code. For example,
proprietary device drivers can be mixed with GPL code without
license violation. This may solve various business issues when
adopting Linux in embedded systems.

The fourth advantage is the isolation of mutual exclusions be-
tween guest OSes. Yodaiken explained that the priority inheritance
mechanism are not suitable for designing real-time systems be-
cause of its high overhead and complexity [19]. In short, Yodaiken
concluded that making critical sections fast and short is the es-
sential contribution for real-time responsiveness. McKenney also
showed that the priority inheritance mechanism implemented in
the rt patch of Linux produces the overhead which affects through-
put performance [9]. In general, the priority inheritance mechanism
radically contributes to the low latency with preserving original se-
mantics of mutexes, even if the OS contains various length of crit-
ical sections. But it sacrifices the throughput performance as the
trade-off.

Of course, the rt patch makes writing soft real-time applications
with POSIX APIs possible and this feature is very important and
useful especially in the area of enterprise computing. But real-time
applications in the embedded systems area do not require such a
rich functional APIs like POSIX.

With hosting RTOS and GPOS, the isolation of mutual exclu-
sions can be established because the OSes have their own mutual
exclusion mechanisms. The threads of the RTOS never acquire the
mutex for protecting critical sections of the GPOS, and vice versa.
Of course the mutexes for protecting data structures and critical
sections used for inter OS communication must be implemented,
but the mutexes and the critical sections they protect are easier for
certifying shortness than the one in modern GPOS like Linux.

3. Basic Architecture
3.1 User-Level Guest OS vs. Kernel Level Guest OS
There are several traditional approaches to execute multiple oper-
ating systems on a single processor in order to compose multiple
functionalities. Microkernels execute guest OS kernels at the user
level. When using microkernels, various privileged instructions,
traps and interrupts in the OS kernel need to be virtualized by re-
placing their code. In addition, since OS kernels are to be executed
as user level tasks, application tasks need to communicate with the
OS kernel via inter-process communication. Therefore, many parts
of the OS need to be modified.

VMMs are another approach to execute multiple OSes. If a
processor offers a hardware virtualization support, all instructions
that need to be virtualized trigger traps to VMM. This makes it
possible to use any OSes without any modification. But if the
hardware virtualization support is incomplete, some instructions
still need to be complemented by replacing some code to virtualize
them.

Most of the processors used for the embedded systems only
have two protection levels. So when kernels are located in the
privileged level, they are hard to isolate. On the other hand, if the
kernels are located in the user level, the kernels need to be modified
significantly. Most of embedded system industries prefer not to
modify a large amount of the source code of their OSes, so it is
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desirable to put them in the privileged level. Also, the virtualization
of MMU introduces significant overhead if the virtualization is
implemented by software. Therefore, we need reorder mechanisms
to reduce the engineering cost, to ensure the reliability of the
kernels and to exploit some advanced characteristics of multicore
processors.

The following three issues are most serious problems, when a
guest OS is implemented in the user level.

1. The user level OS implementation requires heavy modification
of the kernel.

2. Emulating an interrupt disabling instruction is very expensive if
the instruction cannot be replaced.

3. Emulating a device access instruction is very expensive if the
instruction cannot be replaced.

In a typical RTOS, both the kernel and application code are ex-
ecuted in the same address space. Embedded systems have dramat-
ically increased their functionalities in every new product. For re-
ducing the development cost, the old version of application code
should be reused and extended. The limitation of hardware re-
sources is always the most important issue to reduce the prod-
uct cost. Therefore, the application code sometimes use very ad-
hoc programming styles. For example, application code running on
RTOS usually contains many privileged instructions like interrupt
disable/enable instructions to minimize the hardware resources.
Also, device drivers may be highly integrated into the application
code. Thus, it is very hard to modify these application code to be
executed at the user level without changing a significant amount of
application code even if their source code is available. Therefore, it
is hard to execute the application code and RTOS in the user level
without violating the requirements described in Section 1. There-
fore, executing RTOS is very hard if the processor does not imple-
ment the hardware virtualization support. Even if there is a proper
hardware virtualization support, we expect that the performance of
RTOS and its application code may be significantly degraded. Our
approach chooses to execute both guest OS kernels and a virtual-
ization layer at the same privileged level. This decision makes the
modification of OS kernels minimal, and there is no performance
degradation by introducing a virtualization layer. However, the fol-
lowing two issues are very serious in the approach.

1. Instructions which disable interrupts have serious impact on the
task dispatching latency of RTOS.

2. There is no spatial protection mechanism among OS kernels.

The first issue is serious because replacing interrupt disable in-
structions is very hard for RTOS and its application code as de-
scribed above. The second issue is also a big problem because ex-
ecuting guest OS kernels in virtual address spaces requires signif-
icant modification on them. vlk proposes a technique to solve the
first issue presented in Section 4 and the second issue is presented
in [10].

3.2 vlk: A Multicore Processor based Virtualization Layer
for Embedded Systems

vlk is a thin software layer for multiplexing a single physical
CPU(pCPU) core into multiple virtual CPU(vCPU) cores. The
current target processor of vlk is the SH4a architecture, which is
very similar to the MIPS architecture, and is adopted in various
Japanese embedded system products. Also, standard Linux and
various RTOSes support this processor. The latest version of vlk
runs on a single and multicore SH4a chip. Currently, SMP Linux,
TOPPERS, and the L4 [17] are running on vlk as a guest OS.

The basic abstraction of vlk is vCPU as depicted in Figure 1.
In the example of this figure, vlk hosts two guest OSes, Linux and

pCPU0

vlk

Peripheral devices (Timers, Serial interfaces, ethernets, disk drives, etc)

vCPU1

User space

vCPU2

pCPU1

Kernel space

RTOS

vCPU0

Time multiplexed vCPUs

Kernel mode thread

User mode thread
  with its address space

Linux

user mode

priviledged
mode

Figure 1. An Overview of vlk

RTOS. Linux has two vCPUs, vCPU0 and vCPU1. vCPU0 is ex-
ecuted by pCPU0 and vCPU1 is executed by pCPU1. RTOS has
one vCPU, vCPU2. This is executed by pCPU1. So both of vCPU1
and vCPU2 are executed on pCPU1. Unlike typical microkernels
or VMMs, vlk itself and guest OS kernels are executed in the priv-
ileged level as mentioned in Section 3.1. Since vlk provides an in-
terface slightly different from the one of the underlying processor,
we simply modify the source code of guest OS kernels, a method
known as para-virtualization. This means that some privileged in-
structions should be replaced to hypervisor calls, function calls to
invoke vlk API, but the number of replacements is very small. Thus,
it is very easy to port a new guest OS or to upgrade the version of a
guest OS on vlk.

vlk does not virtualize peripheral devices because traditional ap-
proaches incur significant overhead that most of embedded systems
could not tolerate. In vlk, since device drivers are implemented in
the kernel level, they do not need to be modified when the device is
not shared by multiple OSes.

3.2.1 Interrupt/Trap Delivery
Interrupt virtualization is a key feature of vlk. Interrupts are inter-
cepted by vlk before they are delivered to each guest OS. When vlk
receives an interrupt, it looks up the interrupt destination table to
make a decision to which OS it should be delivered. Traps are also
delivered to vlk first, then are directly forwarded to the currently
executing guest OS.

For intercepting interrupts by vlk, the interrupt entry point of
the guest OSes should not be registered to hardware directly. The
entry point of each guest OS is notified to vlk via a hypervisor call
for registering their real vector table. An interrupt is first examined
by the interrupt handler of vlk in which the destination vCPU is
decided, and the corresponding scheduler is invoked. When the
interrupt triggers OS switching, all the registers including MMU
state of the current OS are saved into the stack, then the registers
in the stack of the previous OS are restored. Finally, the execution
is switched to the entry point of the destination OS. The processor
initializes the interrupt just as if the real interrupt occurred, so the
source code of the OS entry points does not need to be changed.

3.2.2 vCPU Scheduling
Multiple guest OSes run by multiplexing a physical CPU. The exe-
cution states of the guest OSes are managed by data structures that
we call vCPUs. When switching the execution of vCPUs, all the
hardware registers are stored into the corresponding register table
of vCPU, and then restored from the table of the next executing
vCPU. The mechanism is similar to the process implementation of
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a typical OS, however the vCPU saves the entire processor state,
including the privileged control registers.

The scheduling algorithm of vCPUs is the fixed priority pre-
emptive scheduling. When RTOS and Linux share the same pCPU,
the vCPU owned by RTOS would gain a higher priority than the
vCPU owned by Linux in order to maintain the real-time respon-
siveness of RTOS. This means that Linux is executed only when the
vCPU of RTOS is in an idle state and has no real-time task to be ex-
ecuted. The process scheduling is left up to OSes so the scheduling
model for each OS needs not to be changed. Idle RTOS resumes
its execution when it receives an interrupt. The interrupt to RTOS
should preempt Linux immediately, even if Linux is disabling the
execution of its interrupt handlers. The details of this requirement
and the solution for it is described in Section 4.1.1.

3.2.3 Modifying Guest OS Kernels
Each guest OS is modified to be aware of the existence of the other
guest OSes, because hardware resources other than the processor
are not multiplexed by vlk as described below. Thus those are
exclusively assigned to each OS by reconfiguring or by modifying
their kernels. The following describes how the guest OS kernels are
modified in order to run on the top of vlk.

• Interrupt Vector Table Register Instruction: The instruction reg-
istering the address of a vector table is replaced to notify the
address to the interrupt manager of vlk. Typically this instruc-
tion is invoked once during the OS initialization.

• Bootstrap: In addition to the features supported by the single-
core vlk, the multicore version provides the virtual reset vector
device, which is responsible for resetting the program counter
of the vCPU that resides on a different pCPU.

• Physical Memory: A fixed size of physical memory area is
assigned to each guest OS. The physical address for the OSes
can be simply changed by modifying the configuration files
or their source code. Virtualizing the physical memory would
increase the size of the virtualization layer and the substantial
performance overhead. In addition, unlike the virtualization
layer for enterprise systems, embedded systems need to support
a fixed number of guest OSes. For these reasons we simply
assign a fixed amount of physical memory to each guest OS.

• Idle Instruction: On a real processor, the idle instruction sus-
pends a processor until it receives an interrupt. On a virtualized
environment, this is used to yield the use of real physical core to
another OS. We prevent the execution of this instruction by re-
placing it with the hypervisor call of vlk. Typically this instruc-
tion is located in a specific part of the kernel, which is fairly
easy found and modified.

• Peripheral Devices: Peripheral devices are assigned by vlk to
each OS exclusively. This is done by modifying the configura-
tion of each OS not to share the same peripherals. We assume
that most of the devices can be assigned exclusively to each OS.
This assumption is reasonable because, in embedded systems,
multiple guest OSes are usually assigned different functional-
ities and use different physical devices. It usually consists of
RTOS and GPOS, where RTOS is used for controlling special
purpose peripherals such as a radio transmitter and some digital
signal processors, and GPOS is used for controlling generic de-
vices such as various human interaction devices and storage de-
vices. However some devices cannot be assigned exclusively to
each OS because both systems need to share them. For instance,
the processor we used offers only one interrupt controller. Usu-
ally a guest OS needs to clear some of its registers during its ini-
tialization. In the case of running on vlk, the guest OS booting
after the first one should be careful not to clear or overwrite the

Configuration Time Overhead
Linux Only 68m 5.9s -

Linux and TOPPERS 69m 3.1s 1.4%

Figure 2. Linux kernel build time

OS(Linux version) Added LoC Removed LoC
Linux/vlk(2.6.24.3) 161 8
RTLinux 3.2(2.6.9) 2798 1131
RTAI 3.6.2(2.6.19) 5920 163
OK Linux (2.6.24) 28149 -

Figure 3. The total number of modified LoC in *.c, *.h, *.S and
Makefile

settings of the guest OS executed first. For example, we modi-
fied the Linux initialization code to preserve the settings done
by TOPPERS.

3.2.4 Dynamic Multicore Processor Management
As described in the previous section, vlk enables to multiplex mul-
tiple virtual CPUs on physical CPUs. The mapping between pCPUs
and vCPUs is dynamically changed to balance the tradeoffs among
real-time constraints, performance and energy consumption. In vlk,
a vCPU can be migrated to another core according to the current sit-
uation. The mechanism is called the vCPU migration mechanism.
In vlk, all kernel images are located in the shared memory. There-
fore, the vCPU migration mechanism just moves the register states
to manage vCPUs, and the cost of the migration can be reduced sig-
nificantly. Actually, the round trip time of the vCPU migration in
the current version of vlk on the RP1 platform3 is about 50 µ when
a vCPU is move to anther pCPU and back to the original pCPU.

3.2.5 Performance and Engineering Cost
Figure 2 shows the time required to build the Linux kernel on native
Linux and modified Linux executed on the top of vlk together with
TOPPERS. TOPPERS only receives the timer interrupts every 1ms,
and executes no other task. The result shows that vlk and TOPPERS
impose the overhead of 1.4% to the Linux performance. Note that
the overhead includes the cycles consumed by TOPPERS. The
result shows that the overhead of the existence of vlk to the system
throughput is sufficiently small.

We evaluated the engineering cost of reusing RTOS and GPOS
by comparing the number of modified lines of code (LoC) in each
OS kernel. Figure 3 shows the LoC added and removed from the
original Linux kernels. We did not count the lines of device drivers
for inter-kernel communication because the number of lines will
differ depending on how many protocols they support and how
complex they are. We did not include the LoC of utility device
drivers provided for communication between Linux and RTOS
or Linux and servers processes because it depends on how many
protocols and how complex those are implemented.

The table also shows the modified LoC for RTLinux, RTAI and
OK Linux that are previous approaches to support the multiple OS
environments. Since we could not find RTLinux, RTAI, OK Linux
for the SH4a processor architecture, we evaluated them developed
for the Intel architecture. OK Linux is a Linux kernel virtualized
to run on the L4 microkernel. For OK Linux, we only counted
the code added to the architecture dependent directory arch/l4 and
include/asm-l4. The results show that it is clear that our approach

3 The RP1 platform is our current hardware platform that contains a mul-
ticore processor. The processor has four SH4a CPUs and they are commu-
nicated with a shared memory. The platform is developed by Hitach and
Renesas.
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Figure 4. Separating Interrupt Priorities Between Guest OSes

requires significantly small modifications to the Linux kernel. The
result shows that the strategy of vlk, virtualizing processors only,
succeed to reduce the amount of modification of guest OSes and to
satisfy the requirements described in Section 1.

4. Real-Time Resource Management in vlk
4.1 Reducing RTOS Dispatch Latency
In order to minimize the dispatch latency of RTOS tasks although
the activities of Linux running concurrently on a single device, we
propose the following two techniques in vlk.

4.1.1 Interrupt Priority Level Separation
The first technique is replacing the interrupt enabling and disabling
instructions with the hypervisor calls. A typical OS disables all
interrupt sources when disabling interrupts for the atomic execu-
tion. For example, local_irq_enable() of Linux enables all inter-
rupt and local_irq_disable() disables all interrupt. On the other
hand, our approach leverages the interrupt prioritize mechanism of
the processor. The SH4a processor architecture provides 16 inter-
rupt priority levels(IPLs). We assign the higher half of the IPLs to
RTOS and the lower half to Linux as shown in Figure 4. When
Linux tries to block the interrupts, it modifies its interrupt mask to
the middle priority. RTOS may therefore preempt Linux even if it
is disabling the interrupts. On the other hand, when RTOS is run-
ning, the interrupts for Linux are blocked by the processor. These
blocked interrupts could be delivered immediately when Linux is
dispatched.

The instructions enabling and disabling interrupts are typically
provided as the kernel internal API like local_irq_enable() and
local_irq_disable(). They are typically coded as inline func-
tions or macros in the kernel source code. For Linux, we replace
local_irq_enable() with the hypervisor call which enables entire
level of interrupts and local_irq_disable() with another hypervi-
sor call which disables the lower prioritized interrupts. For RTOS,
we replace the API for interrupt enabling with the hypervisor call
enabling only high priority interrupts and the API for interrupt dis-
abling with the other hypervisor call disabling the entire level of
interrupts. Therefore, interrupts assigned to RTOS are immediately
delivered to RTOS, and the interrupts assigned to Linux are blocked
during the execution of the RTOS. Figure 4 shows the interrupt pri-
ority levels assignment for each OS, which we used in the evalua-
tion environment.

In Figure 5 and Figure 6, the results of task dispatch latency
of TOPPERS under two configurations of vlk are depicted. In Fig-
ure 5, the evaluation result of vlk without the IPL separation execut-
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Figure 5. Interrupt dispatch latency of TOPPERS without IPL
separation

 1

 10

 100

 1000

 10000

 100000

 0  20  40  60  80  100  120

S
a
m

p
le

 [
n
u
m

]

Delay [us]

delay

Figure 6. Interrupt dispatch latency of TOPPERS with IPL sepa-
ration

ing Linux and TOPPERS is depicted. Linux executes write() on
the file stored on a Compact Flash card repeatedly and TOPPERS
measures the task dispatch latency of the interrupts from time man-
agement unit. In Figure 6, the result of vlk with the IPL separation
is described. The guest OSes and their workloads are the same as
the condition used in a case when the IPL separation is not used.

As these results show, the workload of Linux heavily interfere
with the task dispatch latency of RTOS if the IPL separation is not
configured. Therefore we can say that separating IPL is an effective
method to guarantee the low interrupt dispatch latency of RTOS.

However, the approach assumes that all activities in TOPPERS
are processed at the higher priority than the activities of Linux. The
current version of Linux is improving real-time capabilities. So,
in the near future, some applications that requires to satisfy real-
time constraints will be developed on Linux. In this case, the ap-
proach described in the section cannot be used. Also, the approach
increases an amount of the modification of Linux, and increases
the engineering cost if it needs to replace interrupt enable/disable
instructions. Therefore, we have developed an alternative method
described in the next section.
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4.1.2 Reducing Task Dispatching Latency with vCPU
migration

The second technique is based on the vCPU migration mechanism
introduced in Section 3.2.4. The first technique, replacing API for
interrupt enabling/disabling requires slightly but certain modifica-
tion of Linux. In addition, the technique may not work correctly
when the device drivers or kernel modules are programmed in a
bad manner, which enable or disable interrupts with a non standard
way. The second technique exploits the vCPU migration mecha-
nism. Under this technique, vlk migrates a vCPU, which is assigned
to Linux and shares the same pCPU with the vCPU of RTOS, to an-
other pCPU when it traps into the kernel mode or interrupts are
received. In this way, only the user level code of Linux is exe-
cuted concurrently on the shared pCPU, which will never change
the priority levels. Therefore, RTOS may preempt Linux immedi-
ately without separating IPL used in the first technique.

4.2 Increasing the Throughput of SMP Linux
Generally speaking, porting OSes to virtualization layers produces
semantic gap because the assumptions which guest OSes rely on
may not be preserved. For example, OSes assume that they domi-
nate CPU, memory, and storage. In the ordinal environment where
OSes run on the real hardware directly this assumption is true. But
when virtualization layers execute guest OSes, this assumption is
no longer held. CPU and memory are shared by multiple OSes.

The semantic gap produced by virtualization layers can cause
some new problems. One of the typical problems is called the Lock
Holder Preemption(LHP) problem [13].

The LHP problem occurs when the vCPU of the guest OS
is preempted by the virtualization layer during the execution of
critical sections protected by mutex based on busy waiting(e.g.
spinlock_t, rwlock_t in Linux). Figure 7 depicts the typical sce-
nario of LHP in vlk. On vlk, the execution of vCPU2 belongs to
RTOS is started immediately even if vCPU1 executing Linux is
currently running on the same processor because the activities of
RTOS are scheduled at the higher priority than the activities in
Linux. Let us assume that the execution of the Linux kernel is pre-
empted while the kernel keeps a lock. In this case, other vCPUs
owned by Linux and running on other pCPUs may wait for acquir-
ing the lock via busy waiting.

4.2.1 Existing Solutions of LHP
This performance degradation problem caused by LHP is a general
one of every virtualization layer. So, there are existing solutions for
solving the problem. Uhlig, et al. pointed this problem [13]. They
also introduced the methods to avoid the problem. The method is
named as Delayed Preemption Mechanism(DPM). DPM is suitable
for a virtualization layer based on the para-virtualization technol-
ogy because it does not waste CPU time and can be implemented
with a less effort. However, this solution increases the dispatch la-
tency of guest OSes, then it is not suitable for embedded systems
that need to take into account satisfying real-time constraints.

VMware ESX employs the scheduling algorithm called co-
scheduling [11] in its vCPU scheduler [15]. This solution wastes
lots of CPU time. VMware ESX employs the technique because
it is the full-virtualization technique. Also, it does not assume to
execute multiple vCPUs for a guest OS on one pCPU. Sukwong
and Kim introduced the improved co-scheduling algorithm named
balance scheduling and implemented it on KVM [12].

Wells, et al. introduced the hardware based solution, called spin
detection buffer(SDB) for detecting meaningless spin of vCPUs
produced by LHP [14]. They found that the execution pattern can
be distinguished when a CPU is spinning before acquiring a lock.
SDB inspects the number of store instructions and counts the num-
ber of updated memory address if a thread is executed in kernel
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mode. If the number of counted addresses does not exceed the
threshold(they set it as 1024), SDB judges the thread is spinning
in vain. This hardware information can be used by a virtualization
layer to avoid the LHP problem.

Friebel and Biemueller introduced a method for avoiding LHP
on Xen [5]. Respective threads in the guest OSes count the number
of spinning on a busy wait mutex. When the count exceeds the
threshold, the spinning thread invokes the hypervisor call in order
to switch to another vCPU.

4.2.2 Solving LHP in vlk
The methods described in Section 4.2.1 improve the throughput of
SMP Linux on traditional VMMs. But all of them assume that there
is no real-time activities.

In this section, we propose a new method for avoiding LHP. In
our approach, the vCPU of Linux, which shares pCPU with the
vCPU of RTOS, is migrated to another pCPU when an interrupt
for RTOS is received. Then, it returns to the original pCPU when
RTOS yields pCPU and becomes idle. When two vCPUs for Linux
are executed on the same pCPU, they also cause the LHP problem.
But, in this case, we assume that the delayed preemption mecha-
nism can be used since Linux does not have real-time activities.
The vCPU migration mechanism is similar to the thread migration
in ordinal OSes, but in the case of vlk, interrupt assignments have
to be reconfigured because peripherals devices are not virtualized.
In our evaluation environment, timer interrupts and ICI should be
taken into account. Let us assume that vCPU0 is migrated from
pCPU0 to pCPU1 while executing an activity on vCPU1. The timer
device raising interrupts periodically for vCPU0 on pCPU1 should
be stopped before the vCPU migration. Then, the timer device on
pCPU1 should be multiplexed for both vCPU0 and vCPU1. Also,
ICI for vCPU0 on pCPU0 should be forwarded to vCPU0.

Figure 8 describes the score of hackbench on various configura-
tion of vlk. In this evaluation environment, four pCPUs execute five
vCPUs. Therefore two vCPU shares one pCPU. One vCPU belongs
to TOPPERS and four vCPUs belong to Linux. TOPPERS executes
the task which consumes CPU time in the 500ms period. Linux ex-
ecutes hackbench for measuring its throughput. The X axis means
the CPU consumption rate of the task on TOPPERS, and the Y axis
means the score of hackbench. Three horizontal lines describe the
score of hackbench under the case that Linux dominates pCPUs.

The line indicated as “ideal score” describes the score which we
expected at first. When RTOS consumes the time of f(0 ≤ f < 1)
on one pCPU, Linux should exploit the rest of CPU resources: 4−f
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(When f = 1, which means RTOS never yields pCPU, the rest of
CPU resources is not equal to 3. Because this is the same as the
situation that 1 CPU stops execution suddenly from the perspective
of Linux). The line of the ideal score is calculated as: I(f) = S1

4−f

where f means the CPU consumption rate of RTOS and S1 means
the score of Linux dominating one core. hackbench has enough
parallelism, therefore we predicted that the score might be linear
according to the CPU consumption rate of RTOS.

The score actually measured is presented as the line indicated as
“raw scheduler of vlk”. We noticed that the rapid degradation of the
performance is caused by LHP. So we designed and implemented
the new method described above. The score measured when using
the new method is described as the line indicated as “vCPU migra-
tion”. This score is still worse than the ideal score, but it sufficiently
utilizes the CPU resource because it is better than or nearly equal
to the case when Linux dominates three cores.

Current score when using our new method is still worse than
the ideal score, so more optimization or better vCPU scheduling
policy is required. We are planning to apply the method described
in Section 4.1.2. In modern system, mutex based on busy wait
mechanism is only used in kernel space. Therefore if the vCPU of
Linux which shares pCPU with the vCPU of RTOS is migrated to
another pCPU when the thread running on it invokes system calls
or the interrupts for Linux rises, LHP can be avoided.

4.3 Real-Time Task Aware Scheduler
One of the ongoing projects of vlk, we plan to use these additional
resources to further improve the real-time capability of guest OSes,
especially Linux, by dynamically scheduling the vCPU of the guest
OSes on top of the vlk. In the original design strategy of vlk men-
tioned above, we gave a high priority to the vCPU of RTOS which
is higher than the priority of the vCPU of Linux. when they are
sharing the same physical core. But this is not always the case
for that there might exist some real-time processes in Linux that
have quicker response time requirements than that of the processes
of RTOS. Graphical applications such as multimedia players are
the most obvious examples that may require better real-time re-
sponse and hard to be handled in the RTOS. In this situation, we
can mark one of the vCPUs of Linux as rt-vCPU and schedule it
against vCPU of RTOS. vlk has no clue of who is the more im-
portant vCPU of Linux, so this gives vlk a hint to recognize the
urgent one and let it be scheduled quicker. When the priority of this
rt-vCPU is higher than that of the vCPU of RTOS, it can gain the
control of the pCPU, but at the same, because we have some other
pCPU in multicore system, we can migrate the vCPU of RTOS to
another core and compete with other vCPUs, so the overall per-

formance will not be harmed too much. But the overhead of this
migration operation has to be carefully taken care of.

5. Conclusion and Future Work
vlk can execute multiple operating systems without suffering a large
amount of overhead and engineering cost.

In the original project of vlk, named SPUMONE, we pro-
vided optional spacial protection mechanism between guest OSes
with the method named secure pager mainly for the security pur-
pose [10]. With the secure pager, invalid behavior of one guest OS
which cause malicious memory rewriting can be detected with low
runtime overhead. The overhead of the secure pager is far lower
than the spacial isolation provided in typical VMMs. However, the
secure pager requires one dedicated physical CPU and the CPU
cannot be multiplexed by multiple vCPUs. This constraint conflicts
with the purpose of maximizing CPU resource. For satisfying the
purpose of CPU utilization and seeking various possibility of de-
sign space, we are planning to implement spacial isolation between
guest OSes via running them as user-level tasks like traditional
VMMs and microkernels. But this isolation is not the indispens-
able feature of VMMs for embedded systems. Because in the case
of the embedded systems, the essential resource which has to be
isolated between guest OSes is not memory but mutual exclusion
as we described in Section 2. Thus the spacial isolation provided by
vlk will be configurable feature like the isolator module of VLX [3].

Another future work is also planned for the enterprise areas.
During the development of vlk, we noticed that our approach,
separating kernel space context and user space context into two
physical CPUs, is employed by other researches for improving
the utilization of processor resources like cache and TLBs [20,
21]. Especially the approach by Chakraborty et, al. is similar to
ours. However, their implementation and measurement is done on
simulator and they ignore the cost of TLB miss hit. We believe that
porting our vlk to the real machines used in the enterprise areas
and measuring the efficiency of the approach will result interesting
knowledge.
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