An Adaptive Data Forwarding Scheme for Energy Efficiency in Wireless Sensor Networks

IEEE Intelligent Systems 2010

Christos Anagnostopoulos

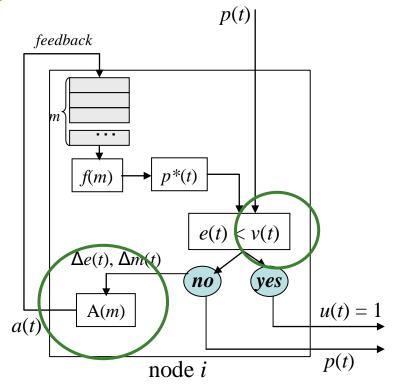
Theodoros Anagnostopoulos Stathes Hadjiefthymiades

Dept. of Informatics and Telecommunications, National and Kapodistrian University of Athens, Pervasive Computing Research Group, Athens, Greece

The problem

- Wireless Sensor Networks (WSN): a large number of nodes equipped with sensing communication and minimal computation capabilities.
 - Contextual data are collected by WSN towards a **sink**.
- Nodes have very limited resources, e.g., energy, computational power, data storage and bandwidth,
 - Hence, it is not a sound technical decision to forward any sensor data directly to a sink that does the corresponding processing.
- Concept: Take into consideration the **nature** of the sensed data in order to avoid significant energy consumption due to data transmission and improve bandwidth utilization.

The concept


- Each node **decides** whether to propagate the receiving data or not.
- A node *i* receives a new piece of data p(t) at time *t*.
- The node *i* can
 - either forward p(t) to a node *j* in the upstream path
 - or send a signal $u(t) \in \{0, 1\}$ to node *j* to reproduce the p(t) value without, explicitly, receiving it.
- The node *i* calculates an **extrapolated** value $p^*(t)$ for the piece of data p(t) based on the previous *m* received measurements p(t-m), ..., p(t-1), m > 0.
- The extrapolation scheme *f(m)* **depends on such** *m* **values** (Lagrange Polynomial, Local Linear Regression)
- The reconstruction error $e(t) = p(t) p^*(t)$ is obtained.
- The estimated error level is the decision on forwarding p(t).
- If data is **not** transmitted upstream, then the node *j* performs the same extrapolation calculation *f* and considers the **locally** estimated *p*(t)* as the **new** received measurement.

m history length adaptation *error level* estimation

- *m* is not a-priori known and there is no knowledge about the received data distribution.
- At time *t*+1 the value of *m* is based on:
 - the reconstruction error e(t),
 - the change in error e(t) ($\Delta e(t) = e(t) e(t-1)$)
 - □ the previous decision on $m (\Delta m(t) = m(t) m(t-1))$
- The **adaptation rule** is

$$\square \quad m(t+1) = m(t) + a(t), a(t) \in \{-1, 0, 1\}$$

- The controller A(m) produces a(t) that minimizes e(t) of the extrapolation.
- If $\Delta e < 0$, then we should **reward** the **past** decision on *m* since there is an improvement depicted by the negative change in error.
- *a* represents a reward on the previous decision Δm . That is,
 - if $\Delta m(t) = 1$, we should increase m (a = 1);
 - Otherwise, we should decrease m (a = -1).

The error level v(t) is based on the **current** standard deviation s(t) of the received data.

• High *s*(*t*): High frequencies in the data stream: *f*(*m*) has to be very precise to capture such high frequencies

• Low *s*(*t*): Low variability in the data stream, thus, a relaxation of *v*(*t*) can be obtained.

$$v(t) = b/s(t), b \in (0, 1].$$

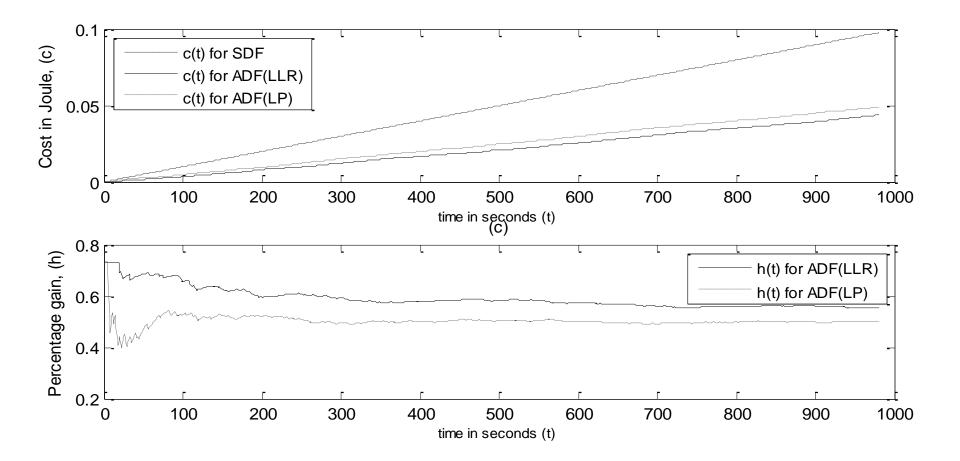
Performance assessment

- The Adaptive Data Forwarding (ADF) is compared against the Simple Data Forwarding (SDF) that simply forwards all received data.
- Real data streams of temperature and wind speed data sampled at 1Hz;
- Adopt the Mica2 energy consumption model (a pair of AA batteries, 3V), the packet header is 7 bytes (MAC header+CRC) and the preamble overhead is 20 bytes.
- The temperature and wind speed data payload is **4 bytes** (float) and the signal *u* is only **one bit**.

Performance assessment

- Incorporation of the energy cost for implementing LLR, LP and A(*m*).
- The total cost c(t) in Joule at time t for a node is accumulated as:

$$cc(t) = c(t-1) + c\mathbf{R}(t) + c\mathbf{T}(t) + c\mathbf{I}(t) + c\mathbf{0}(t)$$

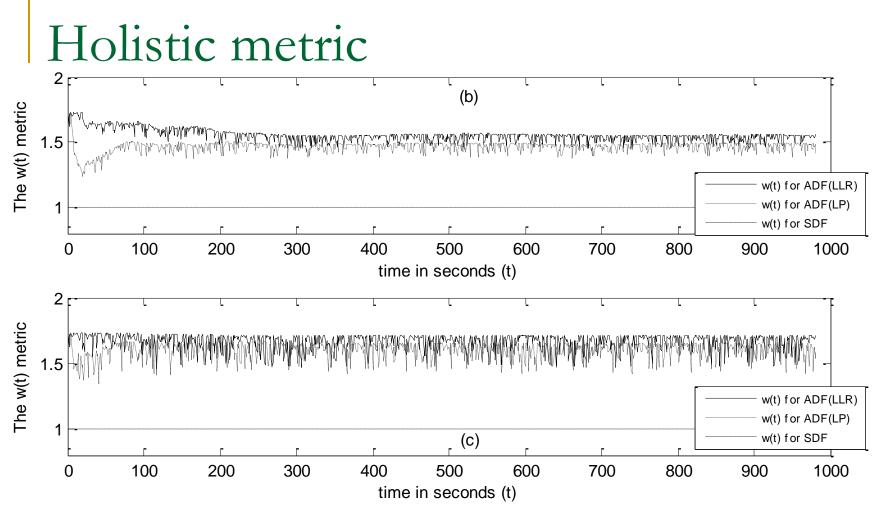

- *c*R(*t*), *c*T(*t*) are receive (rx) and transmit (tx) costs either for data *p*(*t*) or for signal *u*(*t*), respectively, and *c*I(*t*) is the energy **cost for the CPU** instructions of *f*(*m*) mechanism. *c*O(*t*) is the state transition cost for node *i*.
- We conserve energy once the cR(t) + cT(t) cost refers more to signal transmissions rather than to data transmissions at the expense of additional cI(t) and data accuracy.
- The percentage cost gain $h(t) \in [0, 1]$ when applying ADF w.r.t. SDF is

$$h(t) = \frac{c_{\text{SDF}}(t) - c_{\text{ADF}}(t)}{c_{\text{SDF}}(t)}$$

Percentage energy gain

•We obtain 48.6% and 57.1% **increase** in the life time of the network, respectively for ADF(LP) and ADF(LLR).

•ADF(LLR) (ADF(LP)) **replaces** 81% (72%) of the transmitted messages with data reconstruction signals (u(t)) between nodes.



Holistic metric

- We have to assess the benefit of ADF by taking into account both the energy savings and the induced reconstruction error.
- We define the metric $w(t) \in [0, 2]$ which combines the percentage of gain h(t) and the relative reconstruction error:

$$w(t) = h(t) + \left| \frac{p(t)}{p(t) + e(t)} \right|$$

- w(t) should get values close to 2, i.e., promote energy efficiency $(h(t) \rightarrow 1)$ with minimum error $(e(t) \rightarrow 0)$.
- For the SDF forwarding scheme we obtain w(t) = 1.

- The ADF model assumes w = 1.58 and w = 1.7 for b = 0.3 and 0.5, respectively, w.r.t SDF model (w = 1).
- A low *b* value indicates that the WSN application has strict requirements for reproducing the data stream through estimations.
- ADF prolongs the network life time while keeping reconstruction error at very low levels

Future directives

- Include intelligent dimensionality **reduction** schemes.
 - Such schemes may significantly reduce the upstream communication requirements by transmitting only the basic components of a vector of values to the upstream node and not all the values.

Thank you. (bleu@di.uoa.gr)