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Objective 

 Improving energy efficiency in Wireless Sensor 

Networks 

Compressing contextual information prior to 

transmission based on the current Principal 

Components of the sampled data. 

Exploitation of the natural characteristics of the 

pieces of context 



Network model 

 A set of  sensor nodes (sources), 

processing nodes (relays), and sink nodes 

(consumers). 

 

 Paths leading from the sources to sinks 

through processing nodes. 

 

 A node is battery-powered (energy-

constrained). 



Sender and Receiver node 

 Consider a distributed compression 

algorithm between sender i and receiver j: 

 Node i performs context compression and 

forwards the compressed contextual data 

(stream) to node j,  

 Node j performs context decompression in 

order to reproduce the original contextual data. 

 Subsequently, node j can further act as a 

sender node for the upstream nodes and so 

on… 



Sender and Receiver node (focus) 

 Node i captures the n-dimensional context vector (CV) x ;   

 Node i compresses x to a q-dimensional CV (q < n), xq and 

forwards it to upstream node j. 

 Node j reproduces the n-dimensional context vector,        for 

further processing (or forwarding to upstream nodes). 



Sender node i (focus) 

 t : discretized time domain  

 xi( t ) = [xik(t)], k = 1,..., n be the 
CV of n measurements collected by 
node i at time t  

 xik(t): the kth contextual component 
(e.g., temperature, humidity, wind 
speed). 

 Node i gathers the last m > 0 
received CVs x(t - m), x(t - m+1), 
…, x(t), thus, forming a m x n matrix 
X consisting of m CVs.  

 Based on X, node i obtains the 
corresponding principal 
components (PCs) and, thus, 
reduces (compresses) a x(t) to xq(t).  



Principal Component Analysis (PCA) 

A mechanism that performs lossy data compression 

 PCA discovers a linear relationship among the 

contextual components xk. 

 PCA keeps the components that better describe the 

variance of the sample X.  

The trade-off here is between compression (count of 

principal contextual components retained) and 

compression fidelity (the variance preserved). 



Principal Component Analysis (PCA) 

Given a set of m multivariate CVs of dimension n, x(t), 

1 ≤ t ≤ m, the PC basis is obtained by minimizing the 

optimization function: 



Compression through PCA 

Dimensionality reduction from n to q with accuracy a%, 

i.e., the minimum number of PCs, q*, that describe at 

least the a% of the variance of the projection of CVs on 

the PC basis expressed by the eigenvalues λk. 

Then: 

we obtain a compression of x(t) of dimension q < n: 

 

 

we obtain an approximation of x(t):  



Context compression scheme 

Learning phase (lasts for m ): 

Node i learns the PCs of the last m measurements. Node i 

gathers the most recent m CVs. During this history window, 

i.e., for 1 ≤ t ≤ m, node i forwards each received x(t) to the 

peer node j.  

Once m CVs are received at node i then node i can determine 

the q principal components forming the Y matrix w.r.t. the 

recent m measurements and a = 90%. 



Context compression scheme 

Compression phase (lasts for l ): 

Node i forwards to node j the Y (n  q) matrix only once. 

The trained node i forwards to node j only the values of the q 

principal contextual parameters for a finite time period l > 0 

 

 

Node i forwards the compressed CV to node j. 

On the other side, in the (de)-compression phase, node j has 

the required information (i.e., the Y (n  q)  matrix) to re-

produce / approximate 



The Data Flow 



Error… 

 For the finite period l we assume that  

 (i) the number of the PCs remain unchanged and  

 (ii) the order of the corresponding eigenvalues does not 

change.  

The node j re-produces the CVs during the l period 

inducing the re-production / reconstruction error: 



Adaptive mechanism 

The value of l (r) for the r-th compression phase is not 

a-priori known and, additionally, there is no 

knowledge about the underlying data distribution w.r.t. 

the PCs.  

A controller A(l ) adjusts the period l(r + 1) of the (r + 

1)-th compression phase based on the error e(l ) and the 

l(r) value of the r-th compression phase. 

Adaptation rule 

   l(r + 1) = l(r) + a(r) : a(r) ∈ {−1, 0, 1} 



Periodic error 

 Periodic error e( l ): the average value of the relative 

error e∗(t) within a period l  

 



Adaptive mechanism 

The control parameters for the adaptation rule are: 

Δe(l ) : change in periodic error 

Δl : change in compression phase length 



Performance assessment 

Real sensor readings of temperature (T), humidity 

(H), and wind speed (W).  

 Information collected from experiments of the Sensor 

and Computing Infrastructure for Environmental Risks 

(SCIER) system, capable of delivering  valuable real 

time information regarding a natural hazard (e.g., fire) 

and both monitoring and predicting its evolution.  

The corresponding contextual vectors are of n = 7 

dimensions.  

Experiment with 32.25 hours of sensing.  



Performance assessment 

Mica2 energy consumption model;  

Mica2 operates with a pair of AA batteries that approximately 

supply 2200 mAh with effective average voltage 3V. It 

consumes 20mA if running a sensing application 

continuously which leads to a lifetime of 100 hours.  

The packet header is 9 bytes (MAC header and CRC) and the 

maximum payload is 29 bytes. Therefore, the per-packet 

overhead equals to 23.7\% (lowest value).  

For each contextual value the assumed payload is 4 bytes 

(float).  

A Mica2 message contains up to 7 contextual values (message 

payload: 28 bytes per message).  



Performance assessment 



Total energy cost 

cR, cT are receive (rx) and transmit (tx) costs for CVs and the 

periodic transmission/reception of  the Y matrix, respectively, 

cI is the energy cost for the CPU instructions of  the PCA 

(compression and decompression) 

c0 is the state transition cost. 



Cost 



Gain & Efficiency 

Gain: The percentage cost gain g(t) ∈ [0, 1] when applying PC3 

w.r.t. SCF by using the energy costs cPC3(t) and cSCF(t) 

 

 

 

 

Efficiency: w(t) ∈ [0, ) for a finite time horizon up to t is the 

portion of  energy cost c(t) out of  the data accuracy 1-e(t) 
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Performance 



Performance 



Thank you! 


