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Background1

I The recent advances in mobile devices
I Example
I Limitation

I Mobile Cloud Computing (MCC)
I What is MCC?
I Limitation

I Mobile Edge Computing (MEC)
I What is MEC?
I Names

I iCloud
I Fog Computing
I Mobile Edge Computing

I Use cases

1Pavel Mach and Zdenek Becvar. “Mobile edge computing: A survey on architecture and computation
offloading”. In: IEEE Communications Surveys & Tutorials 19.3 (2017), pp. 1628–1656.



Computation Offloading

I Dispatching intensive tasks to an external server, i.e., Cloud or
an Edge server.2

I Face/speech recognition;
I Augmented, assisted or virtual reality;
I Low latency applications, such as online gaming or remote

desktop.

I The authors3 demonstrated on a real MEC testbed that the
reduction of latency up to 88% and energy consumption of
the mobile device up to 93% can be accomplished by the
computation/task offloading in MEC.

2Pavel Mach and Zdenek Becvar. “Mobile edge computing: A survey on architecture and computation
offloading”. In: IEEE Communications Surveys & Tutorials 19.3 (2017), pp. 1628–1656.

3Jakub Dolezal, Zdenek Becvar, and Tomas Zeman. “Performance evaluation of computation offloading from
mobile device to the edge of mobile network”. In: 2016 IEEE Conference on Standards for Communications and
Networking (CSCN). IEEE. 2016, pp. 1–7.



Challenges4

I Offloading Sequential Decision Making
I Doing the tasks either locally or offloading them
I Locally, Cloud, or at the Edge
I Which Edge server to offload?

I Mobility Management

4Pavel Mach and Zdenek Becvar. “Mobile edge computing: A survey on architecture and computation
offloading”. In: IEEE Communications Surveys & Tutorials 19.3 (2017), pp. 1628–1656.



Previous Work

I Different from previous work, we focus on the decision of
when to offload to an edge server, i.e., the selection of MEC
servers/time.

I ST-CODA5: A spatial and temporal computation offloading
decision algorithm.

I A predictive off-loading framework in vehicular networks.6

5Haneul Ko, Jaewook Lee, and Sangheon Pack. “Spatial and Temporal Computation Offloading Decision
Algorithm in Edge Cloud-Enabled Heterogeneous Networks”. In: IEEE Access 6 (2018), pp. 18920–18932.

6Ke Zhang et al. “Mobile-edge computing for vehicular networks: A promising network paradigm with predictive
off-loading”. In: IEEE Vehicular Technology Magazine 12.2 (2017), pp. 36–44.



System Model

I Mobile device

I MEC server
I Computing task with total delay D such that:

I Do f f l oad < Dl o c al

I Do f f l oad delay includes:

1. Transmission Time;
2. Processing Time;
3. Time spent to receive the processed data from MEC server to

mobile device.



Problem Statement

A mobile user desires to offload data to an Edge server, and there
are many deployed Edge servers in the user path with different
total delays. Which is the best offloading strategy at time t∗ that:

1. Minimizes the expected total delay:

inf
t>0

E[Dt ] (1)

This problem is a sequential decision making solved based on the
principles of the Optimal Stopping Theory (OST).



Optimal Stopping Theory (1)

I Concerned with the problem of choosing the best time
instance to take a given action based on sequentially observed
random variables in order to minimize an expected cost.

I We cast our offloading problem as a finite horizon OST
problem, in which we know the upper bound n, i.e., the
number of stages at which one may stop7.

7Ke Zhang et al. “Mobile-edge computing for vehicular networks: A promising network paradigm with predictive
off-loading”. In: IEEE Vehicular Technology Magazine 12.2 (2017), pp. 36–44.



Optimal Stopping Theory (2)

I The system equation has the form:

xk+1 =

{
xT , if xk = xT (stop).

D∗
k , otherwise (continue).

(2)

I Let Jk(xk) be the cost to offload data/task to the k-th MEC
server. By Bellman’s equation:

Jn(xn) = xn (3)

for k = n, and

Jk(xk) = min
[
(1 + r)n−kxk ,E[Jk+1(D∗

k )]
]

(4)

for k = 1, ..., n − 1, with factor r ∈ (0, 1).



Optimal Stopping Theory (3)

Jk(xk) = min
[
(1 + r)n−kxk ,E[Jk+1(D∗

k )]
]

(4)

I Factor r ∈ (0, 1) is a delay parameter, which prompts us to
delay/speed our optimal decision.

I The term (1 + r)n−k denotes the risk if the offloading
happens at k and E[Jk+1(s∗k )] denotes the expected risk if we
continues the observation process.

I Rule: It is optimal to stop at stage k iff

xk ≤ ak =
E[Jk+1(D∗

k )]

(1 + r)n−k
, (5)

else, it is optimal to continue.



Optimal Stopping Theory (4)

The optimal stopping rule is determined by the scalar values
a1, a2, . . . , an through which the mobile node decides either to
offload or not:

Optimal Task Offloading Rule

Offload the data at the k-th MEC server if Dk ≤ ak ; otherwise
continue the observation if Dk > ak .



Optimal Stopping Theory (5)

The scalar ak values are calculated once through backward
induction using (6) and (7).

ak =
1

1 + r

(
ak+1(1− FD(ak+1)) +

∫ ak+1

0
udFD(u)

)
(6)

an =
1

1 + r

∫ 1

0
udFD(u) =

1

1 + r
E[D], (7)

where FD(u) = P(D ≤ u) is the cumulative distribution function
of the total delay D.



Summary of the Model

Input: Decision scalar values a1, a2, ..., an
Output: Decision of which MEC server to offload

Offload ← FALSE
for k = 1 : n do

if current total delay Dk ≤ ak then
MEC-Server ← k ;
Offload ← TRUE; break;

end if
end for
if Offload == FALSE then

MEC-Server ← n;
end if
Offload tasks/data to the MEC-Server;



Data Sets

I Real mobility trace for many users in a campus8

Timestamp associated AP
1026840585 AdmBldg16AP1

Table 1: Dataset Format

I Mobile Netwrok Dataset9

I Cellular traffic volume observed every hour (phone calls, SMS
and Internet communication) for each cell.

I Cell ids from the Mobile Netwrok Dataset are mapped to the
APs in the mobility trace.

I For example, we assume that the cell1 to be the access point
AdmBldg16AP1.

8David Kotz et al. CRAWDAD dataset dartmouth/campus (v. 2009-09-09). Downloaded from
https://crawdad.org/dartmouth/campus/20090909/movement. traceset: movement. Sept. 2009. doi:
10.15783/C7F59T.

9Gianni Barlacchi et al. “A multi-source dataset of urban life in the city of Milan and the Province of Trentino”.
In: Scientific data 2 (2015), p. 150055.

https://crawdad.org/dartmouth/campus/20090909/movement
https://doi.org/10.15783/C7F59T


Data Sets, Cont’d

I Mobility trace & Cell tower dataset with Internet traffic.

I Map an access point to a cell tower.

I We considered one day interval, i.e., for each user, we take
the movements for each day and run our model.

I Goal: Select the minimum expected total delay (load).

Time Access Point

1043522712 AcadBldg18AP2

1043523266 AcadBldg18AP3

1043523287 AcadBldg10AP15

1043523792 AcadBldg10AP12

Time Cell ID Internet Traffic

06/11/2013 01.00 1 10.466

06/11/2013 01.00 2 20.1029

06/11/2013 01.00 3 13.2935

06/11/2013 01.00 4 42.45

Time1 Time2 Access Point Cell ID Cell Internet Load

1043522712 04/12/2002 23.38 AcadBldg18AP2 1 10.466

1043523266 05/12/2002 22.52 AcadBldg18AP3 2 20.1029

1043523287 20/12/2002 22:52 AcadBldg10AP15 3 13.2935

1043523792 20/12/2002 22:55 AcadBldg10AP12 4 42.45
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Figure 1: Absolute difference
between Optimal and OST-model; σ

and µ are taken from the same
interval.
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Figure 2: Percentage difference
between the Optimal and

OST-model; σ and µ are taken from
the same interval.
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Figure 3: Absolute difference
between Optimal and OST-model; σ
and µ are taken from the all traces.
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Figure 4: Percentage difference
between Optimal and OST-model; σ
and µ are taken from the all traces.



Results (3)
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Figure 5: The Optimal and the OST-model for one interval for different
delay factors r .



Future Work and Conclusions

I We aim to focus on the case where there is a deadline by
investigating the value of the delay factor r and how it can be
adapted for different uses cases.

I Consider the case where the number of the server is unknown
and not provided to the mobile nodes.



The End
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