

Approximate Reasoning for Data-driven Tasks

Management at the Edge

Ms Tahani Aladwani

School of Computing Science Essence: Data Science & Distributed Computing Lab

Supervisors: Dr Christos Anagnostopoulos, Dr Fani Deligianni

Introduction

Emerging technologies such as the Internet of Things, social networking, and online games have caused a significant increase in the volume of data being generated at the network edge. Meanwhile, the concept of data-driven tasks has drawn increased attention in the last few years. Data-driven tasks rely heavily on data generated by smart devices (e.g., sensors and smartphones) to build knowledge and make decisions.

Execution of data-driven tasks can happen on:

- Smart devices
- Cloud Computing or

Problem Statement

EC system with $N = \{n_1, n_2, n_3, \dots, n_n\}$ Nodes. Data points $\mathbf{x} = [x_1, x_2, \dots, x_n]^T \in \mathbb{R}^d$. Each node n_i has а neighbourhood $N_i \subset N$ of directly communicating nodes. node n_i communicates Moreover, with endthe users/applications and a remote cloud server. n_i can execute locally certain data-driven tasks.

Edge computing

Research question : How can data-driven tasks obtain all the required data from various sources without sacrificing the device's computation resources?

Methods & Results

Task Management Mechanism Factors

introduce the basic factors for We inferring the right execution decision for each task T_k on each node n_k corresponding to :

1. Task popularity p_k

2. Outliers o_k

Figure 2. The probability of offloading.

Experiment

We used synthetic dataset to simulate while the tasks' popularities data

Results:

• Probability of offloading (r_k) for each task $(T_{k}).$

Table 1. The probability of offloading r_k for each task T_k .

T_k	p_k	u_k	u_k	$M_{1}(r_{k})$	$M_2(r_k)$	$M_{3}(r_{k})$
T_1	Low	Yes	Low	83%	84%	57%
T_2	Med	No	High	30.4%	32%	42%
T_3	Low	No	Low	85%	86%	72.9%
T_4	Med	No	Med	65%	68%	53%
T_5	High	No	High	23%	17.6%	35%
T_6	Low	Yes	Low	85%	86.5%	72.7%
T_7	Med	No	Med	44.7%	37%	47%
	High	Yes	High	14.4%	14.5%	17.7%
T		Vaa	11:~~	1 - 0/	1 - 00/	77 10/

3. Data overlapping u_k

Fuzzy Reasoning Approach

All factors are fed to a Fuzzy logic (FL) Inference System derive the to 'probability of offloading r_k '.

overlapping experiment has been carried out on real datasets that are collected by four Unmanned Surface Vehicles (USVs) working as nodes n_i to collect data from sensors in a coastal area, dataset link: Models: http://www.dcs.gla.ac.uk/essence/fundin EC, Ours, Cloud g.html#GNFUV. In order to obtain the task's data overlapping u_k , we have defined for each local dataset D_i the feature boundaries

 $D_i = [x_1^{min}, x_1^{max}, x_2^{min}, x_2^{mix}]$

The FL engine has been developed in MATLAB considering the popularity p_k of tasks T_k between [1, 40] and outlier o_k either 0 or 1, while the percentages of data overlapping u_k are between [1, 100].

High Yes High 15% 15.8% 27.1% l g Yes Low 67.2% 83% 85% T₁₀ Low 6/10 9/10 8/10

Data uploading speed and Execution time Simulator: CloudSim Plus [*] **Performance Metrics:**

- Data Uploading Speed
- Task Execution Time

Conclusions

Our mechanism performance has been evaluated according to the probability of offloading data-driven analytics tasks to the correct nodes according to the optimal solution and against two other mechanisms. As evidenced by the results, our mechanism significantly outperforms the benchmark mechanisms in terms of decision-making accuracy. Furthermore, this mechanism can reduce the probability of a task being offloaded to an unsuitable node by up to 90 %. In addition, our method has been evaluated in terms of resource utilization, showing that it provides higher data uploading speeds compared to EC-based and cloudbased methods.

References

[1] F. Samea, F. Azam, M. Rashid, M. W. Anwar, W. Haider Butt, and A. W. Muzaffar, "A model-driven framework for data-driven applications in serverless cloud computing," Plos one, vol. 15, no. 8, p. e0237317,2020. [2] K. Kolomvatsos and C. Anagnostopoulos, "A deep learning model for demanddriven, proactive tasks management in pervasive computing," IoT, vol. 1, no. 2, pp. 240–258, 2020.

[3] J. Cheng and D. Guan, "Research on task-offloading decision mechanism in mobile edge computing-based internet of vehicle," J. Wireless Communications and Networking, vol. 2021, no. 1, pp. 1–14, 2021.

[4] K. Cui, B. Lin, W. Sun, and W. Sun, "Learning-based task offloading for marine fog-cloud computing networks of usv cluster," Electronics, vol. 8, no. 11, p. 1287, 2019