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By changing the value of the hyperparameter § in the re-ranking objective function, one can

® Re-ranking based diversification objective functions can be expressed in the generic form: effectively change the total curvature ot the objective.

F(S) = f(S) + Bg(h(S)),

f(+) represents relevance of S. It is a modular function. X In practice, the balanced value of 3 is found by the grid search.

g(h(8)) represents the diversity of S. It is the composition of a linear or concave function, The balanced § value depends on the objective function [, whereas « is independent of £

g(+), and a modular function h. An « value closer to 0.5 gives the balanced trade-off between being completely relevant and diverse.
h(-) is defined in terms of different diversification concepts such as item coverage, popularity Practitioner can choose 8 such that the corresponding « is closer to 0.5.

bias, item novelty and long-tail recommendation.
The [ is the hyperparameter to be tuned for the relevance-diversity trade-off.

Experiments

We used the benchmark MovieLens 20M dataset. We tested with two algorithms (i) the coverage
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