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The aim of this work is to address the exponential 
increase in data and computational times by 
Approximate Query Processing (AQP). However, 
instead of a sampling based approach (S-AQP) [2] 
we use a Query-Driven Learning (QDL) [1] 
approach. We train Machine Learning (ML) models 
that are able to estimate the answers of future 
queries using historical workloads.  
Contributions:  

1. Offer a light-weight, complimentary 
aggregate estimation engine that can be 
stored locally. 

2. Agnostic to data backend. Can be used 
alongside relational databases, S-AQP etc. 

3. Highly accurate and efficient estimations 
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QDL uses past and incoming queries to learn query 
patterns and be able to build ML models that can 
estimate the results of new queries.  
Query Representation : 
• Each Aggregate Query (AQ) is represented as a 

vector by extracting its filtering parameters.  

• Any aggregate (COUNT/AVG/SUM, etc) is 
supported... 

• Each query is represented as 𝑞 = (𝒎, 𝑦) 

Partitioning (Clustering):  

• The set of queries, 𝐶 =  (𝒎, 𝑦) 𝒊=𝟏
𝒏 ,is 

partitioned for better result estimation.  

𝐶 =   𝐶𝑖
𝐾
𝑖=1    

𝐶𝑖 ∩ 𝐶𝑗 = ∅ , 𝑖 ≠ 𝑗 

• Each subset has a representative 𝑾 =
{𝒘1, … ,𝒘𝑘} 

ML Model Association 

• Every subset is used to train a supervised 
regression model.  

• A set of ML models is created 𝑀 = {𝑓1, … , 𝑓𝐾} 
which are associated with the representatives 𝑊 

 

Answer Prediction 

• A prediction is made based on an ensemble 
scheme incorporating the predictions of the 
closest representative. 

𝑦 =   Ι𝑘𝑓𝑘(𝒎)

𝐾

𝑘=1

 

• Where Ι𝑘 is an indicator function evaluating to 
true if : 𝑤𝑘 = arg min

𝑖∈[𝐾]
𝒎 − 𝒘𝒊  

Figure 4. Training Mode 

Figure 5. Prediction Mode  

Figure 2. Representing range queries in multi-dimensional space  
and then associating these vectors with their results. 

Parser (Query Vectorization) 
• The query is initially parsed and 

a vectorised representation is 
produced 

Partitioner (Query Clustering) 
• The partitioner maps the query 

to the closest representative and 
associated model 
 

• During training mode the 
queries are monitored and their 
answers are retrieved from the 
Data Store/S-AQP 

• In prediction mode the answers 
can be estimated via the models 

Figure 3. Possible Cloud Deployment 

Figure 1. Complete System Architecture – Showing how models are trained using  
parsed queries and how predictions are served through models.  

Figure 6. Performance comparison of state-of-the art SAQP 
(VerdictDB[2] ) and model-based approach. 

Figure 7. Relative Error for Crimes using SAQP VerdictDB[2] 
and model-based approach.. 

• Datasets Used: Crimes and TPC-H (1GB) 
• Partitioner : K-Means  -  Model : XGBoost 
• Experiments ran single threaded on Linux 

Ubuntu 16.04 using an i7 CPU at 2.20GHz 
with 6GB RAM 

Over 4000x 
faster than  
SAQP 0.01  

Figure 8. Relative Error for sample of TPC-H using model-
based approach.. 

Average 
speed-up : 

39000x 

Essence:  
Pervasive & Distributed  
Intelligence 


